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K-GROUPS WITH FINITE COEFFICIENTS
AND ARITHMETIC

PAUL ARNE ØSTVÆR

Abstract

In this paper we prove rank formulas for the even K-groups of number rings and relate Leopoldt’s
conjecture to K-theory. These results follow from a computation of the higher K-groups with finite
coefficients.

1. Introduction and main results

LetF be a number field. Algebraic K-theory associates to the ring ofp-integers
Op in F a sequence of groups

K0(Op),K1(Op),K2(Op), . . . , Kn(Op),Kn+1(Op), . . .

called the algebraic K-groups of Op. They are the homotopy groups of a spec-
trum constructed from the category of finitely generated projective Op-modules
[18]. It has been known for over thirty years that the first three groups in the
sequence reflect arithmetic properties ofF . See [30] for a survey. A theorem of
Quillen says that these K-groups are finitely generated Abelian groups [19]. In
[3], Borel computed their ranks. In this paper we consider the torsion subgroup
of Kn(Op). If F is totally imaginary, the spectral sequence relating motivic co-
homology to algebraic K-groups with finite coefficients implies the expected
formulas for the mod 2ν K-groups Kn(O2; Z/2ν).

Theorem 1.1. Let F be a number field and n ≥ 1.

(1) If F is totally imaginary, then the mod 2ν K-groups of O2 are described
by an isomorphism

K2n−1(O2; Z/2ν) → H 1
ét(O2; Z/2ν(n))

and a short exact sequence

0 →H 2
ét(O2; Z/2ν(n+ 1))→K2n(O2; Z/2ν)→H 0

ét(O2; Z/2ν(n))→ 0.
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(2) Assume the Bloch-Kato conjecture holds at the odd prime number p.
Then O2 can be replaced by Op and 2ν by pν in (1) for F an arbitrary
number field.

The proof of Theorem 1.1 follows the argument for ν = 1 in [20]. The-
orem 1.1 allows to relate the multiplication by a power of p map on the K-
groups of Op with étale cohomology.

Corollary 1.2. Assume the hypothesis in Theorem 1.1. For n ≥ 2, there
is the exact sequence

0 → H 0
ét(Op; Z/pν(n)) → K2n−1(Op)

pν−→ K2n−1(Op) → H 1
ét(Op; Z/pν(n))

→ K2n−2(Op)
pν−→ K2n−2(Op) → H 2

ét(Op; Z/pν(n)) → 0.

Remark. This result is known when n = 2 by [14] and [16]. One expects
to have a similar exact sequence for real number fields and the prime 2.

Let us denote by r1 the number of real places of F , and by r2 the number of
pairs of complex places of F . Leopoldt’s conjecture predicts that the number
of independent Zp-extensions of F equals r2 + 1. This is known to hold for
Abelian number fields, cf. Corollary 5.32 and Theorem 13.4 [28]. The étale
cohomological formulation is that

H 2
ét(Op; Z/p∞(0)) = 0,

or equivalently
rkZp

H 1
ét(Op; Zp(0)) = r2 + 1.

The Leopoldt conjecture is part of a more general conjecture due to Schneider
[21]. See [10] for a further generalization.

SC (for p odd). The group H 2
ét(Op; Z/p∞(i)) is trivial for p odd and i �= 1.

Théorème 5 [22] implies SC for i ≥ 2 since H 2
ét(Op; Z/p∞(i)) is divisible

for p odd. See [7] for a proof which uses étale K-theory. One expects that the
case p = 2 and F totally imaginary can be included in the formulation of
Schneider’s conjecture, cf. Theorem 7.3 [29].

If p = 2 and F is a formally real number field, we will state a similar con-
jecture for the positive étale cohomology group H ∗+(O2; Z/2∞(i)) introduced
in [4]. Let R denote the real numbers, and consider the exact sequence

· · · → ⊕r1H 1
ét(R; Z/2∞(i)) → H 2

+(O2; Z/2∞(i))

→ H 2
ét(O2; Z/2∞(i)) → ⊕r1H 2

ét(R; Z/2∞(i)) → 0.
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Here H 2+(O2; Z/2∞(i)) is divisible since H 3+(O2; Z/2(i)) = 0. Lemma 7.1.1
[29] shows that the groups appearing in the direct sums are finite. The next
conjecture is therefore equivalent to H 2

ét(O2; Z/2∞(i)) being finite for i �= 1.

Conjecture (for p = 2). The group H 2+(O2; Z/2∞(i)) is trivial for i �= 1.

The group H 2
ét(O2; Z/2∞(i)) is finite for i ≥ 2 according to Proposition 4.6

[20]. This proves the conjecture for i ≥ 2. It seems likely that techniques from
Iwasawa theory can lead to a proof of the conjecture for almost all i.

Theorem 1.1 gives a K-theoretic reformulation of the Schneider conjecture.
Let eν denote the exponent of (Z/pν)×. The next result fills a minor gap in the
literature on K-groups of number fields at the prime 2.

Proposition 1.3 (Kolster). Assume the hypothesis in Theorem 1.1 and let
i �= 1. The following are equivalent.

(1) SC holds for p and i.

(2) For some ν and some n ≥ 2, n ≡ i mod eν we have rkpν K2n−2(Op) = 0.

(3) For some ν and all m, n ≥ 2, m ≡ n ≡ i mod eν there is an abstract
isomorphism K2m−2(Op) ∼= K2n−2(Op) on the p-torsion part.

Remark. See Theorem 2.3 [13] for the analogous result for étale K-groups
of number fields at odd prime numbers and of non-exceptional number fields at
the prime 2. Kolster’s proof carries over to our situation. The approach in loc.
cit. was based on the Dwyer-Friedlander spectral sequence [7]. Our approach
uses the Bloch-Lichtenbaum spectral sequence with finite coefficients from
[20], see also [2].

In the last part of the paper we prove a higher p-rank formula for the even
K-groups of Op. Let Fν = F(ζpν ) where ζpν is a primitive pν th root of unity.
Let Gν denote the Galois group of Fν/F , and let G∞ denote the Galois group
Gal(F∞/F ) where F∞ = ⋃

Fν . Denote the ring of p-integers in Fν by Op,ν

and write Op,∞ for the direct limit. Define the integer r(n)(F ) to be r2 if n is
even, and r1 + r2 if n is odd. Write Pic for the Picard group of isomorphism
classes of algebraic line bundles.

Theorem 1.4. Assume the hypothesis in Theorem 1.1, and additionally
that F is non-exceptional when p = 2. For n �≡ 1 mod p, there is the pν-rank
formula

rkpν K2n−2(Op) = rkpν (O×
p,ν/µpν ⊗ Z/pν(n − 1))Gν

+ rkp(pν Pic(Op,ν)(n − 1)Gν / im γ ν
n ) − r(n)(F )

where γ ν
n : pν−1 Pic(Op,ν−1)(n − 1)Gν−1 → pν Pic(Op,ν)(n − 1)Gν .



44 paul arne østvær

Some of the results in Section 2 were obtained in 1996 in my MasterThesis at
the University of Oslo. I thank John Rognes for friendly and helpful guidance.

2. Mod pν K-groups

Denote the completion of F at a prime ℘ by F℘ , and by k℘ the residue field
of ℘. Let A{p} be the maximal p-torsion subgroup of an Abelian group A.
From [22] and [29] there are localization sequences for étale cohomology and
K-theory groups with mod pν-coefficients

(2.1) 0 → H 1
ét(Op; Z/pν(n)) → H 1

ét(F ; Z/pν(n))

→ ⊕℘�pH
0
ét(k℘; Z/pν(n − 1)) → H 2

ét(Op; Z/pν(n))

→ H 2
ét(F ; Z/pν(n)) → ⊕℘�pH

1
ét(k℘; Z/pν(n − 1)) → 0,

and

(2.2) 0 → K2n−1(Op; Z/pν) → K2n−1(F ; Z/pν)

→ ⊕℘�pK2n−2(k℘; Z/pν) → K2n−2(Op; Z/pν)

→ K2n−2(F ; Z/pν) → ⊕℘�pK2n−3(k℘; Z/pν) → 0.

We will employ (2.1) and (2.2) in the calculation of Kn(Op; Z/pν).

Proof of Theorem 1.1. Let us first prove the result for the prime 2, and
then comment on the conjectural part. For p = 2 there is a mod pν Bloch-
Lichtenbaum spectral sequence for number fields [20]. Its E2-page is:

E
m,n
2 =

{
Hm−n

ét (F ; Z/2ν(−n)) n ≤ m ≤ 0

0 otherwise
�⇒ K−m−n(F ; Z/2ν)

For F a totally imaginary number field there are no non-trivial differentials
for bidegree reasons. Hence the spectral sequence collapses at its E2-page.
Likewise for F℘ . Consider now the 2-integers in F . The edge maps in the
Bloch-Lichtenbaum spectral sequences for F and F℘ induce the diagram
(2.3)
K2n−1(F ; Z/2ν) −−→ ⊕℘�2K2n−1(F℘; Z/2ν)

⊕∂℘−−−→ ⊕℘�2K2n−2(k℘; Z/2ν)

↓∼= ↓∼= ⊕�℘

H 1
ét(F ; Z/2ν(n)) −−→ ⊕℘�2H

1
ét(F℘; Z/2ν(n))

⊕∂e℘−−−→ ⊕℘�2H
0
ét(k℘; Z/2ν(n−1))

where we look for a map ⊕�℘ that makes the diagram commute. The left
hand side of (2.3) is commutative by naturality of the Bloch-Lichtenbaum



k-groups with finite coefficients and arithmetic 45

spectral sequence with respect to the completions of F . The composite of the
two lower horizontal maps in (2.3) equals the first connecting homomorphism
in (2.1), and likewise for the two upper horizontal maps in (2.3) and the first
connecting homomorphism in (2.2). Hence it suffices to find a map �℘ that
makes the diagram

(2.4)

K2n−1(F℘; Z/2ν)
∂℘−−−−→ K2n−2(k℘; Z/2ν)

↓∼= �℘

H 1
ét(F℘; Z/2ν(n))

∂e℘−−−−→ H 0
ét(k℘; Z/2ν(n − 1))

commutative (for ℘ non-dyadic). To that end we compare with the diagram

(2.5)

K2n−1(F℘; Z/2∞)
∂℘−−−−→∼= K2n−2(k℘; Z/2∞)

↓∼= ↓∼=

H 1
ét(F℘; Z/2∞(n))

∂e℘−−−−→∼= H 0
ét(k℘; Z/2∞(n − 1))

appearing in the proof of Theorem 6.3 in [20]. The existence of �℘ follows
since the map from (2.4) to the 2ν-exponent subgroups in (2.5) induces an
isomorphism in the upper and lower right hand corners:

K2n−2(k℘; Z/2ν)
∼=−−−−→ 2νK2n−2(k℘; Z/2∞)

�℘ ↓∼=

H 0
ét(k℘; Z/2ν(n − 1))

∼=−−−−→ 2νH
0
ét(k℘; Z/2∞(n − 1))

For the upper horizontal isomorphism we use the fact that K2n−1(k℘; Z/2∞)

is the trivial group, and the short exact sequence

(2.6) 0 → Kn+1(A; Z/2∞)/2ν → Kn(A; Z/2ν) → 2νKn(A; Z/2∞) → 0

forA = k℘ . For the lower horizontal isomorphism we apply the exact sequence

(2.7) 0 → Hn−1
ét (A; Z/2∞(i))/2ν

→ Hn
ét(A; Z/2ν(i)) → 2νH

n
ét(A; Z/2∞(i)) → 0.

From these remarks we note that not only does �℘ exist, but the map is
unique and in fact an isomorphism. As a result we can make the commutative



46 paul arne østvær

diagram

K2n−1(O2; Z/2ν) −−−→ K2n−1(F ; Z/2ν) −−−→ ⊕℘�2K2n−2(k℘; Z/2ν)

↓ ↓∼= ↓⊕�℘∼=

H 1
ét(O2; Z/2ν(n)) −−−→ H 1

ét(F ; Z/2ν(n)) −−−→ ⊕℘�2H
0
ét(k℘; Z/2ν(n − 1))

where the isomorphism in the middle is the edge map in the mod 2ν Bloch-
Lichtenbaum spectral sequence for F , and where the horizontal maps come
from the localization sequences (2.1) and (2.2).

Consider now the even higher mod two K-groups of O2. By results in [22]
and [29] we known that H 2

ét(O2; Z/2∞(i)) is the trivial group for i ≥ 2. From
Theorem 6.3 [20] and (2.7), we have isomorphisms for n ≥ 1:

(2.8)
H 2

ét(O2; Z/2ν(n + 1)) ∼= H 1
ét(O2; Z/2∞(n + 1))/2ν

∼= K2n+1(O2; Z/2∞)/2ν

Likewise, there are isomorphisms

(2.9) H 0
ét(O2; Z/2ν(n)) ∼= 2νH

0
ét(O2; Z/2∞(n)) ∼= 2νK2n(O2; Z/2∞)

for n ≥ 1. The short exact sequence (2.6), (2.8) and (2.9) imply the claimed
extension for K2n(O2; Z/2ν) in Theorem 1.1 (1).

Let p be an odd prime number, and let F ′ be a field extension of F . The
Bloch-Kato conjecture for F ′ at p predicts that the Galois symbol

KM
n (F ′)/pν → Hn

ét(F
′; Z/pν(n))

is an isomorphism. The Bloch-Lichtenbaum spectral sequence for F with mod
pν-coefficients has input Voevodsky’s motivic cohomology groups:

E
m,n
2 = Hm−n

M (F ; Z/pν(−n)) �⇒ K−m−n(F ; Z/pν)

This depends on work in [23] and [27]. Assume the Bloch-Kato conjecture
holds for every field extension of F . From [24] we can then identify motivic
and étale cohomology of F in a certain range depending on the twist. As a
consequence we can rewrite the modpν Bloch-Lichtenbaum spectral sequence
for F to have the same form as for the prime 2. The rest of the proof is then a
verbatim copy of the argument given above.

Next we will use Theorem 1.1 to derive exact sequences and periodicity
results for K-groups. In the following we keep the same hypothesis as in The-
orem 1.1. By Theorem 6.13 [20] there is an isomorphismH 0

ét(Op; Z/p∞(n)) ∼=
K2n−1(Op){p} for p = 2. Their proof carries over to p odd according to the
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discussion ending the proof of Theorem 1.1. From (2.7), there is the exact
sequence

(2.10) 0 → H 0
ét(Op; Z/pν(n)) → K2n−1(Op)

pν−→ K2n−1(Op).

By comparing the extension for K2n(Op; Z/pν) in Theorem 1.1 and the Bock-
stein exact sequence for K-groups with finite coefficients, we find the diagram:

(2.11)

K2n(Op)/p
ν −−→ K2n(Op; Z/pν) −−→ pνK2n−1(Op)

↓∼=

H 2
ét(Op; Z/pν(n + 1)) −−→ K2n(Op; Z/pν) −−→ H 0

ét(Op; Z/pν(n))

The right vertical arrow in this diagram is an isomorphism extracted from the
exact sequence (2.10). It may be chosen in such a way that the diagram (2.11)
commutes. This follows by comparing with a separable closure F s of F , for
which there is a unique isomorphism that makes the corresponding diagram
for F s commute. Hence, (2.11) implies exactness of the sequence

(2.12) K2n−2(Op)
pν−→ K2n−2(Op) → H 2

ét(Op; Z/pν(n)) → 0.

By applying the calculation of K2n−1(Op; Z/pν) to the Bockstein exact se-
quence, we get immediately the short exact sequence

(2.13) 0 → K2n−1(Op)/p
ν → H 1

ét(Op; Z/pν(n)) → pνK2n−2(Op) → 0.

Corollary 1.2 follows from (2.10), (2.12) and (2.13). From [1] we know
that (2.13) is split for p odd and for ν ≥ 2 if p = 2, cf. Proposition 3.2.
Next we point out some consequences of the sequences (2.10) and (2.12).
If m ≡ n mod eν , then we can identify Z/pν(m) and Z/pν(n) as coefficient
sheaves in the étale topology on Spec(Op). This implies the isomorphisms

(2.14) µpν (Op) ∼= pνK2eν+1(Op) ∼= pνK4eν+1(Op) ∼= · · ·
and:

(2.15) K2(Op)/p
ν ∼= K2eν+2(Op)/p

ν ∼= K4eν+2(Op)/p
ν ∼= · · ·

Remark. If F contains a primitive pν th root of unity, then Z/pν(i) is inde-
pendent of the twist i and the periodicity in (2.14) and (2.15) can be decreased.

3. Arithmetical applications

The results in the previous section allow us to relate the Leopoldt conjecture to
K-theory, and to prove rank formulas for the even K-groups of number rings.
The hypothesis in Theorem 1.1 will be assumed throughout this section.
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Proposition 1.3 implies the following result.

Corollary 3.1. If n ≥ 2 is divisible by eν and rkpν K2n−2(Op) = 0, then
Leopoldt’s conjecture holds for F at the prime number p.

Remark. If the 8-rank of K2(Op) is zero and F is totally imaginary, then
the Leopoldt conjecture holds for F at the prime 2.

Let w(p)
n (F ) denote the order of H 0

ét(F ; Z/p∞(n)) and write δνn for the
pν-rank of the integers reduced modulo the greatest common divisor of pν

and w
(p)
n (F ). Recall that the pν-rank of H 1

ét(Op; Z/pν(0)) equals the number
of independent cyclic p-ramified extensions of F of degree pν , cf. [9], [17]
and [13]. The sequence (2.13), Borel’s calculation of rational K-theory of
number fields and the identification of the torsion part of K2n−1(Op) ⊗ Zp

from Theorem 6.13 in [20] imply the following result.

Proposition 3.2. Let ν ≥ 2 if p = 2 and n ≥ 2. Then:

rkpν H 1
ét(Op; Z/pν(n)) = rkpν K2n−2(Op) + r(n)(F ) + δνn

In particular, the number of independent cyclic p-ramified extensions of F of
degree pν equals rkpν K2eν−2(Op) + r(n)(F ) + 1.

Remark. Note that the absolute Galois group ofF acts trivially on Z/2ν(eν),
so K2eν−1(Op) contains an element of order pν .

Let us turn to the proof of Theorem 1.4. From now on,F is a non-exceptional
number field if p = 2. Then the Lyndon-Hochschild-Serre spectral sequence

E
m,n
2 = Hm(G∞, Hn

ét(Op,∞; Z/pν(i))) �⇒ Hm+n
ét (Op; Z/pν(i))

collapses at its E2-page, and there is a short exact sequence

(3.3) 0 → H 1(G∞,Z/pν(i)) → H 1
ét(Op; Z/pν(i))

→ H 1
ét(Op,∞; Z/pν(i))G∞ → 0.

From Tate’s lemma, see p. 526 [25], there are isomorphisms for i �= 0:

H 0
ét(Op; Z/p∞(i))/pν ∼= H 0(G∞,Z/p∞(i))/pν ∼= H 1(G∞,Z/pν(i))

From (2.13) we get a split short exact sequence

0 → K2n−1(Op)/p
ν → H 1

ét(Op,∞; Z/pν(n))G∞ → pνK2n−2(Op) → 0

where K2n−1(Op) denotes K2n−1(Op) modulo p-torsion.
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Proposition 3.4. Let n ≥ 2. Then:

rkpν K2n−2(Op) = rkpν H 1
ét(Op,∞; Z/pν(n))G∞ − r(n)(F )

Remark. See Theorem 7.11 [20] for rk2K2n−2(O2) and any number field.
Recall that H 1

ét(Op,∞; Z/p∞(n)) is isomorphic as a Gal(F∞/F )-module to the
Pontrjagin dual of the standard Iwasawa module of F twisted n times.

It remains to compute rkpν H 1
ét(Op,∞; Z/pν(n))G∞ . From Galois descent,

there are isomorphisms:

H 1
ét(Op,∞; Z/pν(n))G∞ ∼= H 1

ét(RFν
; Z/pν(n))Gν

∼= H 1
ét(RFν

; Z/pν(1))(n − 1)Gν

From the Kummer theory description of H 1
ét(RFν

; Z/pν(1)), there is the fol-
lowing exact sequence

(3.5) 0 → (O×
p,ν/µpν ⊗ Z/pν(n − 1))Gν

→ H 1
ét(Op,∞; Z/pν(n))G∞ → pν Pic(RFν

)(n − 1)Gν → 0.

For exactness of (3.5) we use that H 1(Gν,O×
p,ν/µpν ⊗ Z/pν(n − 1)) = 0

provided n �≡ 1 mod p, cf. Lemma 1.1 [11], p. 108 [12] or [15].

Proof of Theorem 1.4. The formula is known for n = 2 [12]. Precisely
the same arguments give the result for the higher K-groups, using the results
above.

The following result is inspired by the results on relative quadratic exten-
sions in [5], [6], [8] and [12]. Let Sp be the set of primes of F above p and let
Sd
p be the subset of Sp consisting of the primes which are decomposed in the

extension F/Q. We write #S for the number of elements in a finite set S.

Corollary 3.6. Assume the hypothesis in Theorem 1.4 and let p be odd.
In addition we assume that [F(ζpν ) : F ] = 2 and n �≡ 1 mod p. If n ≥ 2 is
even, then:

rkpν K2n−2(Op) = #Sd
p + rkpν ker(Pic(Op,ν) → Pic(Op))

If n ≥ 3 is odd, then:

rkpν K2n−2(Op) = #Sp + rkpν Pic(Op) − 1
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Proof. The groupGν is generated by an automorphism whose restriction to
the field extension Q(ζpν )/Q is complex conjugation. Consider the surjective
map:

NF(ζpν )/F ⊗ 1 : O×
p,ν/µpν ⊗ Z/pν → O×

p ⊗ Z/pν

If n ≥ 2 is even, then

(O×
p,ν/µpν ⊗ Z/pν(n − 1))Gν ∼= ker(NF(ζpν )/F ⊗ 1)

and hence rkpν (O×
p,ν/µpν ⊗ Z/pν(n − 1))Gν = #Sd

p + r(n)(F ). Moreover, we
have that:

Pic(Op,ν)(n − 1)Gν ∼= ker(Pic(Op,ν) → Pic(Op))

For n ≥ 3 odd, there are isomorphisms

pν Pic(Op,ν)(n − 1)Gν ∼= pν Pic(Op,ν)
Gν ∼= pν Pic(Op)

and:

(O×
p,ν/µpν ⊗ Z/pν(n − 1))Gν ∼= (NF(ζpν )/F ⊗ 1)(O×

p,ν/µpν ⊗ Z/pν)

= O×
p ⊗ Z/pν

To finish the proof we apply Theorem 1.4.

Note that the p-rank formulas for K2n−2(Op) depend on the arithmetic in
the tower · · · ⊂ F(ζpν ) ⊂ F(ζpν+1) ⊂ · · ·. If µpν ⊂ F , Kummer theory and
the sequence (2.13) imply the following split short exact sequence

(3.7) 0 → K2n−1(Op)/p
ν → µpν ⊗ "F → pνK2n−2(Op) → 0.

Here "F = { [z] ∈ F×/pν | v℘(z) ≡ 0 mod pν for all ℘ �∈ Sp } and there is a
split short exact sequence

(3.8) 0 → µpν ⊗ O×
p → µpν ⊗ "F → µpν ⊗ Pic(Op) → 0.

For the following result, see Theorem 6.2 [26] when n = 2.

Corollary 3.9. If µpν ⊂ F and n ≥ 2, then:

rkpν K2n−2(Op) = rkpν Pic(Op) + r1 + r2 − r(n)(F ) + #Sp − 1

Proof. This follows from (3.7) and (3.8).
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