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FC−-ELEMENTS IN TOTALLY DISCONNECTED
GROUPS AND AUTOMORPHISMS OF INFINITE

GRAPHS

RÖGNVALDUR G. MÖLLER

Abstract

An element in a topological group is called an FC−-element if its conjugacy class has compact
closure. The FC−-elements form a normal subgroup. In this note it is shown that in a compactly
generated totally disconnected locally compact group this normal subgroup is closed. This result
answers a question of Ghahramani, Runde and Willis. The proof uses a result of Trofimov about
automorphism groups of graphs and a graph theoretical interpretation of the condition that the
group is compactly generated.

Introduction

This note has two purposes: to give a partial answer to a question of Ghahra-
mani, Runde and Willis [2, Question 8.4(i)], and to continue the work in [4],
[6], [7], [11] and [12] on how one can relate ideas and concepts in the theory
of topological groups to ideas and concepts from permutation group theory.
As explained in [2] the new information regarding [2, Question 8.4(i)] has
consequences in the theory of derivations on group algebras.

The concept in the limelight here is that of a topological group being com-
pactly generated. A topological group G is compactly generated if there is a
compact subset that generates G. It will be shown that for a totally disconnec-
ted locally compact group G it is equivalent that G is compactly generated,
and that for every compact open subgroup U there is a finitely generated group
H that acts transitively on the coset space G/U (Lemma 2). It follows that
a totally disconnected locally compact group is compactly generated if and
only if it acts transitively on some connected locally finite graph such that the
stabiliser of a vertex is both compact and open (Corollary 1). These results
support Palmer’s view [5, p. 685] that “compactly generated” is a type of a
very weak connectedness condition.

These ideas are then used to give a partial answer to the question of Ghahra-
mani, Runde and Willis. In a topological group G an element g is said to be an
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FC−-element if the conjugacy class of g has compact closure (some authors
use the term bounded element). The FC−-elements form a subgroup B(G) of
G. The question asked in [2] is whether the closure, B(G)−, of B(G) is an
FC−-group, i.e. whether all elements in B(G)− are FC−-elements in B(G)−.
It follows from [8, Corollaire 1] that if G is a connected locally compact group
then the subgroup B(G) of FC−-elements is closed. For totally disconnected
groups the situation is not so clear. An example of a totally disconnected locally
compact group, not compactly generated, whereB(G) is not closed andB(G)−
is not an FC−-group can be found in [8, Proposition 3]. The main result of this
note is

Theorem 2. LetG be a totally disconnected locally compact group. Assume
furthermore that G is compactly generated. Then the subgroup B(G) of FC−-
elements in G is closed in G.

This result fills a gap in our knowledge about when the subgroup of FC−-
elements must be closed and also gives a positive answer to the question of
Ghahramani, Runde and Willis in the case of compactly generated totally
disconnected locally compact groups. The proof presented here of Theorem
2 takes the scenic route: the question is reduced to the case of automorphism
groups of locally finite connected graphs, where one can apply a result of
Trofimov [11] (cf. [12, Theorem 3]). The ideas behind the reduction to the
automorphism groups of graphs are explained in detail. A possible route to a
direct proof is described in a final remark.

1. Preliminaries

Let G be a group acting on a set 	. The action of G on 	 will be written on
the right so that the image of a point α ∈ 	 under an element g ∈ G is written
as αg. For a point α ∈ 	 the stabiliser in G of α is the subgroup

Gα = {g ∈ G | αg = α},
and if � is a subset of 	 the pointwise stabiliser in G of � is the subgroup

G(�) = {g ∈ G | δg = δ for every δ in �}.
For a point α in 	 the orbits of the stabiliser Gα are called suborbits of G.
The orbits of G on 	2 are called orbitals. When G acts transitively on 	

there is a simple one-to-one correspondence between the orbits of Gα and the
orbitals: the suborbitβGα corresponds to the orbital (α, β)G. An orbital graph
� = (V �,E�) is formed by letting the set of vertices V� be equal to 	 and
letting the set of edges E� be a union of some set of orbitals. The edges in
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an orbital graph are ordered pairs of vertices so an orbital graph is a directed
graph. We say that a vertex β is a neighbour of another vertex α if either (α, β)
or (β, α) is an edge. An orbital graph is said to be connected if for any two
vertices α and β there is a path α0, α1, . . . , αn with α = α0 and β = αn such
that αi and αi+1 are neighbours for every i = 0, . . . , n − 1. It is easy to see
that G acts on an orbital graph as a group of automorphisms, because if g ∈ G

and (α, β) is an edge in an orbital graph, then (αg, βg) is in the same orbital
and thus also an edge. When all the suborbits of G are finite and the edge set
of an orbital graph is a union of finitely many orbitals then this orbital graph
is locally finite (i.e. each vertex in it has only finitely many neighbours).

It is possible to use the action ofGon	 to define a topology, the permutation
topology, on G. This topology is defined by taking as a neighbourhood basis
of the identity element the family of all subgroups of the form G(�) where �

is a finite subset of 	. The subgroups G(�) are both open and closed in G.
If G acts faithfully on 	 then G, with this topology, is totally disconnected.
Conversely we can start with a topological group G and an open subgroup U

of G. If it is assumed that G is totally disconnected and locally compact then
one can choose U to be both compact and open (see [3, Theorem 7.7]). Let 	
be the coset space G/U . Because U is open, the permutation topology defined
by the action of G on 	 is a subtopology of the original topology on G.

2. Compactly generated groups

The following lemma belongs to the large class of mathematical results that
are termed as “folklore” and it is implicit in several arguments in the literature
but it is difficult to locate an explicit reference.

Lemma 1. Let G be a group acting transitively on a set 	. Assume that all
suborbits of G are finite. Then the following are equivalent:

(i) G contains a finitely generated transitive subgroup;
(ii) there are orbitals�1, . . . , �n such that the orbital graph (	,�1 ∪ . . .∪

�n) is connected.
The implication (i) ⇒ (ii) is valid without any assumptions about the

finiteness of suborbits.

Proof. (i) ⇒ (ii): Assume thatH is a finitely generated transitive subgroup
and assume also that we have chosen a finite generating set {h1, . . . , hn} that
is closed under taking inverses. Pick a point α ∈ 	. Let �i denote the orbital
(α, αhi)G. We will prove that the orbital graph � = (	,�1 ∪ . . . ∪ �n) is
connected. We must show that if β is a vertex in � then there is a path in �

from α to β. Say β = αg where g = hi1hi2 . . . him ∈ H . A path from α to β
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consists of the sequence of vertices:

α, αhim, αhim−1him, . . . , αhi2 . . . him−1him, αhi1hi2 . . . him−1him = β.

One sees that this is a path in� because (αhik . . . him−1him,αhik−1hik . . . him−1him)

is equal to (α, αhik−1)hik . . . him−1him ∈ �ik−1 , and is therefore an edge in the
orbital graph �.

(ii) ⇒ (i): Now assume that (ii) holds. Then we have a locally finite con-
nected graph � with vertex set equal to 	 and the action of G on 	 gives an
action of G as a group of automorphisms on �. Choose a fixed vertex α in �.
Enumerate the neighbours of α as β1, . . . , βn. For each i let hi be an element
in G such that αhi = βi . The claim is that H = 〈h1, . . . , hn〉 is transitive.
Clearly every vertex adjacent to α is in the orbit αH . If β = αh for some
h ∈ H then the set {βh−1hih}ni=1 contains precisely all the neighbours of β.
So, if β is in the orbit αH then every vertex adjacent to β is also in αH . Since
� is connected this implies that αH = V� = 	, i.e. H is transitive.

Lemma 2. Let G be a compactly generated totally disconnected locally
compact group, and U a compact open subgroup of G. Set 	 = G/U . Then
G has a finitely generated subgroup H such that H acts transitively on 	.

Conversely, if U is a compact open subgroup of a totally disconnected
locally compact group G and G contains a finitely generated subgroup H that
acts transitively on 	 = G/U then G is compactly generated.

Proof. Assume G is compactly generated and S is some compact gener-
ating set of G. The family of open sets {Ug}g∈G gives an open covering of S
and as S is compact there is a finite subcovering Ug1, . . . , Ugm of S. Hence
G = 〈U, g1, . . . , gm〉. If we take some element g ∈ G then U ∩ (g−1Ug) is an
open subgroup of the compact groupU and therefore |U : U∩(g−1Ug)| < ∞.
When we look at the action of G on the coset space 	 = G/U then the sub-
group g−1Ug is precisely the subgroup in G of all the elements in G that fix
the coset Ug. That |U : U ∩ (g−1Ug)| < ∞ implies that the orbit of the coset
Ug under the subgroup U is finite, i.e. the subset UgU of G can be written as
a union of finitely many right cosets of U . Hence there are for each i elements
u1, . . . , uni ∈ U such that UgiU = ∪ni

j=1Ugiuj . Now let {h1, . . . , hn} be the
set of all elements giuj arising in this fashion. The point of this is that now
hku, with u ∈ U , can be written as u′hk′ for some k′ and some u′ ∈ U . That is
so, because hku is contained in UgiU for some i but UgiU can be written as
a union of sets of the type Uhj . Note that G = 〈U, h1, . . . , hn〉.

Let α denote the coset U ∈ G/U = 	. Take some point β in 	, say
β = Ub with b ∈ G. Write b = u1hi1u2hi2 . . . ukhikuk+1 where ui ∈ U .
Because hij−1uj = u′

jhi ′j−1
for some u′

j ∈ U and some index i ′j−1 one can
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assume that b = uhi1hi2 . . . hik . Then, with h = hi1hi2 . . . hik ∈ H , we see that
αh = β. One concludes that H acts transitively on 	.

For the second part of the lemma one only needs to note that if {h1, . . . , hn}
is a finite generating set for H then G is generated by the compact set U ∪
{h1, . . . , hn}.

Combining the two lemmas above we get the following corollary.

Corollary 1. Let G be a totally disconnected locally compact group.
If G is compactly generated then there is a locally finite connected graph

� such that:
(i) G acts as a group of automorphisms on � and is transitive on V�;
(ii) for every vertex α in � the subgroup

Gα = {g ∈ G | αg = α}
is compact and open in G;

(iii) if Aut(�) is given the permutation topology then the homomorphism
π : G → Aut(�) given by the action of G on � is continuous, the kernel of
this homomorphism is compact and the image of π is closed in Aut(�).

Conversely, ifGacts as a group of automorphisms on a locally finite connec-
ted graph � such that G is transitive on the vertex set of � and the stabilisers
of the vertices in � are compact and open, then G is compactly generated.

Proof. Pick a compact open subgroup U of G. By Lemma 2 we know
that G has a finitely generated subgroup that acts transitively on 	 = G/U .
Now we use the implication (i) ⇒ (ii) in Lemma 1 to see that it is possible to
find finitely many orbitals such that the resulting orbital graph � is connected.
As pointed out before all the suborbits in the action of G on 	 are finite and
therefore the orbital graph � is locally finite.

The stabiliser in G of a vertex α in � is conjugate to U and thus compact
and open in G. A basis of neighbourhoods of the identity element in the per-
mutation topology on Aut(�) is given by the pointwise stabilisers of finite
sets of vertices. The pre-image of such a set in G is the intersection of finitely
many conjugates of U and thus open in G. Therefore π is continuous. The
kernel of π is closed and contained in the compact subgroup U . Hence the
kernel is compact. The stabiliser in π(G) of a point α is the image under π of
the stabiliser in G of α. Thus the stabiliser of α in π(G) is compact, and thus
closed, in Aut(�).

Let H denote the stabiliser of a vertex α in Aut(�). Now π(G) ∩ H is the
stabiliser of α in π(G) and is closed. Since the intersection of the subgroup
π(G) with the open subgroup H is closed we can refer to standard results
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about topological groups ([1, Proposition 2.4 in Chapter III] or [3, 5.37]) to
conclude that π(G) is closed in Aut(�).

Let us now turn to the latter part of the Corollary where it is assumed that
G is acting on a locally finite connected graph. From Lemma 1 we learn that
G must contain a finitely generated subgroup H = 〈h1, . . . , hn〉 that acts
transitively on the vertex set of �. If U is the stabiliser of some vertex in �

then G is generated by the compact set U ∪ {h1, . . . , hn}.

3. Application to FC−-elements

Before addressing the question of Ghahramani, Runde and Willis, we first
repeat two lemmas from the paper [12] by Woess. Here these auxiliary results
are needed in a slightly more general setting than that of Woess’s paper, but
the same proofs work equally well.

Lemma 3 ([12], Lemma 2). Let G be a topological group acting (not
necessarily faithfully) on a set 	 such that the stabiliser in G of any point α
in 	 is compact and open in G. A subset A of G has compact closure in G if
and only if the orbit αA is finite for every α ∈ 	.

Proof. Suppose that A−, the closure of A in G, is compact. Then for a
point α ∈ 	 there is a finite open covering of A− by sets of the type Gαg; that
is to say, we can find g1, . . . , gn ∈ Aut(�) such that A− ⊆ ∪n

i=1Gαgi . Then
αA ⊆ {αg1, . . . , αgn}.

Now suppose that αA = {β1, . . . , βn}. Let gi be an element in A such that
αgi = βi . Then A ⊆ ∪n

i=1Gαgi . The latter set is compact, so the closure of A
is compact.

For a connected graph � we let d denote the usual graph metric on the
vertex set V�, i.e. d(α, β) is the least possible number of edges in a path from
α to β. An automorphism g of � is said to be bounded if there is a constant M
such that d(α, αg) ≤ M for every vertex α in �. It is not difficult to show that
the bounded automorphisms of � form a subgroup B(�) of the automorphism
group.

Lemma 4 ([12], Lemma 4). LetG be a topological group acting transitively
(but not necessarily faithfully) on a graph � such that the stabiliser in G of
a vertex α in � is compact and open in G. An element g ∈ G acts on � as a
bounded automorphism if and only if g is an FC−-element of G.

Proof. Suppose g ∈ G acts as a bounded automorphism on �. Find a
number M such that d(αg, α) ≤ M for every α ∈ V�. For h ∈ G, write
gh = h−1gh. It is clear that d(αgh, α) = d(αh−1g, αh−1) ≤ M for every
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α ∈ V�. Set gG = {gh | h ∈ Aut(X)}. We see that the set αgG is finite and
by Lemma 3 the conjugacy class gG has compact closure.

Suppose now that the conjugacy class gG has compact closure. Then, for
everyα ∈ V� the setαgG is finite. LetM be a number such that for some vertex
α ∈ V� we have d(αgh, α) ≤ M , for every h ∈ G. Take some β ∈ V�. Let
h ∈ G be chosen such that β = αh−1. Then d(βg, β) = d(αh−1g, αh−1) =
d(αgh, α) ≤ M . So g acts on � as a bounded automorphism.

For the automorphism group of a connected locally finite graph we have
the following result due to Trofimov.

Theorem 1 ([11], cf. [12, Theorem 3]). Let � be a locally finite connected
graph and suppose G = Aut(�) acts transitively on V�. The subgroup of
bounded automorphisms is closed in G when G has the permutation topology.

Finally we come to the main result of this note, the partial answer to the
question of Ghahramani, Runde and Willis.

Theorem 2. LetG be a totally disconnected locally compact group. Assume
furthermore that G is compactly generated. Then the subgroup B(G) of FC−-
elements in G is closed in G.

Proof. We apply Corollary 1 to find a locally finite connected graph � that
G acts on and a continuous mapπ : G → Aut(�). From the result of Trofimov,
Theorem 1, we know that the subgroup B(�) of bounded automorphisms in
Aut(�) is closed in Aut(�). The pre-image of B(�) under π is then closed
and from Lemma 4 it follows that B(G) = π−1(B(�)).

Remarks. 1. In the thread of arguments leading to Theorem 2 one notes
that the assumption that G is a totally disconnected locally compact group is
only used to guarantee the existence of a compact open subgroup. Theorem 2
thus also holds with the weaker assumption that G contains a compact open
subgroup.

2. Trofimov deduces Theorem 1 as a consequence of [10, Proposition 2.3]
which he in turn deduces as a consequence of the main result of [9]. In [4] there
is a short direct proof of [10, Proposition 2.3] (see [4, Lemma 5]). It might be
possible to find a direct proof of Theorem 2, not passing through the realm of
graphs, by finding a purely group theoretic analogue of [10, Proposition 2.3].

3. The group of FC−-elements has been discussed by various authors. The
present note is perhaps most closely related to [13]. Theorem 2 extends [13,
Proposition 2] where it is shown that if G is a compactly generated totally
disconnected locally compact group such that B(G) is dense in G then G =
B(G).
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