A NOTE ON LÁRUSSON-SIGURDSSON’S PAPER

ARMEN EDIGARIAN*

1. Introduction

Let X be a complex manifold. We denote \mathcal{A}_X the family of all mappings $f : \overline{D} \to X$ which are holomorphic in a neighborhood of the closure \overline{D} of the unit disc D. A disc functional on X is a function $H : \mathcal{A}_X \to \mathbb{R} \cup \{-\infty\}$. The envelope of H is the function $E_H : X \to \mathbb{R} \cup \{-\infty\}$ defined by the formula

$$E_H(x) := \inf \{ H(f) : f \in \mathcal{A}_X, \quad f(0) = x \}, \quad x \in X.$$

E. Poletsky [5], [6], [7], has shown that certain disc functionals on domains in \mathbb{C}^n have plurisubharmonic envelopes. Later, for three classes of disc functionals plurisubharmonicity of envelopes on a class of complex manifolds were shown by F. Lárusson and R. Sigurdsson [4]. The paper is motivated by results from [4].

Let us consider the following two functionals.

Let $\phi : X \to \mathbb{R} \cup \{-\infty\}$ be an upper semi-continuous function. Define the functional $H_1 = H_1^\phi$ by the formula

$$H_1(f) = \frac{1}{2\pi} \int_0^{2\pi} \phi(f(e^{i\theta})) d\theta, \quad f \in \mathcal{A}_X.$$

In [4] this functional is called the Poisson functional.

Let ν be a plurisubharmonic function on X. We define the functional $H_2 = H_2^\nu$ as follows. If $f \in \mathcal{A}_X$ and $\nu \circ f$ is not identically $-\infty$, then

$$H_2(f) = \frac{1}{2\pi} \int_0^{2\pi} \log(1 + \Delta u)(\nu \circ f),$$

where Δu is the generalized Laplacian of a subharmonic function u. If $f \in \mathcal{A}_X$ and $\nu \circ f = -\infty$, then we put $H_2(f) = 0$. In [4] the functional H_2 is called the Riesz functional.

* The author was supported in part by KBN Grant 2 P03A 017 14. The author is a fellow of the Foundation for Polish Science (FNP).

Received March 19, 2001.
Following [4], we define \(\mathcal{P} \) as the class of complex manifolds \(X \) for which there exists a finite sequence of complex manifolds and holomorphic mappings

\[
X_0 \xrightarrow{h_1} X_1 \xrightarrow{h_2} \ldots \xrightarrow{h_m} X_m = X, \quad m \geq 0,
\]

where \(X_0 \) is a domain in a Stein manifold and each \(h_i, i = 1, \ldots, m \), is either a covering or a finite branched covering. More on the class \(\mathcal{P} \) could be found in [4].

For a complex manifold \(X \) we denote \(\text{PSH}(X) \) the set of all plurisubharmonic functions on \(X \). We assume that the constant function \(-\infty \) is plurisubharmonic.

Recall the following result from [4]

Theorem 1.1. Let \(X \) be a manifold in \(\mathcal{P} \). If \(\phi \) is an upper semi-continuous function on \(X \), then \(E_{H_1^\phi} \) is plurisubharmonic, and

\[
E_{H_1^\phi} = \sup \{ u \in \text{PSH}(X) : u \leq \phi \}.
\]

If \(v \) is a continuous plurisubharmonic function on \(X \), then \(E_{H_2^\phi} \) is plurisubharmonic, and

\[
E_{H_2^\phi} = \sup \{ u \in \text{PSH}(X) : u \leq 0, \mathcal{L}(u) \geq \mathcal{L}(v) \},
\]

where \(\mathcal{L}(u) \) is the Levi form \(i\theta \partial u \) of \(u \).

In Theorem 1.1 the plurisubharmonicity of \(H_2 \) is obtained as a corollary from the plurisubharmonicity of \(H_1 \) (see [4]). Actually, this is the reason why in Theorem 1.1 the authors assumed the continuity of \(v \). The main purpose of this note is to show the plurisubharmonicity of \(H_2 \) for any plurisubharmonic function \(v \).

Let \(\phi \) be a plurisuperharmonic function on a complex manifold \(X \), \(\phi \neq +\infty \). We put \(H^\phi(f) = \frac{1}{2\pi} \int_0^{2\pi} \phi(f(e^{i\theta})) \, d\theta \) for \(f \in \mathcal{A}_X \) such that \(\phi \circ f \neq +\infty \) and \(H^\phi(f) = +\infty \) for \(f \in \mathcal{A}_X \) such that \(\phi \circ f \equiv +\infty \). Note that if \(\phi \circ f \neq +\infty \), then \(\phi \circ f \in L^1(\mathbb{T}) \), where \(\mathbb{T} \) is the unit circle. According to our definition \(H^\phi \) is not a disc functional, because it may take the value \(+\infty \). Nevertheless, we may consider the envelope \(E_{H^\phi} \) of \(H^\phi \). It is not difficult to see that \(E_{H^\phi} < +\infty \). We have even more. Namely, we have the following results.

Theorem 1.2. Let \(X \) be a complex manifold and let \(\phi \) be a plurisuperharmonic function on \(X \), \(\phi \neq +\infty \). Then \(E_{H^\phi} < +\infty \) and \(E_{H^\phi} \) is an upper semicontinuous function on \(X \).
Theorem 1.3. Let X be a manifold in \mathcal{P} and let ϕ be a plurisuperharmonic function on X, $\phi \not\equiv +\infty$. Then E_{H^ϕ} is a plurisubharmonic function and

\[(1) \quad E_{H^\phi} = \sup\{u \in \text{PSH}(X) : u \leq \phi\} \quad \text{on} \quad X.\]

By the Riesz representation, for a plurisubharmonic function v on a complex manifold X and a holomorphic mapping $f \in \mathcal{A}_X$ such that $v \circ f \not\equiv -\infty$ we have

\[H_v^2(f) = v(f(0)) - \frac{1}{2\pi} \int_0^{2\pi} v(f(e^{i\theta})) \, d\theta.\]

So,

\[(2) \quad H_v^2(f) = v(f(0)) + H_i^{-v}(f) \quad \text{and} \quad E_{H_i^2} = v + E_{H_i^{-v}}.\]

As a simple corollary of Theorem 1.2 and equation (2) we have immediately the following.

Corollary 1.4. Let X be a complex manifold and let v be a plurisubharmonic function on X. Then $E_{H_i^2}$ is an upper semicontinuous function in X.

Using results from [4], Theorem 1.3, and equation (2) we have the following.

Corollary 1.5. Let X be a manifold in \mathcal{P} and let v be a plurisubharmonic function on X. Then $E_{H_i^2}$ is a plurisubharmonic function and

\[E_{H_i^2} = \sup\{u \in \text{PSH}(X) : u \leq 0, \mathcal{L}(u) \geq \mathcal{L}(v)\} \quad \text{on} \quad X.\]

2. Proof of Theorem 1.2

The following two simple results (Lemma 2.1 and Lemma 2.2) play a crucial role in our considerations.

Lemma 2.1. Let Ω be a domain in \mathbb{C}^n and let ϕ be a plurisuperharmonic function on Ω. Then for any $y_0 \in \Omega$ and any $\epsilon > 0$ there exists $r_0 > 0$ such that for any $y_1 \in B(y_0, r), r \in (0, r_0)$, we have

\[\phi(y_0) \geq \frac{1}{b_n r^{2n}} \int_{B_n(y_1, r)} \phi(y) \, d\lambda_n(y) - \epsilon,\]

where $B_n(y_0, r) := \{y \in \mathbb{C}^n : \|y - y_0\| < r\}, B_n := B_n(0, 1), b_n := \lambda_n(B_n)$, and λ_n is the Lebesgue measure in \mathbb{C}^n.

Proof. Fix $y_0 \in \Omega$ and $\epsilon > 0$. We may assume that $\phi(y_0) \neq +\infty$. Put $\epsilon_1 := \frac{\epsilon}{\alpha_n - 1}$. Since ϕ is a lower semicontinuous function, there exists $r_0 > 0$ such that

\[\phi(y) + \epsilon_1 \geq \phi(y_0), \quad y \in B_n(y_0, 2r) \subset \subset \Omega.\]
Fix $r \in (0, r_0)$ and $y_1 \in B_n(y_0, r)$. We have

$$
\phi(y_0) \geq \frac{1}{b_n(2r)^{2n}} \int_{B_n(y_0, 2r)} \phi(y) d\lambda_n(y)
$$

$$
\geq \frac{1}{b_n(2r)^{2n}} \int_{B_n(y_1, r)} \phi(y) d\lambda_n(y)
$$

$$
+ \frac{1}{b_n(2r)^{2n}} \int_{B_n(y_0, 2r) \setminus B_n(y_1, r)} \phi(y) d\lambda_n(y)
$$

$$
\geq \frac{1}{b_n(2r)^{2n}} \int_{B_n(y_1, r)} \phi(y) d\lambda_n(y)
$$

$$
+ \frac{1}{b_n(2r)^{2n}} (\phi(y_0) - \epsilon) (b_n(2r)^{2n} - b_n r^{2n})
$$

$$
\geq \frac{1}{b_n(2r)^{2n}} \int_{B_n(y_1, r)} \phi(y) d\lambda_n(y) + (\phi(y_0) - \epsilon) \left(1 - \frac{1}{2^{2n}} \right)
$$

$$
= \frac{1}{b_n(2r)^{2n}} \int_{B_n(y_1, r)} \phi(y) d\lambda_n(y) + \phi(y_0) - \epsilon \left(1 - \frac{1}{2^{2n}} \right).
$$

So,

$$
\phi(y_0) + \epsilon \geq \frac{1}{b_n r^{2n}} \int_{B_n(y_1, r)} \phi(y) d\lambda_n(y).
$$

Lemma 2.2. Let $\phi : T \times B_n \to [-\infty, +\infty)$ be an integrable function. Then

$$
\frac{1}{2\pi b_n} \int_0^{2\pi} \int_{B_n} \phi(e^{i\theta}, y) d\theta d\lambda_n(y) = \frac{1}{2\pi b_n} \int_0^{2\pi} \int_{B_n} \phi(e^{i\theta}, e^{i\theta} y) d\theta d\lambda_n(y).
$$

Therefore, there exists $y_0 \in B_n$ such that

$$
\frac{1}{2\pi b_n} \int_0^{2\pi} \int_{B_n} \phi(e^{i\theta}, y) d\theta d\lambda_n(y) \geq \frac{1}{2\pi} \int_0^{2\pi} \phi(e^{i\theta}, e^{i\theta} y_0) d\theta.
$$

Proof. Easily follows from measure theory.

Recall also the following result (see Lemma 2.3 in [4]).

Theorem 2.3. Let X be a complex manifold and let $f_0 \in \mathcal{A}_X$. Then there exist $r > 1$, an open neighborhood V of $x_0 = f_0(0)$, and $f \in \mathcal{O}(D_r \times V, X)$ such that
(i) \(f(z, x_0) = f_0(z) \) for all \(z \in D_r \),
(ii) \(f(0, x) = x \) for all \(x \in V \),

where \(D_r := \{ z \in \mathbb{C} : |z| < r \} \).

Lemma 2.4. Let \(x_0 \in X, \beta \in \mathbb{R} \), and assume that \(E_H(x_0) < \beta \). Then there exist a neighborhood \(V \) of \(x_0 \) in \(X \), \(r > 1 \), and \(f \in \mathcal{O}(D_r \times B_n(r) \times V, X) \), such that \(f(0, 0, x) = f(0, y, x) = x \), \(y \in B_n(r) \), and

\[
\frac{1}{b_n} \int_{B_n} H(f(\cdot, y, x)) d\lambda_n(y) < \beta \quad \text{for all} \quad x \in V.
\]

Proof of Lemma 2.4. By definition there exists \(f_0 \in \mathcal{A}_X \) such that \(f_0(0) = x_0 \) and \(H(f_0) < \beta \). According to Theorem 2.3 there exist \(\tilde{r} > 1 \), an open neighborhood \(\tilde{V} \) of \(x_0 \), and \(\tilde{f} \in \mathcal{O}(D_{\tilde{r}} \times \tilde{V}, X) \) such that \(\tilde{f}(z, x_0) = f_0(z) \) for all \(z \in D_{\tilde{r}} \) and \(\tilde{f}(0, x) = x \) for all \(x \in \tilde{V} \).

Let \((U, \zeta) \) be a local coordinate centered at \(x_0 \). We may assume that \(U \subset \tilde{V} \) and \(\zeta : U \rightarrow \mathbb{B}_n \) and \(\zeta(x_0) = 0 \). Consider the function

\[
F(w) = \frac{1}{2\pi} \int_0^{2\pi} \phi(\tilde{f}(e^{i\theta}, \zeta^{-1}(w))) d\theta, \quad w \in \mathbb{B}_n.
\]

Note that \(F \) is a plurisuperharmonic function in \(\mathbb{B}_n \). Fix an \(\epsilon > 0 \) such that \(H(f_0) < \beta - \epsilon \). Then there exists \(r > 0 \) such that

\[
\frac{1}{b_n} \int_{B_n} F(y_1 + ry) d\lambda_n(y) \leq F(0) + \epsilon,
\]

for any \(y_1 \in B_n(r) \). Put \(f(z, y, x) := \tilde{f}(z, \zeta^{-1}(\zeta(x) + rzy)) \) (use here (3)) and \(V := \zeta^{-1}(B_n(r)) \).

Proof of Theorem 1.2. Let \(x_0 \in X \) be fixed. Let us show that \(E_{H^\phi}(x_0) < +\infty \). Assume that \((U, \zeta) \) is a local coordinate centered at \(x_0 \), i.e. \(\zeta(x_0) = 0 \). We may assume that \(\zeta : U \rightarrow \zeta(U) = B_n(2) \). Take an \(x_1 \in U \) such that \(\phi(x_1) < +\infty \). Consider the superharmonic function \(u := \phi \circ f \), where \(f(z) := \zeta^{-1}\left(z \frac{\zeta(x)}{||\zeta(x)||}\right) \). Note that \(f(0) = x_0 \) and \(u(||\zeta(x)||) = \phi(x_1) < +\infty \). Hence, \(H(f) < +\infty \).

Now, let \(\beta > E_H(x_0) \) be fixed. According to Lemma 2.4 there exist a neighborhood \(V \) of \(x_0 \) in \(X \), \(r > 1 \), and \(f \in \mathcal{O}(D_r \times B_n(r) \times V, X) \), such that \(f(0, 0, x) = x \) and

\[
\frac{1}{b_n} \int_{B_n} H(f(\cdot, w, x)) d\lambda_n(y) < \beta \quad \text{for all} \quad x \in V.
\]
Fix $x \in V$. By Lemma 2.2 there exists $y_0 \in B_n$ such that
\[
\frac{1}{b_n} \int_{B_n} H(f(\cdot, y, x)) d\lambda_n(y) \geq H(g),
\]
where $g(z) = f(z, zy_0, x)$. It suffices to note that $g(0) = x$.

3. Proof of Theorem 1.3

From [4] it follows that it suffices to prove Theorem 1.3 for domains in \mathbb{C}^n. So, in this section we assume that X is a domain in \mathbb{C}^n and ϕ is a plurisuperharmonic function on X, $\phi \not\equiv +\infty$. Moreover, the equality (1) follows from the plurisubharmonicity of $E_{H\phi}$ (see also [5], [6]).

For the proof of Theorem 1.3 it suffices to show that
\[
E_{H}(h(0)) \leq \frac{1}{2\pi} \int_0^{2\pi} E_{H}(h(e^{i\theta})) d\theta
\]
for every $h \in \mathcal{A}_X$ such that $\phi \circ h \not\equiv +\infty$ (since we know that E_H is upper semi-continuous).

The idea of the proof of (6) goes back to E. Poletsky ([5], [6]) and proceeds as follows. It suffices to show that for every $\epsilon > 0$ and $v \in C(X, \mathbb{R})$ with $v \geq E_H$ there exists $g \in \mathcal{A}_X$ such that $g(0) = h(0)$ and
\[
H(g) \leq \frac{1}{2\pi} \int_0^{2\pi} v(h(e^{i\theta})) d\theta + \epsilon.
\]
For the construction of g, first we show that there exists $r > 1$ and $F \in C^\infty(D_r \times \mathbb{T}, X)$ such that $F(\cdot, w) \in \mathcal{A}_X$, $F(0, w) = h(w)$ for all $w \in \mathbb{T}$, and
\[
\frac{1}{2\pi} \int_0^{2\pi} H(F(\cdot, e^{i\theta})) d\theta \leq \frac{1}{2\pi} \int_0^{2\pi} v(h(e^{i\theta})) d\theta + \epsilon.
\]
Next we show that there exist $s \in (1, r)$ and $G \in \mathcal{O}(D_s \times D_s, X)$ such that $G(0, w) = h(w)$ for all $w \in D_s$ and
\[
\frac{1}{2\pi} \int_0^{2\pi} H(G(\cdot, e^{i\theta})) d\theta \leq \frac{1}{2\pi} \int_0^{2\pi} H(F(\cdot, e^{i\theta})) d\theta + \epsilon.
\]
Finally, we show that there exists $\theta_0 \in [0, 2\pi)$ such that if g is defined by the formula $g(z) = G(e^{i\theta_0}z, z)$ then
\[
H(g) \leq \frac{1}{2\pi} \int_0^{2\pi} H(G(\cdot, e^{i\theta})) d\theta.
\]
As we see, main steps of the proof completely coincide with the proof of plurisubharmonicity of E_{H^q} for an upper semi-continuous function ϕ (see the discussion before Lemma 2.3 in [4]). But the proofs of these steps turn out to be very technical and complicated.

Let us start with the following simple result, which follows from the measure theory.

Lemma 3.1. Let $h \in \mathcal{A}_X$ be such that $\phi \circ h \not\equiv +\infty$ and, therefore, $\phi \circ h \in L^1(T)$. Then for any $\epsilon > 0$ there exists $\delta > 0$ such that

$$\int_I \phi \circ h(w) \, d\sigma(w) < \epsilon$$

for any measurable set $I \subset T$ with $\sigma(I) < \delta$, where σ is the arc length measure on T.

Lemma 3.2 (cf. Lemma 5.5 in [5], Lemma 2.5 in [4]). Let $h \in \mathcal{A}_X$ be such that $\phi \circ h \not\equiv +\infty$, $\epsilon > 0$, and $v \in C(X, \mathbb{R})$ with $v \geq EH$. Then there exist $r > 1$ and $F \in C^\infty(D_r \times X)$ such that $F(\cdot, w) \in \mathcal{O}(D_r, X)$, $F(0, w) = h(w)$ for all $w \in T$, and

$$\frac{1}{2\pi} \int_0^{2\pi} H(F(\cdot, e^{i\theta})) \, d\theta \leq \frac{1}{2\pi} \int_0^{2\pi} v(e^{i\theta}) \, d\theta + \epsilon. \tag{7}$$

Proof of Lemma 3.2. Let $w_0 \in T$. Put $x_0 = h(w_0)$. From Lemma 2.4 it follows that there exist $r_0 > 1$, $f_0 \in \mathcal{O}(D_{r_0} \times B_n(r_0) \times V_0, X)$ such that $f_0(0, 0, x) = x$, $x \in V_0$, and

$$\frac{1}{b_n} \int_{B_n} H(f_0(\cdot, y, x)) \, d\lambda_n(y) < v(x_0) \quad \text{for all} \quad x \in V_0.$$

By replacing V_0 by a smaller neighborhood of x_0 we get

$$\frac{1}{b_n} \int_{B_n} H(f_0(\cdot, y, x)) \, d\lambda_n(y) \leq v(x) + \frac{\epsilon}{4}, \quad x \in V_0.$$

We can take an open arc $I_0 \subset T$ containing w_0 such that $h(w) \in V_0$ for all $w \in I_0$. Define $F_0 : D_{r_0} \times B_n(r_0) \times I_0 \to X$ by $F_0(z, y, w) = f(z, y, h(w))$. By replacing r_0 by a smaller number in $(1, \infty)$ and I_0 by a smaller open arc containing w_0, we may assume that $F_0(D_{r_0} \times B_n(r_0) \times I_0)$ is relatively compact in X.

Using compactness argument, we see that there exist a covering $\{I_v\}_{v=1}^V$ of T by open arcs, $r_v > 1$, $F_v \in C^\infty(D_{r_v} \times B_n(r_v) \times I_v, X)$ such that

a) $F_v(\cdot, \cdot, w) \in \mathcal{O}(D_{r_v} \times B_n(r_v), X), \quad$
b) $F_\nu(0, 0, w) = h(w)$,

c) $F_\nu(D_{r_\nu} \times B_n(r_\nu) \times I_\nu)$ is relatively compact in X,

d) $\frac{1}{b_\nu} \int_0^{2\pi} H(F_\nu(\cdot, y, w)) d\lambda_n(y) < v(h(w)) + \frac{\epsilon}{4}$,

for $w \in I_\nu$, $\nu = 1, \ldots, N$.

Put $r := \min_\nu r_\nu$. Let $M \subset X$ be a compact set such that $\bigcup_{\nu=1}^N F_\nu(D_{r_\nu} \times B_n(r_\nu) \times I_\nu) \subset M$ and let $C > \sup_M |v|$. By Lemma 3.1 there exists a $\delta > 0$ such that for any measurable set $I \subset T$ with $\sigma(I) < \delta$ we have

$$\int_I \phi \circ h d\sigma < \frac{\epsilon}{4}. $$

There exist a subset $A \subset \{1, \ldots, N\}$ and disjoint closed arcs $J_\nu \subset I_\nu$, $\nu \in A$, such that $\sigma(T \setminus \bigcup J_\nu) < \min\{\delta, \frac{\epsilon}{2\pi}\}$. By possibly removing some arc I_ν from the covering of T, we may assume that $A = \{1, \ldots, N\}$. We take disjoint open arcs K_ν such that $J_\nu \subset K_\nu \subset I_\nu$. Now, we take a function $\rho \in C^\infty(T)$ such that

- $0 \leq \rho \leq 1$,
- $\rho(w) = 1$ for $w \in \bigcup J_\nu$,
- $\rho(w) = 0$ for $w \in T \setminus \bigcup K_\nu$,

Note that

$$\int_{J_\nu} \frac{1}{b_\nu} \int_{B_n} H(F_\nu(\cdot, y, w)) d\sigma(w) d\lambda_n(y) \leq \int_{J_\nu} v(h(w)) d\sigma(w) + \frac{\epsilon}{4} \sigma(J_\nu).$$

Hence, there exists $y_\nu \in B_n$ such that

$$\int_{J_\nu} H(F_\nu(\cdot, y_\nu, w)) d\sigma(w) d\lambda_n(y) \leq \int_{J_\nu} v(h(w)) d\sigma(w) + \frac{\epsilon}{4} \sigma(J_\nu).$$

We define $F : D_r \times T \to X$ by

$$F(z, w) = \begin{cases} F_\nu(\rho(w)z, y_\nu, w), & z \in D_r, w \in K_\nu, \\ h(w), & z \in D_r, w \in T \setminus \bigcup K_\nu. \end{cases}$$

The choice of ρ ensures that $F \in C^\infty(D_r \times T, X)$, $F(\cdot, w) \in C(D_r, X)$, and $F(0, w) = h(w)$, $w \in T$. Since ϕ is a plurisuperharmonic function,

$$(8) \quad H(F(\cdot, w)) \leq \phi(F(0, w) = \phi(h(w)),$$ \quad w \in T. $$
If we combine the inequalities we already have, then we get
\[
\frac{1}{2\pi} \int_{0}^{2\pi} H(F(\cdot, e^{i\theta})) \, d\theta \leq \sum_{\nu} \frac{1}{2\pi} \int_{J_{\nu}} H(F_{\nu}(\cdot, y_{\nu}, w)) \, d\sigma(w) + \frac{\epsilon}{4} \\
\leq \sum_{\nu} \frac{1}{2\pi} \int_{J_{\nu}} v \circ h \, d\sigma + \frac{\epsilon}{2} \leq \frac{1}{2\pi} \int_{T} v \circ h \, d\sigma + \epsilon,
\]
and we have proved (7).

Recall the following result (see Lemma 2.6 in [4], cf. Lemma 5.6 in [5] and Lemma 6 in [1]).

Lemma 3.3. Let \(r > 1, h \in \mathcal{O}(D_{r}, X) \), and \(F \in C^\infty(D_{r} \times T, X) \), such that \(F(\cdot, w) \in \mathcal{O}(D_{r}, X) \), and \(F(0, w) = h(w) \) for all \(w \in T \). Then there exist \(s \in (1, r) \), a natural number \(j_{0} \), and a sequence \(F_{j} \in \mathcal{O}(D_{s} \times A_{j}, X), j \geq j_{0} \), where \(A_{j} \) is an open annulus containing \(T \), such that:

(i) \(F_{j} \to F \) uniformly on \(D_{s} \times T \) as \(j \to \infty \),

(ii) there is an integer \(\ell_{j} \geq j \) such that the map \((z, w) \mapsto F_{j}(zw^{\ell_{j}}, w) \) can be extended to a map \(G_{j} \in \mathcal{O}(D_{s}^{2}, X) \), where \(s_{j} \in (1, s) \), and

(iii) \(G_{j}(0, w) = h(w) \) for all \(w \in D_{s_{j}} \).

Lemma 3.4. Let \(h \) and \(F \) satisfy the conditions of Lemma 3.2. Then for every \(\epsilon > 0 \) there exist \(s \in (1, r) \) and \(G \in \mathcal{O}(D_{s} \times D_{s}, X) \) such that \(G(0, w) = h(w) \) for all \(w \in D_{s} \), and
\[
\frac{1}{2\pi} \int_{0}^{2\pi} H(G(\cdot, e^{i\theta})) \, d\theta \leq \frac{1}{2\pi} \int_{0}^{2\pi} H(F(\cdot, e^{i\theta})) \, d\theta + \epsilon.
\]

Proof of Lemma 3.4. For any fixed \(z, w \in T \) there exists \(r(z, w) > 0 \) such that
\[
\frac{1}{b_{n}} \int_{B_{n}} \phi(y_{1} + ry) \, d\lambda_{n}(y) \leq \phi(F(z, w)) + \frac{\epsilon}{2}
\]
for \(y_{1} \in B(F(z, w), r), r \in (0, r(z, w)) \). Hence, for any fixed \(z, w \in T \) we have
\[
\limsup_{m \to \infty} \limsup_{k \to \infty} \frac{1}{b_{n}} \int_{B_{n}} \phi\left(F_{k}(z, w) + \frac{1}{m}y\right) \, d\lambda_{n}(y) \leq \phi(F(z, w)) + \frac{\epsilon}{2}.
\]
By Fatou’s theorem, we have
\[
\limsup_{m \to \infty} \limsup_{k \to \infty} \frac{1}{4\pi^{2}} \int_{0}^{2\pi} \int_{0}^{2\pi} \left[\frac{1}{b_{n}} \int_{B_{n}} \phi\left(F_{k}(e^{i\theta}, e^{i\tau}) + \frac{1}{m}y\right) \, d\lambda_{n}(y) \right] \, d\theta \, d\tau
\]
\[
\leq \frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} \lim \sup_{m \to \infty} \lim \sup_{k \to \infty} \frac{1}{b_n} \int_{B_n} \phi \left(F_k(e^{i\theta}, e^{i\tau}) + \frac{1}{m} y \right) d\lambda_n(y) \, d\theta \, d\tau
\]
\[
\leq \frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} \phi(F(e^{i\theta}, e^{i\tau})) \, d\theta \, d\tau + \frac{\epsilon}{2}.
\]

Hence, there exist \(m_0\) and \(k_0\) such that
\[
\frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} \left[\frac{1}{b_n} \int_{B_n} \phi \left(F_{k_0}(e^{i\theta}, e^{i\tau}) + \frac{1}{m_0} y \right) d\lambda_n(y) \right] \, d\theta \, d\tau
\]
\[
\leq \frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} \phi(F(e^{i\theta}, e^{i\tau})) \, d\theta \, d\tau + \epsilon.
\]

So, there exists \(y_0 \in B_n\) such that
\[
\frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} \phi \left(F_{k_0}(e^{i\theta}, e^{i\tau}) + \frac{1}{m_0} e^{i\theta} y_0 \right) \, d\theta \, d\tau
\]
\[
\leq \frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} \phi(F(e^{i\theta}, e^{i\tau})) \, d\theta \, d\tau + \epsilon.
\]

Put \(G(z, w) = G_{k_0}(z, w) + \frac{1}{m_0} z w^\ell_0 y_0\), where \(G_{k_0}\) is given by Lemma 3.3 (iii).

Lemma 3.5. Let \(s > 1\) and \(G \in \mathcal{O}(\mathbb{D}_s \times \mathbb{D}_s, X)\). Then there exists \(g \in \mathcal{O}(\mathbb{D}_s, X)\) such that \(g(0) = G(0, 0)\) and
\[
H(g) \leq \frac{1}{2\pi} \int_0^{2\pi} H(G(\cdot, e^{i\theta})) \, d\theta.
\]

Proof of Lemma 3.5. Note that
\[
\frac{1}{2\pi} \int_0^{2\pi} H(G(\cdot, e^{i\theta})) \, d\theta = \frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} \phi(G(e^{i\tau}, e^{i\theta})) \, d\tau \, d\theta
\]
\[
= \frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} \phi(G(e^{i\tau}, e^{i\theta+i\tau})) \, d\tau \, d\theta.
\]

So, there exists \(\theta_0 \in [0, 2\pi)\) such that
\[
\frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} \phi(G(e^{i\tau}, e^{i\theta+i\tau})) \, d\tau \, d\theta \geq \frac{1}{2\pi} \int_0^{2\pi} \phi(G(e^{i\tau}, e^{i\theta_0} e^{i\tau})) \, d\tau.
\]

Put \(g(z) = G(z, e^{i\theta_0} z)\).
Remark 3.6. In a forthcoming paper [2], the author will continue the study of plurisubharmonicity of the Poisson functional.

Acknowledgement. The author thanks Professor Marek Jarnicki for helpful remarks.

REFERENCES

INSTITUTE OF MATHEMATICS
JAGIELLONIAN UNIVERSITY
REYMONTA 4-526
30-059 KRAKÓW
POLAND
E-mail: edigaria@im.uj.edu.pl