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LOCAL L2 RESULTS FOR ∂ ON A SINGULAR
SURFACE

KLAS DIEDERICH, JOHN ERIK FORNÆSS and SOPHIA VASSILIADOU∗

Abstract

The Cauchy-Riemann equations are fundamental in complex analysis. This paper contributes
to the understanding of these equations on singular spaces. Various methods have been used to
overcome the problem of defining forms near singularities. One can blow up the singularity, restrict
forms from smooth ambient spaces or work on the regular points. In this paper we use the latter
approach to obtain square integrable solutions on singular surfaces. This can be briefly called
the Kohn solution up to the singularity to contrast with results in terms of curvature, weights or
different function spaces.

1. Introduction

The ∂ equation is the main quantitative tool in the theory of several complex
variables. It has been used extensively in analysis of domains in Cd and on
complex manifolds. However, in the theory of several complex variables, one
also needs to investigate complex spaces as they occur naturally as soon as one
considers zero sets of holomorphic functions.

In this paper we address the question whether it is possible to solve the ∂
equation with L2 estimates in complex spaces. The main motivation is that L2

estimates appear as the most promising tool to solve the Levi problem in Stein
spaces.

The general philosophy is that one can study a complex Stein space by
reducing to a closed k-dimensional subvariety X in Cd and viewing X as a
branched cover over some suitable Ck . Next one can remove a hypersurface S
from X such that the projection π : X \ S → Ck is unbranched. On X \ S one
can solve ∂u = λ using the classical L2 theory of Hörmander [4]. Next one
can use a detailed geometric analysis of the singular space to modify this u to
obtain a solution with L2-estimates, up to an explicit finite dimensional set of
obstructions.

We analyze complex (not necessarily algebraic) surfaces in Cd with an
isolated singularity at the origin. We solve the problem ∂u = λ where λ is a
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∂ closed (0, 1) form in a deleted neighborhood of the singular point 0 of X.
More precisely we show the following:

Theorem 1.1. There exists a closed subspaceH of finite codimension of the
set of ∂-closed (0, 1) forms λ in L2,(0,1)

X∗∩B(0,ε) and a linear operator T : H →
L

2,(0,0)
X∗∩B(0,δ) for some δ < ε and a constant C so that

∂(T λ) = λ
‖T λ‖

L
2,(0,0)
X∗∩B(0,δ)

≤ C‖λ‖
L

2,(0,1)
X∗∩B(0,ε)

The L2 norms in the theorem are measured with respect to the induced
metric by the imbedding of X∗ ↪→ Cd .

The case of conic singularities was done by Fornæss in [1].
Our result complements results by Pardon [8], Pardon and Stern [9]. In the

particular case thatX is a complex projective surface with isolated singularities
and the set of regular points of X is given the Hermitian (incomplete) metric
induced by an embedding ofX to a projective space Pardon and Stern [9] iden-
tified the (0, q) L2-∂-cohomology groups with Neumann boundary conditions
ofX \ singX with certain sheaf cohomology groups of its blow-up X̃. Namely
they proved

H
(0,q)
N (X \ singX) ∼= Hq(X̃,O(Z − |Z|))

where the left-hand side is the (0, q) L2-∂-cohomology with Neumann bound-
ary conditions, X̃ → X is a resolution of singularities of X,Z is the (un-
reduced) exceptional divisor and Z is supported along a divisor with normal
crossings.

In the same paper, Pardon and Stern proved a local vanishing result for the
(n, q) L2-∂-cohomology groups ofU \U ∩ singX, U ⊂ X, open, n = dimX,
q ≥ 1 andX is any projective variety with isolated singularities. This allowed
them to identify

H
(n,q)

N (X \ singX) ∼= Hn,q(X̃)
Applying an L2-version of Serre’s duality theorem to the left hand side of

the above isomorphism and its algebraic version to the right hand side they
obtained

H
(0,q)
D (X \ singX) ∼= H 0,q(X̃)

where the left-hand side is the (0, q) L2-∂-cohomology with Dirichlet bound-
ary conditions.

In proving the above results essential use is made of the fact thatX and hence
X̃ is compact which ensures the finite dimensionality of certain cohomology
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groups and is also necessary in order to apply an L2-version of Serre’s duality
theorem. A similar argument doesn’t seem feasible when X is not compact.
Also key ingredient in proving the result about the L2-cohomology with Neu-
mann boundary conditions is an explicit computation of the pull back of the
Fubiny-Study metric under the blow-up map obtained by Hsiang and Pati [5]
and Nagase [7]. It is not clear to us that such a computation can be generalized
to higher dimensional varieties.

Similar results (as in [8], [9]) for complex algebraic surfaces in projective
space with isolated singularities were obtained by Haskell [3], and Nagase [7].

Our point of view is to work without weights, without essential use of
metrics and mainly on the original singular space. We plan to continue the
investigation in future work.

There is a parallel program to investigate L∞ estimates, see [2].
The paper is organized as follows: In Section 2 we describe the geometry

of the variety near the singular point. In Section 3 we introduce the L2 spaces
and norms we will be using. Finally, in Section 4 we construct the solutions to
the ∂-equation.

2. Geometry of Varieties

We will investigate the surface X in Cd with an isolated singularity at the
origin. We first need to make some standard remarks on the choice of generic
coordinates.

Lemma 2.1. Let X be a 2-dimensional complex variety in a neighborhood
of (0) in Cd , 0 ∈ X. Let {φj }1≤j≤k be a finite family of linear functions. Then
after arbitrarily small perturbations we may assume that (0) is isolated in
X ∩ {φi = φj = 0} for any i �= j .

Proof. We prove this by induction in k. If k = 2, perturb φ1 first so that
Z = X∩{φ1 = 0} has dimension 1. Then perturbφ2 so thatφ2 is not equivalent
to 0 on each irreducible component of Z.

Next, suppose the statement is true for k and let {φj }1≤j≤k+1 be given. We
may assume that (0) is isolated in X ∩ {φi = φj = 0} for any 1 ≤ i < j ≤ k.
If we make any sufficiently small perturbations of φ1, . . . φk then this remains
true. So, as above, we may assume that X ∩ {φi = 0} has dimension 1 for any
i ≤ k. But then, as in the first step we can perturb φk+1 so that φk+1 doesn’t
vanish identically on any irreducible branch in any X ∩ {φi = 0}, i ≤ k.

We can assume that the φi are the coordinate functions xi . It follows that
we can assume that X is a branched cover over C2(xi, xj ) for any pair 1 ≤
i < j ≤ d. To simplify notation, let us consider the branching of X over
C2(x, y), x = x1, y = x2. The branching occurs over a one dimensional
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varietyL in C2(x, y). ThenL is a union of finitely many irreducible curvesLi ,
i = 1, . . . ,M . After another small rotation, the Zariski tangent space of each
curve Li at 0 is different from the x- and y-axis. Then Li can be parametrized
by one complex variable t in a neighborhood of 0

x = tni
y = g̃i (t) = c0tni + c1tni+1 + · · · , c0 �= 0.

Here g̃i is holomorphic in a neighborhood of 0, g̃i (0) = 0.

Remark 2.2. The above assumption implies that dy
dx

is bounded and boun-
ded away from 0 along Li near the origin.

We can assume that similar descriptions are valid with projections to all the
xixj -planes.

We call π the local projection, π : X→ C2(x, y). Set Yi = π−1(Li). Then
the Yi are complex curves with finitely many irreducible components Y ki . Set
b(i, k) := the branching number of π along Y ki . Then b(i, k) ≥ 1 and for
each i at least one b(i, k) > 1. Also let c(i, k) denote the sheet number of the
projection from Y ki to Li . Then Y ki can be parametrized as follows:

x = tnic(i,k)
y = g̃i (tc(i,k)) = c0tnic(i,k) + c1t (ni+1)c(i,k) + · · ·
zj = hji,k(t), j = 3, . . . , d.

where hji,k is holomorphic in a neighborhood of 0, hji,k(0) = 0. Hence the
parametrization of all Li and Y ki are of the form:

x = tn
y = g(t) = ctn + · · · , c �= 0

zj = hj (t), j = 3, . . . d.

where the first two equations parametrizeLi and all equations parametrize Y ki .
We need to choose tubular Stein neighborhoods, pinched at 0, for Li in

C2
x,y and for Y ki in X. Let {Pi(x, y)}Mi=1 be irreducible holomorphic functions,
Li = {Pi = 0}. We can assume that the Pi are Weierstrass polynomials,
Pi(x, y) = ymi +∑

j<mi
aij (x)y

j , aij (0) = 0. Hence we can write Pi(x, y) =
,
mi
j=1(y − yj (x)) with locally defined holomorphic functions yj (x).

If i �= j, then |Pi |2(x, y)+|Pj |2(x, y) is a nonnegative real analytic function
that vanishes only at the origin. By the weak form of Lojasiewicz [6] there exist



local L2 results for ∂ on a singular surface 273

C > 0, N > 1 such that

|Pi |2(x, y)+ |Pj |2(x, y) ≥ C‖(x, y)‖N.
We will increase N whenever necessary.

For (x, y) ∈ Lj we have

dist((x, y), Li) ≥ 3

C
|Pi |2(x, y) = 3

C
(|Pi |2(x, y)+ |Pj |2(x, y))

≥ 3‖(x, y)‖N.
We define

Ti := {(x, y); d((x, y), Li) < ‖(x, y)‖N }.
If (x, y) ∈ Tj , let (x ′, y ′) be a point on Lj for which dist((x, y), Lj ) =
‖(x, y)− (x ′, y ′)‖. Then

d((x, y), Li) ≥ d((x ′, y ′), Li)− ‖(x, y)− (x ′, y ′)‖
≥ 3‖(x ′, y ′)‖N − ‖(x, y)− (x ′, y ′)‖
≥ 3‖(x ′, y ′)‖N − ‖(x, y)‖N

Now,

‖(x ′, y ′)‖ ≥ ‖(x, y)‖ − ‖(x, y)− (x ′, y ′)‖ ≥ (3/4)1/N‖(x, y)‖
and so

d((x, y), Li) ≥ 5/4‖(x, y)‖N.
Hence,

α) Li \ {0} ⊂ Ti
β) Ti ∩ Tj = ∅, i �= j

For our purposes though, it is more convenient to use tubular neighborhoods
which are circular in the y direction. For this, recall that Li = {Pi = 0} where
Pi = ,mij=1(y−yj (x)). Then,k �=j (yj (x)−yk(x))2 =: φi(x) is a holomorphic
function with an isolated zero at the origin. Hence |φi(x)| ≥ |x|N for some
largerN . It follows that for x �= 0, the discs {Dj(x) := {y; |y−yj (x)| < |x|Ñ }}
are pairwise disjoint. We define the tubular neighborhoods

(1) T̂i := {(x, y); ∃t; x = tni , |y − g̃i (t)| < |x|N } ⊂ Ti
Then the T̂i are Stein. Moreover, the π−1(T̂i) split into disjoint Stein neighbor-
hoods 0ki of the respective Y ki . To see this, we can use a continuity argument.



274 klas diederich, john erik fornæss and sophia vassiliadou

First of all, the Y ki only intersect at (0). Hence if p ∈ Li \ (0) and B(p, ε)
is a small enough ball centered at p, then π−1((B(p, ε)) splits into disjoint
neighborhoods of the respective points in π−1(p) in Y ki . Hence, if we start
by replacing the T̂i by thin enough neighborhoods of the Li , then the 0ki are
disjoint. If we now continuously increase the T̂i , then if at some point two 0ki
overlap, the number of branches of π drops and this can only happen where π
branches.

Notation. For variable A,B (complex or real valued objects) we write
A ∼ B if there exist positive constantsC1, C2, independent of objects that will
be specified later on, such that C1|A| ≤ |B| ≤ C2|A|. Similarly, for E,F real
or complex valued objects we write E <∼ F if there exists a positive constant
C such that |E| ≤ C|F | where C is independent of the objects and will be
specified later on.

Pick any p = p(t) ∈ Y ki \ 0, b(i, k) > 1. Then the tangent plane to
X at p is spanned by two vectors, one is tangent to Y ki , the other is a vector
(0, 0, z3, . . . , zd) perpendicular to the (x, y) plane because Y ki is in the branch-
ing locus and this second one projects to a unique point Z = [z3 : . . . : zd ] ∈
Pd−3.

Lemma 2.3. We can parametrize Z = Z(t), t being the parameter for Y ki
with Z(t) = (z3(t), . . . , zd(t)) and with some zj = zi,k(t) ≡ 1. Moreover,
Z(t) is holomorphic and extends holomorphically across t = 0.

Proof. The case d=3 is trivial, so we assume that d > 3. Let {H1, . . . , Hν}
be functions generating the ideal sheaf of X at every point in a neighborhood
of 0. Then [z3 : . . . : zd ] at p ∈ Y ki \0 is uniquely determined by the equations

n∑
j=3

∂Hα

∂xj
zj = 0 ∀α.

Since the solutions of the above system form a 1-dimensional complex sub-
space of Cd−2, the rank of

(
∂Hα
∂xj

)
α,j ;j≥3 is d − 3. Notice that each entry

f αj (t) := ∂Hα
∂xj

is holomorphic in t on Y ki , including across t = 0.

Not all ∂Hα
∂xj

≡ 0 for j ≥ 3, α ≤ ν, on Y ki . Therefore, there will exist

k1 ∈ {3, . . . , d}, α1 ∈ {1, . . . , ν} such that
∂Hα1
∂xk1

vanishes to smallest order

at t = 0. After rearranging the coordinates making sure that x3
′ =: xk1 and

letting α1 correspond to the first equation, we obtain as the first equation of
the system;

f
3,1
3 (t)z3

′ + · · · + f 3,1
d (t)zd

′ = 0
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where f 3,1
j (t) are holomorphic functions of t , and |f 3,1

j (t)| <∼ |f 3,1
3 (t)| for

j = 3, . . . , d and f 3,1
3 (t) �= 0 when t �= 0.

We can solve the above equation with respect to z3
′ and substitute the

corresponding expression in the remaining equations of the system. We obtain;

f
4,1
4 (t)z4

′ + · · · + f 4,1
d (t)zd

′ = 0

f
5,1
4 (t)z4

′ + · · · + f 5,1
d (t)zd

′ = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f
ν+2,1
4 (t)z4

′ + · · · + f ν+2,1
d (t)zd

′ = 0

where f i,1j (t) are holomorphic functions of t (due to the fact that |f 3,1
j (t)| <∼

|f 3,1
3 (t)|, and f αj are holomorhic functions in t).

Not all f j,1k (t) ≡ 0, 4 ≤ j ≤ ν + 2, 4 ≤ k ≤ d on Y ki . Therefore there
will exist x2 ∈ {4, . . . , d}, α2 ∈ {4, . . . , ν + 2} such that f α2,1

k2
(t) vanishes to

smallest order at t = 0. Rearranging the coordinates making sure that x3
′′ = x ′3

and x4
′′ = x ′k2

and reordering the equations so thatα2 corresponds to the second
equation we get:

f
3,2
3 (t)z3

′′ + f 3,2
4 (t)z4

′′ + · · · + f 3,2
d (t)zd

′′ = 0

f
4,2
4 (t)z4

′′ + · · · + f 4,2
d (t)zd

′′ = 0

where |f 3,2
j (t)| <∼ |f 3,2

3 (t)| for j = 3, . . . , d and |f 4,2
j (t)| <∼ |f 4,2

4 (t)| for

j = 4, . . . , d and f 3,2
j (t), f

4,2
j (t) are holomorphic functions of t .

Continuing this way we can finally obtain the following system;

d∑
j=3

f
3,d−3
j (t)zj = 0

d∑
j=4

f
4,d−3
j (t)zj = 0

. . . . . . . . . . . . . . . . . . . . .
d∑

j=d−1

f
d−1,d−3
j (t)zj = 0

for holomorphic functions f ji (t), f
j

j (t) not identically equal to 0, |f ji (t)| <∼
|f jj (t)|, i > j . At this point, by rank considerations all the remaining equations
are identically zero. We obtain from the last equation that zd−1 = cd−1(t)zd ,
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cd−1(t) := − f d−1,d−3
d (t)

f
d−1,d−3
d−1 (t)

. Moving upwards in the above system we can compute

zj = cj (t)zd , cj (t) = O(1) on Y ki for j = 3, . . . , d − 1.

We write zj =: z as in the Lemma.
Hence we can write X as a multivalued graph (unbranched Riemann do-

main) over the x, z plane in some neighborhood of Y ki . In fact we can describe
X near Y ki by

y − g(x 1
n

) = (
zj − hj

(
x

1
n

))a
φ(2)

z8 − h8
(
x

1
n

) = (
zj − hj

(
x

1
n

))
ψ8 8 �= j,

for a ≥ 2, φ, ψ8 depending on x, zj . The above lemma implies that each

(3) ψ8 = O(1) on Y ki

Since the projection to the (x, y) plane has locally b(i, k) =: b preimages we
can assume that a = b and φ = φ(x 1

n , z − hj (x 1
n )) �= 0, when z = hj (x 1

n ),
x �= 0.

For such (x, z) close to 0 in C2 let yα(x, z) denote the yα coordinates of
points inX. ThenH(x, y, z) := ,(y−yα) is holomorphic in a neighborhood
of 0 and vanishes on X.

Points in Y ki satisfy H(x(t), y(t), z(t)) = 0.

Lemma 2.4. Suppose b(i, k) =: b > 1. There exist integers m ≥ 1, r ≥ 0
so that on Y ki , ∂H

∂x
∼ ∂H

∂y
∼ tm, ∂H

∂z
= · · · = ∂b−1H

∂zb−1 = 0 and ∂bH
∂zb
∼ t r (for t

close to 0).

Proof. The fact that ∂H
∂z
= · · · = ∂b−1H

∂zb−1 = 0 follows since Y ki is in the

branch locus. Since ∂bH
∂zb
(x(t), y(t), z(t)) is holomorphic in t , it follows that

∂bH
∂zb
∼ t r for some integer r ≥ 0. By the chain rule, ∂H

∂x
dx
dt
+ ∂H
∂y

dy

dt
+ ∂H
∂z
dz
dt
= 0.

But dx
dt
∼ dy

dt
by Remark 2.1 and ∂H

∂z
= 0 since b > 1. Since ∇H �= 0 on Y ki ,

∂H
∂x
∼ ∂H

∂y
�= 0. Since ∂H

∂x
(x(t), y(t), z(t)) is holomorphic in t it follows that

∂H
∂x
∼ tm for some integer m ≥ 0.

Next we want to show that X is nearly flat as a graph over the (x, z) plane
in the y-direction near those Y ki for which b > 1. More precisely, we want
uniform bounds on the slopes.

Lemma 2.5. Suppose that b>1. For a large enoughN , if (x, y, z3, . . . , zd) ∈
X∗∩B(0, ε) for some small ε > 0,X∗ := X\0 andd((x, y, z3, . . . , zd), Y

k
i ) <‖(x, y, z3, . . . , zd)‖N , then ∂H

∂x
∼ ∂H

∂y
∼ x mn , |x|m/n ∼ |y|m/n >∼

∣∣ ∂H
∂z

∣∣. The
constants in the estimates are arbitrarily close to those of Lemma 2.4.
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Proof. Recall that if (x, y, z3, . . . , zd) =: p ∈ Y ki , then ∂H
∂z
= 0 and ∂H

∂x
∼

∂H
∂y
∼ tm ∼ x mn ∼ y mn . The second derivatives of H are uniformly bounded.

Let p′ = (x ′, y ′, z′3, . . . , z′d) be a point on Y ki closest to (x, y, z3, . . . , zd).
Then∣∣∣∣∂H∂z (x, y, z3, . . . , zd)

∣∣∣∣ <∼ ‖(x, y, z3, . . . , zd)− (x ′, y ′, z′3, . . . , z′d)‖
<∼ ‖(x, y, z3, . . . , zd)‖N ∼ ‖(x ′, y ′, z′3, . . . , z′d)‖N.

Also ∣∣∣∣∂H∂x (p)−
∂H

∂x
(p′)

∣∣∣∣ <∼ ‖p′‖N.
If N is large,

‖p′‖N �
∣∣∣∣∂H∂x (p′)

∣∣∣∣
Hence,

∂H

∂x
(p) ∼ ∂H

∂x
(p′) and

∂H

∂z
(p) <∼

∂H

∂x
(p)

similarly:
∂H

∂x
(p) ∼ ∂H

∂y
(p)

We remind the reader that z =: zj . We pick 8 �= j and want to study the
slopes of X near Y ki as a graph over the (x, z) plane in the z8-direction. This
slope can be unbounded when we approach the origin. Let z8,α denote the
z8-coordinates of points in X with given (x, z). We define H8(x, z, z8) =:
,(z8− z8,α). The treatment is similar toH(x, y, z). In analogy to Lemma 2.4
we have

Lemma 2.6. There exist integers m8, r8, s8 such that on Y ki , ∂H
8

∂x
∼ tm8 , (or

∂H8

∂x
≡ 0), ∂H

8

∂z8
∼ t r8 , r8 ≥ 0, ∂H

8

∂z
∼ t s8 , s8 ≥ r8 or ∂H

8

∂z
≡ 0.

Proof. We use the fact that all partial derivatives of H8 are holomorphic
functions of t in Y ki . The estimate s8 ≥ r8 follows since H8(x, z, h8 + (z −
hj )ψ8) ≡ 0, so

∂H8

∂z
= −∂H

8

∂z8
ψ8

Recall that
ψ8 = O(1) on Y ki

as seen in (3).
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The unboundedness of the slope ofX over the (x, z) plane in the z8-direction
arises if m8 < r8. In analogy to Lemma 2.5 we obtain from Lemma 2.6:

Lemma 2.7. For a large enough N , if (x, y, z3, . . . , zd) ∈ X∗ ∩ B(0, ε)
and d((x, y, z3, . . . , zd), Y

k
i ) < ‖(x, y, z3, . . . , zd)‖N , we can write z8,α =

Z8,α(x, z), 8 �= j , with ∂Z8,α
∂z

= O(1). If m8 ≥ r8 then ∂Z8,α
∂x

= O(1), if

m8 < r8, then ∂Z8,α
∂x
∼ tm8−r8 = x m8−r8n .

We now come back to 0ki , the Stein neighborhoods of Y ki as introduced
after (1). We set p := (x, y, z3, . . . , zd) and for some small δ > 0

V ki := {p ∈ X∗ ∩ B(0, δ); d(p, Y ki ) < ‖p‖Ñ }
for a large enough Ñ , with Ñ as in Lemma 2.6 and 2.7. We want to show that
for large enough N , the 0ki are contained in V ki .

We can locally write y = Y (x, z) nearY ki as long as we are close enough that
Lemma 2.5 applies. Since H(x, Y (x, z), z) ≡ 0 we get Yx = −Hx/Hy ∼ 1
and |Yz| = | − Hz/Hy | <∼ 1. Similarly for 8 �= j , as in Lemma 2.7 we can
write z8,α = Z8,α(x, z) and

∂Z8,α

∂z
= O(1),

∣∣∣∣∂Z8,α∂x
∣∣∣∣ <∼ |x| −sn

for some s ≥ 0.
Let (x, y, zj,1), . . . ,(x, y, zj,c(i,k))denote the (x, y, zj ) coordinates of points

in Y ki with given (x, y). Then,α �=β(zj,α−zj,β)2 is holomorphic onLi \(0) and
by the removable singularity theorem it vanishes to finite order. IncreasingN if
necessary, it follows that for every point (x, y) ∈ Li the (zj,α, zj,β) are at least
a distance of |x|N apart. Similarly for given x, the yγ for which (x, yγ ) ∈ Li
are at least |x|N apart. It follows that we can find neighborhoods of the form
{(x, z); |z− hj (x1/n)| < |x|N } over which X is a graph

y = Y (x, z) = g(x1/n)+ (z− hj )bφ(x1/n, z− hj (x1/n))(4)

z8,α = Z8,α(x, z) = h8(x1/n)+ (z− hj )ψ8(x1/n, z− hj (x1/n))

These graphs are contained in V ki .
We can write

φ(x1/n, z− hj (x1/n)) = φ(x1/n, 0)+ θ(x1/n, z− hj (x1/n))

|(z− hj (x1/n))bφ| <∼ |z− hj (x1/n)| if |z− hj (x1/n)| < ‖x‖N

|φ(x1/n, z− hj (x1/n))| <∼
1

|z− hj (x1/n)|b−1
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OnX we have ∂Y
∂z
∂H
∂y
+ ∂H
∂z
= 0. By differentiating repeatedly this equation

with respect to z and taking into account that on Y ki , ∂H
∂z
= · · · = ∂b−1H

∂zb−1 = 0,
∂bH
∂zb
∼ x rn and ∂H

∂y
∼ x mn (Lemma 2.4) we obtain ∂

bY
∂zb
|Y ki \(0) ∼ x

r−m
n . Notice also

thatφ(x1/n, 0) = 1
b!
∂bY
∂zb

onY ki . Combining these observations we conclude that
for x �= 0 we have:

(∗) φ(x1/n, 0) = xρ/nu(x1/n)

for ρ ∈ Z and a unit u.
Since a holomorphic function on a disc takes its maximum on the boundary,

we get for x �= 0

|φ(x1/n, z− hj (x1/n))| <∼
1

‖x‖N(b−1)

|θ(x1/n, z− hj (x1/n))| <∼
1

‖x‖Ñ

|θz(x1/n, z− hj (x1/n))| <∼
1

‖x‖N̂ if |z− hj (x1/n)| < ‖x‖N+1

|θ(x1/n, z− hj (x1/n))| <∼
|z− hj (x1/n)|

‖x‖N̂ if |z− hj (x1/n)| < ‖x‖N+1

Suppose |z− hj (x1/n)| = |x|N ′ , x �= 0, N ′ ≥ N + 1. Then

|φ(x1/n, z− hj )| = |φ(x1/n, 0)+ θ(x1/n, z− hj )|
≥ |φ(x1/n, 0)| − |θ(x1/n, z− hj )|

We have seen that

|θ(x1/n, z− hj )| <∼
|z− hj (x1/n)|

|x|N̂ = |x|
N ′

|x|N̂
|φ(x1/n, 0)| ∼ |x|ρ/n

Hence
|φ(x1/n, z− hj )| >∼ |x|ρ/n −

|x|N ′
|x|N̂

We can increase N ′ such that for |x| small

|x|ρ/n − |x|
N ′

|x|N̂ ≥
1

2
|x|ρ/n,
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hence

|φ(x1/n, z− hj )| >∼
1

2
|x|ρ/n

|y − g(x1/n)| = (|x|N ′)b|φ(x1/n, z− hj (x1/n))| >∼
1

2
|x|bN ′+ ρn >∼ |x|N

if N is big enough such that N ≥ bN ′ + ρ

n
. The above estimates imply:

Lemma 2.8. 0ki ⊂ V ki .

3. L2 Spaces

Here we describe forms and L2 norms on X∗. We use the notation ‖ · ‖L2
x,y,V

to denote the L2 norm in an open set V ⊂ X using the standard metric in the
(x, y) coordinates. Similarly, we use the notation ‖ · ‖L2

X,V
for the L2 norm in

V given by the induced metric on X. Usually the set V is supressed from the
notation, and we write ‖ · ‖L2

x,y
, ‖ · ‖L2

X
respectively. We will also similarly use

the norms ‖ · ‖L2
x,z,V

and ‖ · ‖L2
x,z

.

Lemma 3.1. Let λ be a (p, q) form on V ⊂ X∗. Then

‖λ‖L2
x,y,V
≤ ‖λ‖L2

X,V
if (p, q) = (0, 0), (1, 0) or (0, 1)

‖λ‖L2
x,y,V
= ‖λ‖L2

X,V
if (p, q) = (2, 0) or (0, 2)

‖λ‖L2
x,y,V
≥ ‖λ‖L2

X,V
if (p, q) = (2, 1), (1, 2) or (2, 2)

For (p, q) = (1, 1) there is no inequality.

Proof. The case of functions, i.e. (0, 0) forms is obvious. We prove the
Lemma for (0, 1) forms, the others go similarly.

We consider a form defined on a small open set V inX∗ where π is biholo-
morphic, U := π(V ). The projection π : Cn→ C2 can be viewed as compos-
ition of projections from Ck+1 → Ck . The restriction of π to the tangent plane
of X then becomes a composition of projections of the form P × C → P for
a 2-dimensional plane P . Hence we may assume that we are in C3(x, y, z).
The set of points on X with vertical tangent over the (x, y)-plane has zero
measure, so we ignore these points. Then, either this tangent plane will be
parallel to the (x, y)-plane (in which case the norms are equal) or the tangent
plane will intersect the (x, y)-plane along a line. Without loss of generality,
we may assume that this line is the x-axis.

Let z = ay be the equation for the tangent plane, for a �= 0, a ∈ C. Set

u = x, v = y
√

1+ |a|2
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Then {u, v} form an orthonormal system of coordinates for the tangent plane
to X.

Let us assume λ′ =: (π−1)
∗
λ = αdx + βdy in U ⊂ C2

x,y . Then λ = π∗λ′
is the corresponding (0, 1)-form on V ⊂ X∗.

Then λ = (α ◦ π)du+ (β ◦ π) dv√
1+|a|2 .

‖λ‖2
L2
X,V

=
∫
V

|λ|2 dVX =
∫
V

(
|α ◦ π |2 + |β ◦ π |2

(1+ |a|2)
)
du ∧ du ∧ dv ∧ dv

=
∫
U

(
|α|2 + |β|2

(1+ |a|2)
)
(1+ |a|2) dx dx dy dy

=
∫
U

(|a|2 + 1)|α|2 + |β|2 dx dx dy dy

≥
∫
U

(|α|2 + |β|2) dx dx dy dy =: ‖λ‖2
L2
x,y,V

4. Solutions of ∂

Let λ be a ∂-closed (0, 1) form on Vε := X∗ ∩ B(0, ε), ‖λ‖L2
X,Vε
< ∞. We

want to solve the ∂-problem, ∂f = λ, ‖f ‖L2
X,Vδ

≤ Cδ,ε‖λ‖L2
X,Vε

for suitable
0 < δ < ε. We suppress explicit mention of the neighborhoods which will be
shrunk several times in the proof.

4.1. Piecewise solutions

Removing the branching curves Yi from X, Y = ∪iYi = ∪i,kY ki , we get
an unbranched, Stein Riemann domain X′ = X \ Y over C2

x,y . We have the

Hörmander solution uH on X′, solving ∂uH = λ in the L2 norm of the x, y
coordinate plane. So all norms are calculated with respect to the euclidean
metric in the x, y plane. Our first goal is to analyze the singularities of uH at
the curves Y ki . Assume first that π is unbranched at Y ki \ (0).

Lemma 4.1. The solution uH extends in L2
x,y across all those Y ki \ (0), on

which π is unbranched, as a solution to ∂uH = λ.

Proof. Assume that π is unbranched (away from 0) on Y ki . Then there is
for any point p ∈ Y ki \ (0) a small neighborhoodWp and a solution vp onWp,
∂vp = λ and vp ∈ L2

x,y,Wp
. Then uH − vp is holomorphic and in L2

x,y,Wp\Y ki .

Hence uH − vp extends holomorphically as a function fp on Wp. Therefore
uH extends as vp + fp across Y ki . In other words, the Hörmander solution uH
extends across all Y ki where π is unbranched.
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4.2. Estimates in C2
x,y

We now consider a pair (i, k) so that π branches on Y ki . For this it is convenient
to compare uH with the Hörmander solution Uki on 0ki .

More precisely, in 0ki we can use x, z =: zj as coordinates and we will let
Uki be the Hörmander solution with respect to these coordinates as described
below: Let p : Cd → C3(x, y, z) and π ′ : C3(x, y, z) → C2(x, y) be the
projections, so π = π ′ ◦ p. Let X̂, 0̂ki and Ŷ ki denote the projections in
C3(x, y, z) of X, 0ki and Y ki respectively. Note that p, π and π ′ are finite
covers on 0ki \ Y ki , 0̂ki \ Ŷ ki . Hence we can write λ = p∗λ̂ for a form λ̂ on
0̂ki \ Ŷ ki , but the form λ̂ lives naturally on a finitely sheeted Riemann domain
over this set, i.e. the form λ̂ might be multiple valued. Notice that according
to Lemma 2.5, 0̂ki is a finitely sheeted unbranched cover graph with bounded
slope over C2(x, z). Hence the L2-norms in X̂ and 0̂ki (x, z) (or equivalently
0ki (x, z)) are comparable.

We let Û ki denote the Hörmander solution of ∂Û ki = λ̂ on 0̂ki in the (x, z)
coordinates, and set Uki = Û ki ◦ p on 0ki .

The function vki := uH − Uki is holomorphic on 0ki \ Y ki and is in L2 with
respect to the (x, y) coordinates since

‖vki ‖L2
x,y,0k

i
\Yk
i

≤ ‖uH‖L2
x,y,0k

i
\Yk
i

+ ‖Uki ‖L2
x,y,0k

i
\Yk
i

= ‖uH‖L2
x,y,0k

i
\Yk
i

+ ‖Û ki ‖L2
x,y,0̂k

i
\Ŷ k
i

<∼ ‖uH‖L2
x,y,0k

i
\Yk
i

+ ‖Û ki ‖L2
X̂,0̂k

i
\Ŷ k
i

(by Lemma 3.1)

∼ ‖uH‖L2
x,y,0k

i
\Yk
i

+ ‖Û ki ‖L2
x,z,0̂k

i
\Ŷ k
i

= ‖λ‖L2
x,y,0k

i
\Yk
i

+ ‖λ̂‖L2
x,z,0̂k

i
\Ŷ k
i

≤ 2‖λ‖L2
X,0k

i
\Yk
i

<∞

The function vki has at most a local singularity like 1/(z − hj (x1/n))b−1

since it is integrable in the L2 sense in the x, y direction.
Note that the curve x = tn, z = hj (t) can also be described byψ(x, z) = 0

for a function vanishing to first order at all regular points of the curve.
We can write, shrinking 0ki , and using x1/n and ψ as local coordinates

vki =
∑

m≥1−b,s≥−s0
ai,km,sx

s/nψm(x, z)

on 0ki with s0 ∈ N suitably chosen.
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The set (ψ = 0) ∩X in Cd , consists of Y ki ∪B for some finite union B of
complex curves intersecting Y ki at (0) only. Letµ be a holomorphic function in
a neighborhood of 0 in Cd , µ|B ≡ 0 and µ|Y ki vanishing only at 0. Raising µ to
a high power if necessary, we may assume that µ

ψb−1 extends holomorphically
across B except at 0.

Note that if m is large enough, then x
m+ 1

n

|Y ki = tmn+1 is the restriction of a

holomorphic function on the germ, Cd0 , of Cd at 0. Also we can write µ|Y ki =
xs/nu(x

1
n ) for a unit u. Again we may assume u ≡ 1. Finally we get:

Lemma 4.2. There exists an integerM # 1 so that if σ = 0, 1, . . . , n− 1,
then the functions xM+σ/n|Y ki extend to µσ on Cd0 so that they vanish to high order

at B, in the sense that µσ
ψb−1 is holomorphic across B except at 0.

We want to decompose vki into a sum of three terms of a certain type. The
first two can be absorbed into u and Uki respectively, while the third gives
finitely many possible obstructions to solving ∂ in the first place. We start by
giving a preliminary decomposition of vki and then proceed with estimates.

Inductively, we write, using that

xM+
σ
n = µσ + O(ψ) = µσ + ψ

∑
m≥0,s≥−s1

ci,k,σm,s x
s/nψm

on 0ki :

vki =
∑

m≥1−b,s≥−s0
ai,km,sx

s/nψm(x, z)(5)

= ψ1−b ∑
m≥0,s≥−s0

ãi,km,sx
s/nψm(x, z)

= ψ1−b
n−1∑
σ=0

xσ/n
∑

p∈Z,m≥0

âi,kσ,p,mx
pψm

= ψ1−b
n−1∑
σ=0

xM+σ/n
∑

p∈Z,m≥0

b̂i,kσ,p,mx
pψm

= ψ1−b
n−1∑
σ=0

µσ
∑

p∈Z,m≥0

b̂i,kσ,p,mx
pψm

+ ψ1−b
n−1∑
σ=0

(xM+σ/n − µσ )
∑

p∈Z,m≥0

b̂i,kσ,p,mx
pψm
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= ψ1−b
[n−1∑
σ=0

µσ
∑
p∈Z

b
i,k
σ,p,1−bx

p + O(ψ)

]

= ψ1−b
[n−1∑
σ=0

µσ
∑
p∈Z

b
i,k
σ,p,1−bx

p

]

+ ψ2−b
[n−1∑
σ=0

xM+σ/n
∑
p∈Z

b
i,k
σ,p,2−bx

p + O(ψ)

]

=
−1∑

m=1−b
ψm

n−1∑
σ=0

µσ
∑
p∈Z

bi,kσ,p,mx
p +

∑
m≥0,s∈Z

Bi,km,sx
s/nψm

=:
−1∑

m=1−b

n−1∑
σ=0

ψmµσv
i,k
σ,m(x)+ vi,k0 (x

1/n, ψ)

Next we go through the steps above giving L2
x,y estimates of the various

terms. (Our decomposition is not orthogonal.)

Lemma 4.3. We have the estimates

‖ψmµσvi,kσ,m‖L2
x,y,0̃k

i

<∼ ‖vki ‖L2
x,y,0k

i

‖vi,k0 ‖L2
x,y,0̃k

i

<∼ ‖vki ‖L2
x,y,0k

i

where 0̃ki are thinner neighborhoods than the 0ki of the same type.

Proof. We only show that

‖ψ1−bµσυi,kσ,1−b‖L2
x,y,0̃k

i

<∼ ‖υki ‖L2
x,y,0k

i

.

The other inequalities follow by finite induction with similar details.
We can write (x, y) = F(x,ψ) for some finite mappingF. Then J (F) =

∂y

∂ψ
= 1
(∂ψ/∂y)

= 1
∂ψ

∂z
∂z
∂y

.

ψ = (z− hj )κ̃(x, z)
κ̃(x, z) ∼ xt/n, t ∈ Z

∂ψ

∂z
= κ̃ + (z− hj )∂κ̃

∂z
∼ xt/n
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We have seen in Section 2 that we can find neighborhoods of the form
{(x, z) : |z− hj (x 1

n )| < |x|N } over which X is a graph. In particular

y − g(x 1
n ) = (z− hj (x 1

n ))bφ(x
1
n , z− hj (x 1

n ))

Differentiating with respect to y we obtain

1 = (z− hj )b−1[bφ + (z− hj )φz] ∂z
∂y

Hence,
∂z

∂y
= 1

(z− hj )b−1 [bφ + (z− hj )φz]

∼ κ̃b−1

ψb−1[bx
ρ

n u+ bθ + (z− hj )θz]

∼ x
t(b−1)
n

ψb−1x
ρ

n

Recall that θ(x1/n, 0) = 0, |θz| <∼ 1
|x|N̂ , if we shrink our neighborhood a bit

more.
Thus,

(6) J (F) = 1
∂ψ

∂z
∂z
∂y

∼ ψb−1x
r
n , r ∈ Z

Remark 4.4. We can assume that J (F) ∼ ψb−1x
r
n , ∂ψ
∂z
∼ x tn for a thinner

neighborhood 0ki
′
.

Hence,
∥∥υki ∥∥2

L2
x,y,0k

i

= ∥∥υki ◦FJ (F)
∥∥2
L2
x,ψ,0k

i

>∼
∥∥∥∥ψ1−b

n−1∑
σ=0

xM+
σ
n

∑
p∈Z,m≥0

b̂i,kσ,p,mx
pψmψb−1xr/n

∥∥∥∥
2

L2

x,ψ,0k
i

′

≥
n−1∑
σ=0

∑
m≥0

∥∥∥∥ψ1−bxM+σ/n
∑
p∈Z

b̂i,kσ,p,mx
pψmψb−1xr/n

∥∥∥∥
2

L2
x,ψ,0̃k

i

>∼
∥∥∥∥ψ1−bxM+σ/n

∑
p∈Z

b̂
i,k
σ,p,0x

pJ (F)

∥∥∥∥
2

L2
x,ψ,0̃k

i
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=
∥∥∥∥ψ1−bxM+

σ
n

∑
p∈Z

b
i,k
σ,p,1−bx

p

∥∥∥∥
2

L2
x,y,0̃k

i

∼
∥∥∥∥ψ1−bµσ

∑
p∈Z

b
i,k
σ,p,1−bx

p

∥∥∥∥
2

L2
x,y,0̃k

i

= ∥∥ψ1−bµσυi,kσ,1−b
∥∥2
L2
x,y,0̃k

i

To pass from the 1st line to the second one we need to shrink the original
neighborhood0ki into0ki

′
, of the same type as0ki , to guarantee that J (F) ∼

ψb−1x
r
n holds there. To pass from the 2nd line in the above estimate to the

3rd one we need to replace the neighborhood 0ki
′

by a smaller one which is
circular with respect to the variables (x, ψ). Therefore the different monomials
in (x, ψ) will be orthogonal. Recall also that bi,kσ,p,1−b = b̂i,kσ,p,0.

4.3. Estimates in X near the branch locus

Lemma 4.5. ∥∥υi,k0

∥∥
L2
X,0̂k

i

<∼
∥∥υki ∥∥L2

x,y,0k
i

where 0̂ki are thinner neighborhoods than the 0̃ki of the same type.

Proof. Recall that

υ
i,k
0 (x

1
n , ψ) =

∑
m≥0,s≥−s2

Bi,km,sx
s
n ψm

The argument goes in two steps. First we use the fact that υi,k0 ∈ L2
x,y,0̃ki

(Lemma 4.3) to obtain estimates on the coefficients Bi,km,s . Secondly, we use

these estimates to show that υi,k0 ∈ L2
X,0̂ki

. There are two cases for the second

step. The first case is when X is a graph with bounded slope over the (x, z)
coordinates. This correspond to m8 ≥ r8, 8 �= j in Lemma 2.7. The second
case is when m8 < r8. In that case we will use (z, w) as coordinates where
w =: zs , s �= j maximizing ms − rs .

Step 1. We use again the coordinate changeF(x,ψ)=(x, y), with J (F) ∼
ψb−1xr/n as in (5). So,

∥∥υi,k0

∥∥
L2
x,y,0̃k

i

= ∥∥υi,k0 J (F)
∥∥
L2
x,ψ,0̃k

i

∼
∥∥∥∥

∑
m≥0,s≥−s2

Bi,km,sx
r+s
n ψb−1+m

∥∥∥∥
L2
x,ψ,0̃k

i



local L2 results for ∂ on a singular surface 287

Hence,
∥∥∥∥

∑
m≥0,s∈Z

Bi,km,sx
r+s
n ψb−1+m

∥∥∥∥
2

L2
x,ψ,0̃k

i

=
∑

m≥0,s∈Z

∣∣Bi,km,s∣∣2
∫
0̃ki

|x| 2(r+s)
n |ψ |2b−2+2m dx dx dψ dψ

=
∑

m≥0,s∈Z

∣∣Bi,km,s∣∣2

∫
|x|<η |x|

2(r+s)
n
+(2b+2m)N

2b + 2m

=
∑

m≥0,s∈Z

|Bi,km,s |2
2b + 2m

∗ η
2(r+s)
n
+(2b+2m)N+2

2(r+s)
n
+ (2b + 2m)N + 2

Since the L2 norms are finite, we must have 2(r+s)
n
+ (2b + 2m)N > −2 if

Bi,km,s �= 0. Since 2b + 2m ≥ 2b ≥ 2 we can increase N so that the powers
2(r+s)
n
+ (2b + 2m)N > 0 whenever Bi,km,s �= 0.

All together we have obtained
(7)∥∥vki ∥∥L2

x,y,0k
i

>∼
∥∥vi,k0

∥∥
L2
x,y,0̃k

i

∼
∑

m≥0,s∈Z

|Bi,km,s |2
2b + 2m

∗ η
2(r+s)
n
+(2b+2m)N+2

2(r+s)
n
+ (2b + 2m)N + 2

Step 2.
Case (i). We use the coordinate change

J(x,ψ) = (x, z)(8)

ψ = (z− hj )κ̃(x, z)
κ̃(x, z) ∼ xt/n, t ∈ Z

∂ψ

∂z
= κ̃ + (z− hj )∂κ̃

∂z
∼ xt/n

J (J) = 1
∂ψ

∂z

∼ x−t/n

∥∥υi,k0

∥∥2
L2
X,0̂k

i

∼ ∥∥υi,k0

∥∥2
L2
x,z,0̂k

i

(9)

= ∥∥υi,k0 (x, ψ)J (J)
∥∥2
L2
x,ψ,0̂k

i
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∼ ∥∥υi,k0 (x, ψ)x
−t/n∥∥2

L2
x,ψ,0̂k

i

=
∑

m≥0,s∈Z

∣∣Bi,km,s∣∣2
∫
0̂ki

|x| 2(s−t)
n |ψ |2m dx dx dψ dψ

=
∑

m≥0,s∈Z

∣∣Bi,km,s∣∣2

∫
|x|<η |x|

2(s−t)
n
+(2m+2)Ñ dxdx

2m+ 2

=
∑

m≥0,s∈Z

∣∣Bi,km,s∣∣2 η
2(s−t)
n
+(2m+2)Ñ+2

(2m+ 2)
( 2(s−t)

n
+ (2m+ 2)Ñ + 2

)

where we choose Ñ = 2bN andN sufficiently big to guarantee thatN− r+t
n
>

0.
We notice that the right hand side of (7) is of the same order of magnitude

as the right hand side of (9) hence,∥∥υi,k0

∥∥
L2
X,0̂k

i

<∼
∥∥υi,k0

∥∥
L2
x,y,0̃k

i

<∼
∥∥vki ∥∥L2

x,y,0k
i

.

Case (ii). We can writeX as a graph (possibly multisheeted but unbranched)
over (zj , zs), with s �= j chosen as in the beginning of the proof of Lemma 4.4 in
a neighborhood of Y ki . We get x = X(zj , zs), y = Y (zj , zs), zm = Zm(zj , zs),
zm �= zj , zs .

On Y ki :
zs = Zs(x, zj )
x = Z̃j (zs, zj )
zs = Zs(Z̃j (zs, zj ), zj )

Differentiating the last equation with respect to zs we obtain:

1 = ∂Zs
∂x

∂Z̃j

∂zs
∼ x ms−rsn ∂Z̃j

∂zs
(Lemma 2.7)

∂Z̃j

∂zs
∼ x rs−msn = o(|x|)

0 = ∂Zs
∂x

∂Z̃j

∂zj
+ ∂Zs
∂zj

∂Zs

∂zj
= O(1) (Lemma 2.7)

∂Z̃j

∂zj
= O

(
x
rs−ms
n

) = o(|x|)
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Next, for 8 �= s, j ,

z8 = Z8(x, zj ) = Z8(Z̃j (zs, zj ), zj )
∂z8

∂zs
= ∂Z8
∂x

∂Z̃j

∂zs
= O

(
x
ms−rs
n

)
O

(
x
rs−ms
n

) = O(1)

∂z8

∂zj
= ∂Z8
∂x

∂Z̃j

∂zj
+ ∂Z8
∂zj

= O
(
x
ms−rs
n

)
O

(
x
rs−ms
n

)+ O(1) = O(1)

The estimates show that the tangent space of X over the (zj , zs) plane has
uniformly bounded slope. As before this remains true in a tubular neighbor-
hood.

In this case we use the coordinate change

(x, ψ)
J−→ (x, z)

L−→ (zj , zs)

Since J (L) = − ∂zs
∂x
∼ x ms−rsn we have

J (L ◦J) ∼ x ms−rs−tn

Using similar arguments as in Case (i) we obtain

∥∥vi,k0

∥∥
L2
X,0̂k

i

<∼
∥∥vki ∥∥L2

x,y,0k
i

We have therefore reduced (5) to the case when

υki =
−1∑

m=1−b
ψm

n−1∑
σ=0

µσ
∑
p∈Z

bi,kσ,p,mx
p

4.4. Estimates in C2
x,y on X

Lemma 4.6. There exists an integerK > 0 so that if p < −K , then bi,kσ,p,m = 0.

Proof. From Lemma 4.3 we know that for each m = 1 − b, . . . ,−1,
σ = 0, . . . , n− 1 the functions

ψmµσ
∑
p∈Z

bi,kσ,p,mx
p ∈ L2

x,y,0̃ki
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We have for ψ,µσ estimates of the form ψ ∼ (y − g) 1
b xs/n and µσ ∼

xM+σ/n. Hence,

(y − g)m/bxM+ ms+σn
∑
p∈Z

bi,kσ,p,mx
p ∈ L2

x,y,0̃ki
.

Shrinking to a thinner neighborhood 0̌ki = {|y − g| < |x|N, |x| < R} we get:

∥∥υki ∥∥2
L2
x,y,0̃k

i

>∼
∑
p∈Z

∣∣bi,kσ,p,m∣∣2
∫
0̌ki

|x|2p+2M+ 2(ms+σ)
n |y − g|2m/b dx dx dy dy

=
∑
p∈Z

∣∣bi,kσ,p,m∣∣2

∫
|x|<R |x|2p+2M+ 2(ms+σ)

n
+(2m/b+2)N

2+ 2m/b

Hence 2p + 2M + 2(ms+σ)
n

+ (2m/b + 2)N > −2 if bi,kσ,p,m �= 0.

Remark 4.7. For later use, we observe that we have obtained the following
estimate:

(10)
∥∥υki ∥∥2

L2
x,y,0̃k

i

>∼
∑
p∈Z

∣∣bi,kσ,p,m∣∣2 R2p+2M+ 2(ms+σ)
n

+(2m/b+2)N+2

(2+ 2m/b)
(
2p + 2M + 2(ms+σ)

n
+ (2m/b + 2)N + 2

)

Next, we would like to show that

(∗∗) ψmµσ
∑
p>K̃

bi,kσ,p,mx
p ∈ L2

x,y,X

for a large enough K̃ and for m = 1− b, . . . ,−1, σ = 0, . . . , n− 1.

Lemma 4.8. There exists an integerT so that ifp ∈ X\0̃ki close to the origin,
then |ψmµσ (p)| < 1/|x|T for all m = 1− b, . . . ,−1, σ = 0, . . . , n− 1.

Proof. The µσ are holomorphic functions on Cd0 which vanish along B =
{(ψ = 0) ∩X} \ Y ki to higher order than ψb−1. Hence, |ψmµσ | < 1 on some
tubular neighborhood0 = {p ∈ X; d(p,B) < ‖p‖N }. It remains to consider
points on X outside 0 ∪ 0̃ki . But there |ψ | ≥ |x|τ for some τ. Since µσ is
bounded, the Lemma follows.

Because of Lemma 4.6 we can put K̃ = T in (∗∗).
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Lemma 4.9. For each m = 1− b, . . . ,−1, σ = 0, . . . , n− 1 we have∥∥∥∥ψmµσ
∑
p>T

bi,kσ,p,mx
p

∥∥∥∥
L2
x,y,X

<∼
∥∥υki ∥∥L2

x,y,0k
i

Proof. Lemma 4.3 shows that the estimate holds when the L2
x,y,X-norm

of the left hand-side is replaced by the L2
x,y,0̃ki

-norm so it suffices to consider

X \ 0̃ki . Hence it suffices to show that
∥∥∑

p>T b
i,k
σ,p,mx

p−T ∥∥
L2
x,y,Pη

<∼ ‖υki ‖L2
x,y,0̃k

i

where Pη is the bidisc Pη =: {|x|, |y| < η}. But, by Remark 4.7

∥∥∥∥
∑
p>T

bi,kσ,p,mx
p−T

∥∥∥∥
2

L2
x,y,Pη

= π2η2
∑
p>T

∣∣bi,kσ,p,m∣∣2 η
2p−2T+2

p − T + 1
<∼

∥∥υki ∥∥L2
x,y,0̃k

i

4.5. Estimates on X

We have decomposed vki in the following way;

υki =
−1∑

m=1−b

n−1∑
σ=0

∑
−K≤p≤T

bi,kσ,p,mψ
mµσx

p

+
−1∑

m=1−b

n−1∑
σ=0

∑
p>T

bi,kσ,p,mψ
mµσx

p + υi,k0

= Aik + Bik + υi,k0 .

Next we modify the Hörmander solutionuH by subtracting from it
∑
(i,k) B

i
k

over all branching loci Y ki (with b(i, k) > 1). All together we show:

Proposition 4.10. There exist finitely many ∂-closed (0, 1) forms {νj }Aj=1 ⊂
L2
X∗ so that if λ is any ∂-closed form in L2

X∗ (near 0), then there exist unique
constants {cj } and a functionu ∈ L2

x,y,X for which ∂u = λ−∑
cj νj . Moreover,

u ∈ L2
X∗,loc.

Proof. Let uH be the Hörmander solution in L2
x,y,X. Then uH ∈ L2

X∗,loc

except possibly on the branch-loci Y ki with b(i, k) > 1. For each such Y ki we
also considered local Hörmander solutions Uki = Uki on neighborhoods 0ki .
Note that these were found in suitable (x, zj ) coordinates over which X is
locally a graph perhaps without uniform bound on the slope as we approach
the singularity. Nevertheless, Uki ∈ L2

X,loc.
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We found a decomposition of υki = uH − Uki ;

υki =
−1∑

m=1−b

n−1∑
σ=0

∑
−K≤p≤T

bi,kσ,p,mψ
mµσx

p

+
−1∑

m=1−b

n−1∑
σ=0

∑
p>T

bi,kσ,p,mψ
mµσx

p + υi,k0

= Aik + Bik + υi,k0 .

Let u =: uH −∑
i,k B

i
k . By Lemma 4.8 u is also a solution to ∂u = λ in

L2
x,y outside the branching loci. Hence u is inL2

X∗,loc and solves ∂u = λ except
possibly on the curves ∪Y ki with b(i, k) > 1.

Next we investigate u near each branching curve Y ki . On 0ki \ Y ki (after
shrinking) we have

u = uH −
∑
j,8

B
j

8 = υki + Uki −
∑
j,8

B
j

8 = Aik + Bik + υi,k0 + Uki −
∑
(j,8)

B
j

8

= Aik +
[
Uki −

∑
(j,8)�=(i,k)

B
j

8 + υi,k0

]

= Aik + Ũ ki .

The function Uki ∈ L2
X,loc on 0ki and solves ∂Uki = λ on 0ki (across Y ki ).

The Bj8 are holomorphic on 0ki since they are only singular on 08j . Since υi,k0

is holomorphic on 0ki it follows that Ũ ki ∈ L2
X∗,loc on 0ki and solves ∂Ũ ki = λ

there. The Aik are possible obstructions to solving ∂-globally.
We consider the operator

F(λ) = {Aik}i,k ∼= CA

since there are finitely many pairs (i, k). Pick {νj } so that {F(νj )} is a basis for
the range ofF. Then for a given λ there are constants {cj } so thatF(λ̂) = 0 if
λ̂ = λ−∑

cj νj . For each such λ̂ the function u = Ũ ki on 0ki so we are done.

Everything that has been done for x = x1, y = x2 can be done for any pair
xi, xj with i < j . We let Hxixj denote the closed subset of finite codimension
of the ∂-closed (0, 1) forms in L2

X for which all the corresponding {cj } vanish.
Then the forms from Hxixj are solvable with solutions in L2

xi ,xj
which are in

L2
X∗,loc. Suppose next that λ ∈ ∩i<jHxixj =: H . Hence there exist solutions
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{uxixj }with ∂uxixj = λ. The differences uxixj −uxrxs =: fijrs , are holomorphic
on X∗ and belong to L2

X∗,loc.

Let (X̃,X, τ) be the normalization ofX i.e. X̃ is a normal holomorphic vari-
ety and τ : X̃→ X is a finite branched holomorphic covering map of branching
order one which is a biholomorphism on X∗. Let U be a neighborhood of 0 in
X. We consider the pull back τ ∗fijrs in τ−1(U \0). Then τ ∗fijrs is holomorhic
in τ−1(U \ 0) and belongs to L2

X̃∗,loc
. Since X̃ is a normal variety τ ∗fijrs ex-

tends holomorphically to a full neighborhood of 0. Hence it is bounded in a
full neighborhood of 0. So, the fijrs are bounded in a neighborhood of 0. But
then,

‖ux1x2‖L2
X

<∼
∑
‖ux1x2‖L2

xi ,xj
=

∑
‖ux1x2 − uxixj + uxixj ‖L2

xi ,xj

<∼
∑
‖uxixj ‖L2

xi ,xj
+

∑
‖f12ij‖L2

xi ,xj

<∼ ‖λ‖L2
X
+

∑
‖f12ij‖L2

xi ,xj

<∼ ‖λ‖L2
X

Hence ux1x2 is a global solution on X∗.
We conclude:

Theorem 4.11. There exists a closed subspace H of finite codimension of
the set of ∂-closed (0, 1) forms λ in L2,(0,1)

X∗∩B(0,ε) and a linear operator T :H →
L

2,(0,0)
X∗∩B(0,δ) for some δ < ε and a constant C so that

∂(T λ) = λ
‖T λ‖

L
2,(0,0)
X∗∩B(0,δ)

≤ C‖λ‖
L

2,(0,1)
X∗∩B(0,ε)
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