A UNIQUENESS CRITERION IN THE MULTIVARIATE MOMENT PROBLEM

MIHAI PUTINAR and FLORIAN-HORIA VASILESCU*

Abstract

A determinacy criterion for the multivariate Hamburger moment problem is derived from a recent existence by extension result, [10].

1. Introduction

The present note is a companion to the article [10]. By exploiting an existence result of [10] we derive below a uniqueness criterion for Hamburger's moment problem in any number of dimensions. Typically, the known determinacy criteria are stated in terms of density of polynomials in certain weighted L^p norms, cf. [3], [7], [12]. A notable exception is the Carleman type condition of [5]. We propose below a numerical sufficient condition of determinacy, completely expressible in terms of some associated orthogonal polynomials. We follow the path via a variational problem first studied by M. Riesz, [11].

First let us fix some notation. Let *d* be a positive integer and let $x = (x_1, x_2, ..., x_d)$ be the coordinates in \mathbb{R}^d . When embedding (naturally) \mathbb{R}^d into \mathbb{C}^d we will denote by $z = (z_1, z_2, ..., z_d)$ the complex coordinates. We put $z \cdot z = z_1^2 + z_2^2 + \cdots + z_d^2$, so that the euclidean norm of the vector *x* is $|x| = \sqrt{x \cdot x}$. The algebra of polynomials in the indeterminates *x* will be denoted by $\mathbb{R}[x]$, in the case of real coefficients, and by $\mathbb{C}[z]$ when allowing complex coefficients. For a fixed positive integer *n*, the space of polynomials of degree less or equal than *n* will be denoted by $\mathbb{R}_n[x]$, respectively $\mathbb{C}_n[z]$. Whenever it will be necessary, the domain of the polynomial map associated to an element $p \in \mathbb{R}[x]$ will automatically be extended to \mathbb{C}^d . Throughout this note we denote $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$.

Let μ be a positive, rapidly decreasing at infinity measure on \mathbb{R}^d , and let $\mathbf{a} = (a_{\alpha})_{\alpha \in \mathbb{N}^d}$ be the corresponding moment sequence:

$$a_{\alpha} = \int_{\mathbf{R}^d} x^{\alpha} d\mu(x), \qquad \alpha \in \mathbf{N}^d.$$

^{*} Partially supported by the National Science Foundation Grant DMS 9800666. Received October 4, 2000.

Associated solely to the moment sequence is the integration functional:

$$L(p) = \int_{\mathbb{R}^d} p d\mu, \qquad p \in \mathbb{R}[x].$$

First we recall some basic facts in dimension d = 1. Let *n* be a positive integer, and let us consider (after Riesz [11]) the variational problem:

(1)
$$\rho_n = \min\{L(p^2); p \in \mathsf{R}_n[x], |p(\pm i)| = 1\}.$$

The sequence ρ_n is obviously decreasing and the limit $\rho = \lim_{n\to\infty} \rho_n$ is equal to zero if and only if the initial moment problem is *determinate* (that is, in our notation, μ is the unique measure with moments **a**). The real numbers ρ_n are the radii of a decreasing set of disks in the plane, representing the values (at z = i) of the diagonal Padé approximants of the Cauchy transform of the measure μ , see [1] for full details. Most of the uniqueness criteria in the theory of moments in one variable are related to estimates, in different terms, of the limit radius ρ .

Since the relation (1) refers to real polynomials p, we can obviously replace the condition $|p(\pm i)| = 1$ by |p(i)| = 1. Also, we recall that the numbers $\pm i$ are not privileged; they can be replaced by any pair α , $\overline{\alpha}$ with $\alpha \notin \mathbb{R}$, see [11].

In arbitrary dimension $d \ge 1$ we can define an analogous quantity:

(2)
$$\rho_n = \min\{L(p^2); p \in \mathsf{R}_n[x], |p(z)| = 1 \text{ for } z \cdot z + 1 = 0\},\$$

and set $\rho = \lim_{n \to \infty} \rho_n$.

The aim of the present note is to prove that, in any dimension d, if $\rho = 0$, then the initial moment problem is determinate. We will show that actually the numbers ρ_n are computable, for instance in terms of certain orthogonal polynomials depending only on the moment sequence **a**.

ACKNOWLEDGEMENTS. This work was completed when the first author was visiting the Mathematics Department at the University of Science and Technology of Lille. It is a pleasure for him to thank this institution for hospitality and support.

2. Main result

Throughout this section we use the notation introduced before: **a** is the moment sequence of the measure μ on \mathbb{R}^d , d > 1, with associated integration functional L defined on polynomials, and $\rho = \lim_{n \to \infty} \rho_n$, as in relation (2).

First we note that ρ_n can be interpreted as a distance in the norm $||p||^2 = L(p^2)$, $p \in \mathbb{R}[x]$. Indeed, the complex variety $V = \{z \in \mathbb{C}^d : z \cdot z = -1\}$ is a connected smooth hypersurface in \mathbb{C}^d , d > 1, hence by the maximum modulus

principle (cf. for instance [8] pp. 118), if a polynomial $p \in C[z]$ satisfies $|p(z)| = 1, z \in V$, then there is a constant c, |c| = 1 such that $p(z) = c, z \in V$. To see that the variety V is connected it is sufficient to decompose a point $z \in V$ into real and imaginary parts: $z = x + iy, x, y \in \mathbb{R}^d$, and to remark that the equation of V becomes $|x|^2 - |y|^2 + 1 = 0, x \cdot y = 0$. Then, we can deform x along its direction to zero (specifically $tx, t \in [0, 1]$) and deform correspondingly y to the unit vector y/|y|. Thus, V is homotopically equivalent to the unit sphere in $\mathbb{R}^d, d > 1$, hence it is connected.

Moreover, a standard division argument shows that:

$$p(z) = c - (1 + z \cdot z)q(z), \qquad q \in \mathbf{C}[z].$$

Indeed, the ideal generated by the polynomial $z \cdot z + 1$ is prime in every localization of the polynomial ring C[z], hence it is prime in C[z]. By Hilbert Nullstellensatz ([8] pp. 404), since the polynomial p(z) - c vanishes on V it can be factored by $1 + z \cdot z$.

By taking real and imaginary parts in the coefficients of q we obtain polynomials r(z), s(x), such that $r(x) = \text{Re } q(x), s(x) = \text{Im } q(x), x \in \mathbb{R}^d$. Therefore, since we have started with a real polynomial p we obtain:

$$p(x) = \operatorname{Re} c - (1 + |x|^2)r(x), \qquad x \in \mathbf{R}^d,$$

and

$$0 = \operatorname{Im} c - (1 + |x|^2)s(x), \qquad x \in \mathsf{R}^d.$$

But the second condition implies $c \in \mathbf{R}$ and s(z) = 0, hence $c = \pm 1$. Without loss of generality we can assume henceforth that c = 1.

In conclusion, for d > 1 and $n \ge 2$ we have proved the following formula:

(3)
$$\rho_n = \min\{L(|p|^2); p(z) = 1 - (1 + z \cdot z)q(z), q \in \mathsf{C}_{n-2}[z]\}.$$

By decomposing q(x) = r(x) + is(x), $x \in \mathbb{R}^d$, as before in real and imaginary parts, we observe that:

$$|p(x)|^{2} = [1 - (1 + |x|^{2})r(x)]^{2} + (1 + |x|^{2})^{2}s(x)^{2}, \qquad x \in \mathbf{R}^{d},$$

so that the minimum in the above expression of ρ_n is indeed attained on real polynomials.

THEOREM 2.1. A moment sequence with invariant $\rho = 0$ is determinate.

PROOF. As recalled before, the case d = 1 is classical [11], so we can assume d > 1, in which situation formula (3) holds. If $\rho = 0$, then there exists a sequence of polynomials $q_n \in \mathbf{R}[x]$ such that

$$\lim_{n \to \infty} L([1 - (1 + |x|^2)q_n(x)]^2) = 0.$$

Assume that ν is another positive measure, rapidly decreasing at infinity in \mathbf{R}^d and having the same moments **a** as μ . Then we have:

$$\lim_{n \to \infty} \left\| 1 - (1 + |x|^2) q_n(x) \right\|_{2,\mu} = \lim_{n \to \infty} \left\| 1 - (1 + |x|^2) q_n(x) \right\|_{2,\nu} = 0.$$

Since the function $\frac{1}{1+|x|^2}$ is positive and bounded on \mathbb{R}^d , we infer:

$$\lim_{n \to \infty} \left\| \frac{1}{1 + |x|^2} - q_n(x) \right\|_{2,\mu} = \lim_{n \to \infty} \left\| \frac{1}{1 + |x|^2} - q_n(x) \right\|_{2,\nu} = 0.$$

Let $\alpha \in \mathbb{N}^d$ be an arbitrary multi-index and let *m* be a non-negative integer. Our aim is to prove that:

(4)
$$\int_{\mathbf{R}^d} \frac{x^{\alpha}}{(1+|x|^2)^m} \, d\mu(x) = \int_{\mathbf{R}^d} \frac{x^{\alpha}}{(1+|x|^2)^m} \, d\nu(x).$$

Then a direct argument, or the main result of [10], can be applied and conclude that $\mu = \nu$.

We prove relation (4) by induction on $m \ge 0$. The case m = 0 follows from the assumption that both measures have the same moments. Assume that relation (4) is valid for m replaced by m - 1. Let σ be one of the measures μ, ν . Since $\frac{x^{\alpha}}{(1+|x|^2)^{m-1}} \in L^2(\sigma)$ and $q_n(x) \rightarrow \frac{1}{1+|x|^2}$ in $L^2(\sigma)$, we obtain $\frac{x^{\alpha}q_n(x)}{(1+|x|^2)^{m-1}} \rightarrow \frac{x^{\alpha}}{(1+|x|^2)^m}$ in $L^1(\sigma)$. But according to the induction hypothesis this implies (4).

Note that in the above proof only the convergence $||q_n(x) - \frac{1}{1+|x|^2}||_{2,\mu} \longrightarrow 0$ was used. However, this latter condition is not intrinsinc in the moments **a**.

Since, by formula (3), $\sqrt{\rho}$ is the distance in $L^2(\mu)$ between the constant function **1** and the subspace $(1+|x|^2)\mathbf{C}[z]$, we obtain the following constructive way of computing this number.

COROLLARY 2.2. Let $P_{\alpha}(x)$, $\alpha \in \mathbb{N}^d$, be a sequence of orthonormal polynomials with respect to the measure $(1 + |x|^2)^2 d\mu(x)$ and define the coefficients:

(5)
$$c_{\alpha} = \int_{\mathbf{R}^d} P_{\alpha}(x)(1+|x|^2) d\mu(x), \qquad \alpha \in \mathbf{N}^d.$$

Then

(6)
$$\rho = a_0^2 - \sum_{\alpha \in \mathbb{N}^d} c_\alpha^2$$

We remark that ρ is invariant under the orthogonal group action on \mathbb{R}^d , and moreover, the condition $\rho = 0$ is invariant even under all linear transformations of \mathbb{R}^d . Also it is easy to remark from Corollary 2.2 that the density of

polynomials in $L^2((1 + |x|^2)^2 d\mu(x))$ implies $\rho = 0$ (compare with Fuglede's unltradeterminacy condition [7]).

Another possible way of checking the uniqueness condition $\rho(\mathbf{a}) = 0$ is through the restriction of the moment sequences to the coordinate axes, as in [9]. To be more specific, let **a** be the moment sequence of a positive measure μ on \mathbf{R}^d , and let \mathbf{a}_j , $1 \le j \le d$, be the induced boundary moment sequences:

$$\mathbf{a}_j(\alpha) = \mathbf{a}(0, \dots, 0, \alpha_j, 0, \dots, 0) = \int_{\mathsf{R}^d} x_j^{\alpha_j} d\mu(x), \qquad \alpha \in \mathsf{N}^d.$$

Then, according to Theorem 3 of [9], if $\rho(\mathbf{a}_j) = 0$, $1 \le j \le d$, then $\rho(\mathbf{a}) = 0$. Morover, the converse is also true in the case of product measures [9] Theorem 4. However, in general the converse is not valid, as shown by an example also contained in [9].

As expected, the condition $\rho = 0$ is not necessary, in general, for the unique determination of the representing measure. We present below such an example, adapted after Schmüdgen [12].

PROPOSITION 2.3. There exists a determinate moment sequence in two variables with $\rho \neq 0$.

PROOF. We closely follow the first example in [12]. Let μ be a positive measure on the real line which admits all moments and is indeterminate, yet N-extremal. That means the polynomials in one variable are dense in $L^2(\mu)$, but there exist other measures with the same moments, see also [11]. We define the measure $\nu = (1 + x^2)^{-1}\mu$, so that ν is determinate (because for instance the multiplication by (x + i) on polynomials has dense range in $L^2(\nu)$).

Let $j(x) = (\sqrt{2}x, x^2), x \in \mathbb{R}$, be a fixed embedding of the line into \mathbb{R}^2 , and let $\sigma = j_* v$ be the image measure, supported by the parabola $2y = x^2$. Then it is easy to see that σ is a determinate measure, see [12].

Assume that the invariant ρ vanishes for the measure σ . This means that there exists a sequence of polynomials $p_n \in C[x, y]$ satisfying:

$$\|(1+x^2+y^2)p_n-1\|_{2,\sigma} \longrightarrow 0.$$

This in turn implies:

$$\left\|(1+x^2)^2q_n-1\right\|_{2,\nu}\longrightarrow 0,$$

where $q_n(x) = p(\sqrt{2}x, x^2)$. The last condition is equivalent to:

(7)
$$\left\| (x+i)(1+x^2)q_n(x) - \frac{1}{x-i} \right\|_{2,\mu} \longrightarrow 0.$$

Let *V* denote the closure of (x + i)C[x] in $L^2(\mu)$. Relation (7) shows that $\frac{1}{x-i} \in V$. Since the measure μ is indeterminate, for every $\epsilon > 0$ there exists a positive constant *C* with the property that:

$$|p(z)| \le Ce^{\epsilon|z|} \|p\|_{2,\mu}, \qquad z \in \mathsf{C}, \quad p \in \mathsf{C}[x].$$

That is the evaluation at a given point $z \in C$ is a bounded linear functional on the closure of polynomials, hence on all $L^2(\mu)$. Moreover, one can identify in this way $L^2(\mu)$ with a Hilbert space of entire functions of exponential type, see [11] or [1]. But this contradicts relation (7), because $\frac{1}{z-i}\Big|_{z=-i} \neq 0$, while all elements of the space V vanish at the point z = -i.

REFERENCES

- 1. Akhiezer, N. I., *The classical moment problem and some related questions in analysis*, Oliver and Boyd, Edinburgh, 1965.
- 2. Berg, C., Moment problems and polynomial approximation, preprint 1997.
- Berg, C. and Christensen, J. P. R., *Density questions in the classical theory of moments*, Ann Inst. Fourier 31(1981), 99–114.
- 4. Berg, C. and Thill, M., Rotation invariant moment problems, Acta Math. 167 (1991), 207-227.
- Cramér, H. and Wold, H., Some theorems on distribution functions, J. London Math. Soc. 11 (1936), 290–294.
- 6. Devinatz, A., Two parameter moment problems, Duke Math. J. 24 (1957), 481-498.
- 7. B. Fuglede, The multidimensional moment problem, Exposition. Math. 1 (1983), 47-65.
- 8. Lojasiewicz, S., Introduction to Complex Analytic Geometry, Birkhäuser, 1991.
- Petersen, L. C., On the relation between the multidimensional moment problem and the onedimensional moment problem, Math. Scand. 51 (1982), 361–366.
- Putinar, M. and Vasilescu, F.-H., Solving moment problems by dimensional extension, Ann. of Math. 149 (1999), 1087–1107.
- 11. Riesz, M., Sur le problème des moments. Troisième Note, Ark. Mat. Fys. 17, 16 (1923), 1–52.
- Schmüdgen, K., On determinacy notions for the two dimensional moment problem, Ark. Mat. 29 (1991), 277–284.
- Shohat, J. A. and Tamarkin, J. D., *The Problem of Moments*, Amer. Math. Soc., Providence, 1943.
- Vasilescu, F.-H., Hamburger and Stieltjes moment problems in several variables, Trans. Amer. Math. Soc. 354 (2002), 1265–1278.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA SANTA BARBARA, CA 93106 USA *E-mail:* mputinar@math.ucsb.edu U. F. R. DE MATHÉMATIQUES UNIVERSITÉ DES SCIENCES ET TECHNOLOGIES DE LILLE U. M. R. DU C. N. R. S. 8524 59655 VILLENEUVE D'ASCQ CEDEX FRANCE *E-mail:* fhvasil@gat.univ-lille1.fr