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A NOTE ON LÁRUSSON-SIGURDSSON’S PAPER

ARMEN EDIGARIAN∗

1. Introduction

Let X be a complex manifold. We denote AX the family of all mappings
f : D → X which are holomorphic in a neighborhood of the closure D of the
unit disc D. A disc functional on X is a function H : AX → R ∪ {−∞}. The
envelope of H is the function EH : X → R ∪ {−∞} defined by the formula

EH(x) := inf{H(f ) : f ∈ AX, f (0) = x}, x ∈ X.

E. Poletsky [5], [6], [7], has shown that certain disc functionals on domains
in Cn have plurisubharmonic envelopes. Later, for three classes of disc func-
tionals plurisubharmonicity of envelopes on a class of complex manifolds were
shown by F. Lárusson and R. Sigurdsson [4]. The paper is motivated by results
from [4].

Let us consider the following two functionals.
Let φ : X → R ∪ {−∞} be an upper semi-continuous function. Define the

functional H1 = H
φ

1 by the formula

H1(f ) = 1

2π

∫ 2π

0
φ(f (eiθ )) dθ, f ∈ AX.

In [4] this functional is called the Poisson functional.
Let v be a plurisubharmonic function on X. We define the functional H2 =

Hv
2 as follows. If f ∈ AX and v ◦ f is not identically −∞, then

H2(f ) = 1

2π

∫
D

(
log | · |)�(v ◦ f ),

where�u is the generalized Laplacian of a subharmonic function u. If f ∈ AX

and v ◦ f = −∞, then we put H2(f ) = 0. In [4] the functional H2 is called
the Riesz functional.
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Following [4], we define P as the class of complex manifoldsX for which
there exists a finite sequence of complex manifolds and holomorphic mappings

X0
h1−→ X1

h2−→ . . .
hm−→ Xm = X, m ≥ 0,

where X0 is a domain in a Stein manifold and each hi , i = 1, . . . , m, is either
a covering or a finite branched covering. More on the class P could be found
in [4].

For a complex manifold X we denote PSH(X) the set of all plurisubhar-
monic functions on X. We assume that the constant function −∞ is plur-
isubharmonic.

Recall the following result from [4]

Theorem 1.1. LetX be a manifold in P . If φ is an upper semi-continuous
function on X, then E

H
φ
1

is plurisubharmonic, and

E
H

φ
1

= sup{u ∈ PSH(X) : u ≤ φ}.

If v is a continuous plurisubharmonic function onX, thenEHv
2

is plurisubhar-
monic, and

EHv
2

= sup{u ∈ PSH(X) : u ≤ 0,L (u) ≥ L (v)},

where L (u) is the Levi form i∂∂u of u.

In Theorem 1.1 the plurisubharmonicity of H2 is obtained as a corollary
from the plurisubharmonicity of H1 (see [4]). Actually, this is the reason why
in Theorem 1.1 the authors assumed the continuity of v. The main purpose of
this note is to show the plurisubharmonicity of H2 for any plurisubharmonic
function v.

Letφ be a plurisuperharmonic function on a complex manifoldX,φ �≡ +∞.
We putHφ(f ) = 1

2π

∫ 2π
0 φ(f (eiθ )) dθ for f ∈ AX such that φ◦f �≡ +∞ and

Hφ(f ) = +∞ for f ∈ AX such that φ ◦f ≡ +∞. Note that if φ ◦f �≡ +∞,
then φ ◦ f ∈ L1(T), where T is the unit circle. According to our definition Hφ

is not a disc functional, because it may take the value +∞. Nevertheless, we
may consider the envelopeEHφ ofHφ . It is not difficult to see thatEHφ < +∞.
We have even more. Namely, we have the following results.

Theorem 1.2. Let X be a complex manifold and let φ be a plurisuper-
harmonic function on X, φ �≡ +∞. Then EHφ < +∞ and EHφ is an upper
semicontinuous function on X.
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Theorem 1.3. LetX be a manifold in P and let φ be a plurisuperharmonic
function on X, φ �≡ +∞. Then EHφ is a plurisubharmonic function and

(1) EHφ = sup{u ∈ PSH(X) : u ≤ φ} on X.

By the Riesz representation, for a plurisubharmonic function v on a complex
manifold X and a holomorphic mapping f ∈ AX such that v ◦ f �≡ −∞ we
have

Hv
2 (f ) = v(f (0))− 1

2π

∫ 2π

0
v(f (eiθ )) dθ.

So,

(2) Hv
2 (f ) = v(f (0))+H−v

1 (f ) and EHv
2

= v + EH−v
1

As a simple corollary of Theorem 1.2 and equation (2) we have immediately
the following.

Corollary 1.4. Let X be a complex manifold and let v be a plurisubhar-
monic function on X. Then EHv

2
is an upper semicontinuous function in X.

Using results from [4], Theorem 1.3, and equation (2) we have the following.

Corollary 1.5. LetX be a manifold in P and let v be a plurisubharmonic
function on X. Then EHv

2
is a plurisubharmonic function and

EHv
2

= sup{u ∈ PSH(X) : u ≤ 0,L (u) ≥ L (v)} on X.

2. Proof of Theorem 1.2

The following two simple results (Lemma 2.1 and Lemma 2.2) play a crucial
role in our considerations.

Lemma 2.1. Let � be a domain in Cn and let φ be a plurisuperharmonic
function on �. Then for any y0 ∈ � and any ε > 0 there exists r0 > 0 such
that for any y1 ∈ B(y0, r), r ∈ (0, r0), we have

φ(y0) ≥ 1

bnr2n

∫
Bn(y1,r)

φ(y) dλn(y)− ε,

where Bn(y0, r) := {y ∈ Cn : ‖y − y0‖ < r}, Bn := Bn(0, 1), bn := λn(Bn),
and λn is the Lebesgue measure in Cn.

Proof. Fix y0 ∈ � and ε > 0. We may assume that φ(y0) �= +∞. Put
ε1 := ε

22n−1 . Since φ is a lower semicontinuous function, there exists r0 > 0
such that

φ(y)+ ε1 ≥ φ(y0), y ∈ Bn(y0, 2r) ⊂⊂ �.
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Fix r ∈ (0, r0) and y1 ∈ Bn(y0, r). We have

φ(y0) ≥ 1

bn(2r)2n

∫
Bn(y0,2r)

φ(y) dλn(y)

≥ 1

bn(2r)2n

∫
Bn(y1,r)

φ(y) dλn(y)

+ 1

bn(2r)2n

∫
Bn(y0,2r)\Bn(y1,r)

φ(y) dλn(y)

≥ 1

bn(2r)2n

∫
Bn(y1,r)

φ(y) dλn(y)

+ 1

bn(2r)2n
(φ(y0)− ε1)(bn(2r)

2n − bnr
2n)

≥ 1

bn(2r)2n

∫
Bn(y1,r)

φ(y) dλn(y)+ (φ(y0)− ε1)

(
1 − 1

22n

)

= 1

bn(2r)2n

∫
Bn(y1,r)

φ(y) dλn(y)+ φ(y0)− φ(y0)
1

22n
− ε1

(
1 − 1

22n

)
.

So,
φ(y0)+ ε ≥ 1

bnr2n

∫
Bn(y1,r)

φ(y) dλn(y).

Lemma 2.2. Let φ : T×Bn → [−∞,+∞) be an integrable function. Then
(3)

1

2πbn

∫ 2π

0

∫
Bn
φ(eiθ , y) dθ dλn(y) = 1

2πbn

∫ 2π

0

∫
Bn
φ(eiθ , eiθy) dθ dλn(y).

Therefore, there exists y0 ∈ Bn such that

(4)
1

2πbn

∫ 2π

0

∫
Bn
φ(eiθ , y) dθ dλn(y) ≥ 1

2π

∫ 2π

0
φ(eiθ , eiθy0) dθ.

Proof. Easily follows from measure theory.

Recall also the following result (see Lemma 2.3 in [4]).

Theorem 2.3. Let X be a complex manifold and let f0 ∈ AX. Then there
exist r > 1, an open neighborhood V of x0 = f0(0), and f ∈ O(Dr × V,X)

such that
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(i) f (z, x0) = f0(z) for all z ∈ Dr ,

(ii) f (0, x) = x for all x ∈ V ,

where Dr := {z ∈ C : |z| < r}.
Lemma 2.4. Let x0 ∈ X, β ∈ R, and assume that EH(x0) < β. Then there

exist a neighborhood V of x0 in X, r > 1, and f ∈ O(Dr × Bn(r) × V,X),
such that f (0, 0, x) = f (0, y, x) = x, y ∈ Bn(r), and

(5)
1

bn

∫
Bn
H(f ( · , y, x)) dλn(y) < β for all x ∈ V.

Proof of Lemma 2.4. By definition there existsf0 ∈ AX such thatf0(0) =
x0 and H(f0) < β. According to Theorem 2.3 there exist r̃ > 1, an open
neighborhood Ṽ of x0, and f̃ ∈ O(Dr × Ṽ , X) such that f̃ (z, x0) = f0(z) for
all z ∈ Dr and f̃ (0, x) = x for all x ∈ Ṽ .

Let (U, ζ ) be a local coordinate centered at x0. We may assume thatU ⊂ Ṽ

and ζ : U → Bn and ζ(x0) = 0. Consider the function

F(w) = 1

2π

∫ 2π

0
φ(f̃ (eiθ , ζ−1(w))) dθ, w ∈ Bn.

Note that F is a plurisuperharmonic function in Bn. Fix an ε > 0 such that
H(f0) < β − ε. Then there exists r > 0 such that

1

bn

∫
Bn
F (y1 + ry) dλn(y) ≤ F(0)+ ε,

for any y1 ∈ Bn(r). Put f (z, y, x) := f̃ (z, ζ−1(ζ(x) + rzy)) (use here (3))
and V := ζ−1(Bn(r)).

Proof of Theorem 1.2. Let x0 ∈ X be fixed. Let us show thatEHφ (x0) <

+∞. Assume that (U, ζ ) is a local coordinate centered at x0, i.e. ζ(x0) =
0. We may assume that ζ : U → ζ(U) = Bn(2). Take an x1 ∈ U such
that φ(x1) < +∞. Consider the superharmonic function u := φ ◦ f , where

f (z) := ζ−1
(
z

ζ(x)

‖ζ(x)‖
)

. Note that f (0) = x0 and u
(‖ζ(x)‖) = φ(x1) < +∞.

Hence, H(f ) < +∞.
Now, let β > EH(x0) be fixed. According to Lemma 2.4 there exist a

neighborhood V of x0 in X, r > 1, and f ∈ O(Dr × Bn(r)×V,X), such that
f (0, 0, x) = x and

1

bn

∫
Bn
H(f ( · , w, x)) dλn(y) < β for all x ∈ V.
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Fix x ∈ V . By Lemma 2.2 there exists y0 ∈ Bn such that

1

bn

∫
Bn
H(f ( · , y, x)) dλn(y) ≥ H(g),

where g(z) = f (z, zy0, x). It suffices to note that g(0) = x.

3. Proof of Theorem 1.3

From [4] it follows that it suffices to prove Theorem 1.3 for domains in Cn.
So, in this section we assume that X is a domain in Cn and φ is a plurisuper-
harmonic function on X, φ �≡ +∞. Moreover, the equality (1) follows from
the plurisubharmonicity of EHφ (see also [5], [6]).

For the proof of Theorem 1.3 it suffices to show that

(6) EH (h(0)) ≤ 1

2π

∫ 2π

0
EH(h(e

iθ )) dθ

for every h ∈ AX such that φ ◦ h �≡ +∞ (since we know that EH is upper
semi-continuous).

The idea of the proof of (6) goes back to E. Poletsky ([5], [6]) and proceeds
as follows. It suffices to show that for every ε > 0 and v ∈ C(X,R) with
v ≥ EH there exists g ∈ AX such that g(0) = h(0) and

H(g) ≤ 1

2π

∫ 2π

0
v(h(eiθ )) dθ + ε.

For the construction of g, first we show that there exists r > 1 and F ∈
C∞(Dr × T, X) such that F(·, w) ∈ AX, F(0, w) = h(w) for all w ∈ T, and

1

2π

∫ 2π

0
H(F(·, eiθ )) dθ ≤ 1

2π

∫ 2π

0
v(h(eiθ )) dθ + ε.

Next we show that there exist s ∈ (1, r) and G ∈ O(Ds × Ds , X) such that
G(0, w) = h(w) for all w ∈ Ds and

1

2π

∫ 2π

0
H(G(·, eiθ )) dθ ≤ 1

2π

∫ 2π

0
H(F(·, eiθ )) dθ + ε.

Finally, we show that there exists θ0 ∈ [0, 2π) such that if g is defined by the
formula g(z) = G(eiθ0z, z) then

H(g) ≤ 1

2π

∫ 2π

0
H(G(·, eiθ )) dθ.
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As we see, main steps of the proof completely coincide with the proof of
plurisubharmonicity of E

H
φ
1

for an upper semi-continuous function φ (see the
discussion before Lemma 2.3 in [4]). But the proofs of these steps turn out to
be very technical and complicated.

Let us start with the following simple result, which follows from the measure
theory.

Lemma 3.1. Let h ∈ AX be such that φ ◦ h �≡ +∞ and, therefore, φ ◦ h ∈
L1(T). Then for any ε > 0 there exists δ > 0 such that∫

I

φ ◦ h(w) dσ(w) < ε

for any measurable set I ⊂ T with σ(I) < δ, where σ is the arc length measure
on T.

Lemma 3.2 (cf. Lemma 5.5 in [5], Lemma 2.5 in [4]). Let h ∈ AX be such
that φ ◦ h �≡ +∞, ε > 0, and v ∈ C(X,R) with v ≥ EH . Then there exist
r > 1 and F ∈ C∞(Dr ×X) such that F(·, w) ∈ O(Dr , X), F(0, w) = h(w)

for all w ∈ T, and

(7)
1

2π

∫ 2π

0
H(F(·, eiθ )) dθ ≤ 1

2π

∫ 2π

0
v(h(eiθ )) dθ + ε.

Proof of Lemma 3.2. Let w0 ∈ T. Put x0 = h(w0). From Lemma 2.4
it follows that there exist r0 > 1, f0 ∈ O(Dr0 × Bn(r0) × V0, X) such that
f0(0, 0, x) = x, x ∈ V0, and

1

bn

∫
Bn
H(f0( · , y, x)) dλn(y) < v(x0) for all x ∈ V0.

By replacing V0 by a smaller neighborhood of x0 we get

1

bn

∫
Bn
H(f0( · , y, x)) dλn(y) ≤ v(x)+ ε

4
, x ∈ V0.

We can take an open arc I0 ⊂ T containing w0 such that h(w) ∈ V0 for all
w ∈ I0. Define F0 : Dr0 × Bn(r0)× I0 → X by F0(z, y,w) = f (z, y, h(w)).
By replacing r0 by a smaller number in (1,∞) and I0 by a smaller open arc
containingw0, we may assume thatF0(Dr0 ×Bn(r0)×I0) is relatively compact
in X.

Using compactness argument, we see that there exist a covering {Iν}Nν=1 of
T by open arcs, rν > 1, Fν ∈ C∞(Drν × Bn(rν)× Iν,X) such that

a) Fν(·, ·, w) ∈ O(Drν × Bn(rν), X),
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b) Fν(0, 0, w) = h(w),

c) Fν(Drν × Bn(rν)× Iν) is relatively compact in X,

d)
1

bν

∫ 2π

0
H(Fν( · , y, w)) dλn(y) < v(h(w))+ ε

4
,

for w ∈ Iν , ν = 1, . . . , N .

Put r := minν rν . Let M ⊂ X be a compact set such that ∪N
ν=1Fν(Drν ×

Bn(rν)× Iν) ⊂ M and let C > supM |v|.
By Lemma 3.1 there exists a δ > 0 such that for any measurable set I ⊂ T

with σ(I) < δ we have ∫
I

φ ◦ h dσ <
ε

4
.

There exist a subset A ⊂ {1, . . . , N} and disjoint closed arcs Jν ⊂ Iν , ν ∈ A,
such that σ(T \ ∪Jν) < min

{
δ, ε

2C

}
. By possibly removing some arc Iν from

the covering of T, we may assume thatA = {1, . . . , N}. We take disjoint open
arcs Kν such that Jν ⊂ Kν ⊂ Iν . Now, we take a function ρ ∈ C∞(T) such
that

• 0 ≤ ρ ≤ 1,

• ρ(w) = 1 for w ∈ ∪Jν ,

• ρ(w) = 0 for w ∈ T \ ∪Kν ,

Note that∫
Jν

1

bn

∫
Bn
H(Fν(·, y, w)) dσ(w) dλn(y) ≤

∫
Jν

v(h(w)) dσ(w)+ ε

4
σ(Jν).

Hence, there exists yν ∈ Bn such that∫
Jν

H(Fν(·, yν, w)) dσ(w) dλn(y) ≤
∫
Jν

v(h(w)) dσ(w)+ ε

4
σ(Jν).

We define F : Dr × T → X by

F(z,w) =
{
Fν(ρ(w)z, yν, w), z ∈ Dr , w ∈ Kν ,

h(w), z ∈ Dr , w ∈ T \ ∪Kν .

The choice of ρ ensures that F ∈ C∞(Dr × T, X), F(·, w) ∈ O(Dr , X), and
F(0, w) = h(w), w ∈ T. Since φ is a plurisuperharmonic function,

(8) H(F (·, w)) ≤ φ(F (0, w) = φ(h(w)), w ∈ T.
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If we combine the inequalities we already have, then we get

1

2π

∫ 2π

0
H(F(·, eiθ )) dθ ≤

∑
ν

1

2π

∫
Jν

H(Fν(·, yν, w)) dσ(w)+ ε

4

≤
∑
ν

1

2π

∫
Jν

v ◦ h dσ + ε

2
≤ 1

2π

∫
T
v ◦ h dσ + ε,

and we have proved (7).

Recall the following result (see Lemma 2.6 in [4], cf. Lemma 5.6 in [5] and
Lemma 6 in [1]).

Lemma 3.3. Let r > 1, h ∈ O(Dr , X), and F ∈ C∞(Dr ×T, X), such that
F(·, w) ∈ O(Dr , X), and F(0, w) = h(w) for all w ∈ T. Then there exist
s ∈ (1, r), a natural number j0, and a sequence Fj ∈ O(Ds ×Aj ,X), j ≥ j0,
where Aj is an open annulus containing T, such that:

(i) Fj → F uniformly on Ds × T as j → ∞,

(ii) there is an integer 6j ≥ j such that the map (z, w) �→ Fj (zw
6j , w) can

be extended to a map Gj ∈ O(D2
sj
, X), where sj ∈ (1, s), and

(iii) Gj(0, w) = h(w) for all w ∈ Dsj .

Lemma 3.4. Leth andF satisfy the conditions of Lemma 3.2. Then for every
ε > 0 there exist s ∈ (1, r) andG ∈ O(Ds×Ds , X) such thatG(0, w) = h(w)

for all w ∈ Ds , and

1

2π

∫ 2π

0
H(G(·, eiθ )) dθ ≤ 1

2π

∫ 2π

0
H(F(·, eiθ )) dθ + ε.

Proof of Lemma 3.4. For any fixed z,w ∈ T there exists r(z, w) > 0
such that 1

bn

∫
Bn
φ(y1 + ry) dλn(y) ≤ φ(F (z,w))+ ε

2

for y1 ∈ B(F (z,w), r), r ∈ (0, r(z, w)). Hence, for any fixed z,w ∈ T we
have

lim sup
m→∞

lim sup
k→∞

1

bn

∫
Bn
φ

(
Fk(z,w)+ 1

m
y

)
dλn(y) ≤ φ(F (z,w))+ ε

2
.

By Fatou’s theorem, we have

lim sup
m→∞

lim sup
k→∞

1

4π2

∫ 2π

0

∫ 2π

0

[
1

bn

∫
Bn
φ

(
Fk(e

iθ , eiτ )+ 1

m
y

)
dλn(y)

]
dθ dτ
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≤ 1

4π2

∫ 2π

0

∫ 2π

0

[
lim sup
m→∞

lim sup
k→∞

1

bn

∫
Bn
φ

(
Fk(e

iθ, eiτ )+ 1

m
y

)
dλn(y)

]
dθ dτ

≤ 1

4π2

∫ 2π

0

∫ 2π

0
φ(F (eiθ , eiτ )) dθ dτ + ε

2
.

Hence, there exist m0 and k0 such that

1

4π2

∫ 2π

0

∫ 2π

0

[
1

bn

∫
Bn
φ

(
Fk0(e

iθ , eiτ )+ 1

m0
y

)
dλn(y)

]
dθ dτ

≤ 1

4π2

∫ 2π

0

∫ 2π

0
φ(F (eiθ , eiτ )) dθ dτ + ε.

So, there exists y0 ∈ Bn such that

1

4π2

∫ 2π

0

∫ 2π

0
φ

(
Fk0(e

iθ , eiτ )+ 1

m0
eiθy0

)
dθ dτ

≤ 1

4π2

∫ 2π

0

∫ 2π

0
φ(F (eiθ , eiτ )) dθ dτ + ε.

PutG(z,w) = Gk0(z, w)+ 1
m0
zw6k0 y0, whereGk0 is given by Lemma 3.3 (iii).

Lemma 3.5. Let s > 1 and G ∈ O(Ds × Ds , X). Then there exists g ∈
O(Ds , X) such that g(0) = G(0, 0) and

H(g) ≤ 1

2π

∫ 2π

0
H(G(·, eiθ )) dθ.

Proof of Lemma 3.5. Note that

1

2π

∫ 2π

0
H(G(·, eiθ )) dθ = 1

4π2

∫ 2π

0

∫ 2π

0
φ(G(eiτ , eiθ )) dτ dθ

= 1

4π2

∫ 2π

0

∫ 2π

0
φ(G(eiτ , eiθ+iτ )) dτ dθ.

So, there exists θ0 ∈ [0, 2π) such that

1

4π2

∫ 2π

0

∫ 2π

0
φ(G(eiτ , eiθ+iτ )) dτ dθ ≥ 1

2π

∫ 2π

0
φ(G(eiτ , eiθ0eiτ )) dτ.

Put g(z) = G(z, eiθ0z).
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Remark 3.6. In a forthcoming paper [2], the author will continue the study
of plurisubharmonicity of the Poisson functional.

Acknowledgement. The author thanks Professor Marek Jarnicki for help-
ful remarks.
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