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A CLASS OF RATIONAL SURFACES IN P4

CRISTIAN VOICA∗

Abstract

In this paper, we obtain a complete classification of all rational surfaces embedded in P4 so that
all their exceptional curves are lines. These surfaces are exactely the rational surfaces shown by
I.Bauer to project isomorphicaly from P5 from one of their points, although no a priori reason is
known why such a surface should be projectable in this way.

1. Introduction

As is well known, every surface embeds into P5. A remarkable theorem due
to Ellingsrud-Peskine (see [7]) tells us that surfaces in P4 have very special
properties: those not of general type belong to finitely many families. This
gives a strong motivation for the (both classical and contemporary) efforts to
get a complete list of the special ones. In particular understanding all rational
surfaces in P4 is a very exciting problem. Hartshorne was the first to conjecture
that the degree of rational surfaces in P4 is bounded. It is belived that the actual
bound should be 12.

How can we obtain rational surfaces in P4?
Severi [17] proved, a hundred years ago, that the natural way, namely pro-

jections from an exterior point, is not appliable in this case. More specifically,
he proved that except the Veronese surface, there is no other non-degenerate
surface in P5 (meaning that the given surface is not contained in a hyperplane)
which can be projected isomorphically to P4. There exists a second natural way
to embed a rational surface in P4: projection from a point on the surface. This
means to embed in P4 the blow-up of a given rational surface in P5 using the
linear system of hyperplane sections passing through a point. In fact, we can
start with a rational surface S ⊂ Pn and we can try to project this surface into
P4 from some of its points. Unfortunately, we only know that such a projection
can be an isomorphism (in the above sense) if deg(S) ≥ 2π + 2, where π
is the sectional genus of S (see [11] for more details). Since after some pro-
jections we obtain deg(S) < 2π + 2, it is not clear that we can continue. In
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this direction, Bauer [5] proved that there exist only six (families of) rational,
non-degenerate surfaces in P5 which can be projected isomorphically in P4

from one of their points.
In the present paper, we find all rational, non-degenerate surfaces S ⊂ P4

embedded such that all their exceptional curves are lines. More specifically,
we find all possible minimal rational surfaces Smin and linear systems L on
Smin such that there exist r simple points P1, P2, . . . , Pr ∈ Smin such that the
blown-up surface Ŝmin(P1, . . . , Pr) can be embedded in P4 using the linear
system

∣∣f ∗(L)− ∑r
i=1 Ei

∣∣, where f is the blow-up morphism.
Our main result is the following:

Theorem 1.1. If S is a rational surface embedded in P4 via the linear
system |H | = ∣∣f ∗(L) − ∑r

i=1 Ei
∣∣, where f : S → Smin is the birational

morphism on a minimal rational surface, L is a very ample divisor on Smin

and E1, E2, . . . , Er are the exceptional curves, then (S, |H |) can be:

(P̂2(P1), |f ∗(2L)− E1|),(
P̂2(P1, . . . , P5),

∣∣∣∣f ∗(3L)−
5∑
i=1

Ei

∣∣∣∣
)
,

(
P̂2(P1, . . . , P10),

∣∣∣∣f ∗(4L)−
10∑
i=1

Ei

∣∣∣∣
)
,

(
F̂0(P1, . . . , P4),

∣∣∣∣f ∗(2C1 + 2C2)−
4∑
i=1

Ei

∣∣∣∣
)
,

(
F̂0(P1, . . . , P7),

∣∣∣∣f ∗(3C1 + 2C2)−
7∑
i=1

Ei

∣∣∣∣
)

or (
F̂2(P1, . . . , P7),

∣∣∣∣f ∗(2C0 + 5F)−
7∑
i=1

Ei

∣∣∣∣
)
.

Even if we find the same surfaces as in [5], our result can not be reduced
to Bauer’s theorem, because we do not know a priori that all our surfaces can
be projected from P5. The obstruction is that, for a given surface S and for
a divisor D on S, |f ∗(D) − E| can be a very ample linear system on Ŝ(P ),
while P is a base point of |D|. In fact, Bauer [5] proved that a smooth rational
surface S ⊂ P4 is projection of a smooth surface Y ⊂ P5 with center on Y
if and only if S contains an exceptional line and h1(S,OS(1)) = 0. For our
surfaces there is no a priori reason ensuring that this condition is fulfilled.
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Note that there exist rational surfaces S ⊂ P4 containing an exceptional line
and with h1(S,OS(1)) 
= 0, for example the surface of degree 8 and sectional
genus π = 6 constructed by Okonek [13] as a blow-up of P2 in 16 points,
embedded by a linear system of the form |H | = ∣∣6L− 2

∑4
i=1 xi −

∑16
j=5 xj

∣∣.
2. Preliminaries

2.1. Notations

In this paper, surface means a projective, smooth, irreducible algebraic variety
of dimension 2, defined over an algebraically closed field of characteristic zero.
We will use standard notation as for instance those in [9]. For a surface S, we
denote:

H a (smooth) hyperplane section of S;

K the canonical divisor of S;

d = d(S) and π = π(S) the degree and the sectional genus of S, respectively;

χ(OS) the Euler characteristic of the structure sheaf of S.

Recall that d = (H 2) and that 2π − 2 = d + (H.K) (see, e.g., [9, p. 361]).

2.2. Blow-ups

Let S be a surface and let P be a point on S. Denote by Ŝ = Ŝ(P ) the blow-up
of S at P and by E the exceptional locus. Using Nakai-Moishezon criterion
of ampleness (see, e.g., [9, p. 365]) we can prove:

Lemma 2.1. If f ∗(D)+ aE is an ample divisor on Ŝ, then a < 0 andD is
an ample divisor on S.

2.3. Rational minimal surfaces

Let S be a rational surface. There exists a birational morphism f : S → Smin,
where Smin is P2 or one of the Hirzebruch surfaces Fn, n 
= 1 (see, e.g., [9,
p. 419]). Every rational surface S is (isomorphic to) a blow-up of P2 or Fn and
χ(OS) = 1.

2.4. Divisors on Fn
Let Fn, n ≥ 2 be a rational minimal surface and letg : Fn → P1 be the canonical
morphism. Denote byF andC a fiber of g and the unique section with negative
self-intersection, respectively. D = aC + bF is an ample divisor on Fn if and
only if a > 0 and b > an (see, e.g., [9, p. 380]). The same result is true for F0,
C being any section of g. The canonical divisor on Fn isK = −2C− (n+2)F
(see, e.g., [9, p. 373]).
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2.5. Double-point formula

Let S be a surface in P4 and let d = d(S). Then

d2 − 10d − 5(H.K)− 2(K2)+ 12χ(OS) = 0

(see, e.g., [9, p. 434]).
In particular, let S be a rational surface embedded in P4 so that all its

exceptional curves are lines. If

H = H0 −
r∑
i=1

Ei and K = K0 +
r∑
i=1

Ei,

where H0 and K0 are (the pull-backs of) an ample divisor and the canonical
divisor of Smin, then:

d = (H 2) = (H 2
0 )− r,

(H.K) = (H0.K0)+ r = (H0.K0)+ (H 2
0 )− d,

(K2) = (K2
0 )− r = (K2

0 )− (H 2
0 )+ d

and the double-point formula becomes

(d − 3)(d − 4) = 3(H 2
0 )+ 5(H0.K0)+ 2(K2

0 ).

2.6. Linkage

Two surfaces S and S1 in P4 are said to be geometrically linked (m,m1) if
there exist hypersurfacesX andX1 of degreem andm1, respectively, such that
X

⋂
X1 = S

⋃
S1. From the standard sequence of linkage ([14]):

0 → OS1(K) → OS
⋃
S1(m+m1 − 5) → OS(m+m1 − 5) → 0,

we obtain that

χ(OS) = χ(OX
⋂
X1)− χ(OS1(m+m1 − 5)).

2.7. Relations between numerical invariants

Theorem 2.2 (Roth, Gruson-Peskine, [16], [8]). Let S be a surface in P4, not
contained in a hypersurface of degree less than s, where s(s − 1) < d . Then

π ≤ 1 + d

2

(
d

s
+ s − 4

)
− t (s − t)(s − 1)

2s
,
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where d + t ≡ 0 (mod s), 0 ≤ t < s. Furthermore, equality occurs if and
only if S is projectively Cohen-Macaulay and linked to a degenerate surface
of degree t by hypersurfaces of degrees s and d+t

s
respectively.

2.8. Surfaces contained in hypersurfaces of P4

Theorem 2.3 (Aure, [3]). The surface S is contained in a hyperquadric of P4

if and only if

π = 1 +
[
d(d − 4)

4

]
.

In this case, S is either the complete intersection of the hyperquadric with
another hypersurface, or S is linked to a plane in the complete intersection of
the hyperquadric with another hypersurface.

Theorem 2.4 (Aure, Koelblen, [3], [12]). If the surface S is contained in
a hypercubic of P4, then either S is projectively Cohen-Macaulay and linked
to a surface of degree ≤ 3 in the complete intersection of the hypercubic with
another hypersurface, or S is linked to a Veronese surface or to an elliptic
scroll of degree 5 in the complete intersection of the hypercubic with another
hypersurface.

Using this explicit description, one can prove:

Corollary 2.5 (Popescu, [15]). Every surface of degree ≥ 9 contained in
a cubic hypersurface of P4, is of general type.

3. Some results on surfaces in P4

In this section we give a list of rational surfaces in P4 which can be ruled out
directely. In all these cases we can decide using the already known classification
of surfaces in P4 (see, e.g., [10], [4], [1], [2], [13]). We prefer to give some
simpler arguments in order to make the paper self-contained.

In this section, surface means a non-degenerate surface in P4, other than
the Veronese surface.

Lemma 3.1. Let S ⊂ P4 be a rational surface of degree d contained in a
hyperquadric of P4. Then d ≤ 5.

Proof. Suppose S as above. Using Theorem 2.3 and the results of 2.6, we
can compute

χ(OS) = 1 − h0

(
P4,OP4

(
d

2
− 5

))
+ h0

(
P4,OP4

(
d

2
− 3

))
,
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for d even and

χ(OS) = 1 − h0

(
P4,OP4

(
d + 1

2
− 5

))

+ h0

(
P4,OP4

(
d + 1

2
− 3

))
− (d − 1)(d − 3)

8
,

for d odd.
Since χ(OS) = 1, an easy computation gives d ≤ 5.

Lemma 3.2. Let S ⊂ P4 be a rational surface with degree d and sectional
genus π . Then:

(1) π ≤ 1 + [
d(d−4)

4

]
for any d and π ;

(2) if d = 6, then π ≤ 3;

(3) if d ≥ 7, then π ≤ 1 + [
d(d−3)

6

]
;

(4) if d ≥ 9, then π ≤ [
d(d−3)

6

]
;

(5) if d ≥ 13, then π ≤ d2

8 if d is divisible by 4, or π ≤ d2

8 − 1 in the
contrary case.

Proof. First of all we apply Corollary 2.5 and Lemma 3.1 to observe that
if S is a non-degenerate rational surface in P4, then S is not contained in a
hyperquadric if d ≥ 6 and S is not contained in a hypercubic if d ≥ 9. Then
the sectional genus π verifies the inequalities of Theorem 2.2 for s = 2 and
any d, for s = 3 if d ≥ 7 and for s = 4 if d ≥ 13. We have only to prove that
the equality case of some of these inequalities can not be fulfilled for a rational
surface.

If d = 6, we obtain from Theorem 2.2 that π ≤ 4. In the equality case, S
must be contained in a hyperquadric, which contradicts Lemma 3.1.

If d ≥ 9, the sectional genus π verifies the inequality of Theorem 2.2
for s = 3. In the equality case, S must be contained in a hypercubic, which
contradicts Corollary 2.5.

If d ≥ 13, the sectional genus π verifies the inequality of Theorem 2.2 for
s = 4.

In the equality case, we deduce from Theorem 2.2 that S is linked to a
degenerate surface S1 of degree t by hypersurfaces X and Y of degrees 4 and
d+t

4 respectively, where 0 ≤ t ≤ 3 and d + t ≡ 0 (mod 4). Observe that, if
t 
= 0, then KS1 ∼ (t − 4)HS1 . Using the standard sequence of linkage, we
compute

χ(OS) = 1 − h0(P4,OP4(m− 4))+ h0(P4,OP4(m))− 1

2
mt(m− t + 4)− ε,
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where m = d+t
4 − 1 and ε is 0 if t = 0 and 1 otherwise. It is easy to see that,

if d ≥ 13, then χ(OS) > 1, which is a contradiction.

Lemma 3.3. There are no rational surfaces S ⊂ P4 with d = 9 and π = 9.

Proof. Suppose such surfaces exist and let C be a smooth hyperplane
section. Observe that the divisors 2H |C and 3H |C are non-special onC. Using
the exact sequence:

0 → OS(−H) → OS → OC → 0,

we deduce that

h0(S,OS(3H)) ≤ h0(S,OS(H))+h0(C,OC(2H))+h0(C,OC(3H)) ≤ 34.

From the exact sequence:

0 → IS(3) → OP4(3) → OS(3) → 0,

we obtain that
h0(P4, IS(3)) ≥ 1,

so S is contained in a hypercubic. We apply Corollary 2.5 in order to obtain a
contradiction.

Lemma 3.4. There are no rational surfaces S ⊂ P4 with d = 4 and π = 0.

Proof. Suppose that such surfaces exist and let C be a smooth hyperplane
section of S. We use the exact sequence

0 → OS(1) → OS(2) → OC(2H |C) → 0

to prove that S is contained in a hyperquadric.
Observe that 2H |C is non-special on C; then

h0(S,OS(2H)) ≤ h0(S,OS(H))+ h0(C,OC(2H |C)) = 14.

From the exact sequence

0 → IS(2) → OP4(2) → OS(2) → 0

we obtain that h0(IS(2)) ≥ 1. Since S is contained in a hyperquadric, we can
apply Theorem 2.3 to obtain that π = 1.
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4. The case: Smin = P2

In this section we will determine all the families of rational surfaces which
dominate P2 and which are embedded in P4 such that all their exceptional
curves are lines.

It is known that there exist only a finite number of such families: this fact was
claimed by Hartshorne before the general theorem of Ellingsrud and Peskine
([7]) appeared. In this section, we give an alternative proof of this claim.

Let S = P̂2(P1, . . . , Pr) ⊂ P4 be a surface as above. We suppose that S is
neither degenerate, nor the Veronese surface. Our assumptions on S say that
the linear system of the hyperplane sections is of the form

|f ∗(mL)− E1 − . . .− Er |,
where L is a line in P2, m > 0 and E1, E2, . . . , Er are the exceptional curves
of the blow-up f .

In our case the sectional genus of S is

π = (m− 1)(m− 2)

2

and the double-point formula (2.5) becomes:

(d − 3)(d − 4) = 3(m− 2)(m− 3).

First of all observe that d ≤ m√
3 if d ≥ 4: in the contrary case we obtain that

(d − 3)(d − 4) = 3(m− 2)(m− 3) <
(
d − 2

√
3

)(
d − 3

√
3

)
,

and then d ≤ 3.
Now suppose d ≥ 13. In this case, we can use the inequality π ≤ d2

8 from
Lemma 3.2 in order to obtain that

d2 ≥ 4(m− 1)(m− 2) = 4(m− 2)(m− 3)+ 8m− 16

≥ 4

3
.(d − 3)(d − 4)+ 8d

√
3

3
− 16

and is easy to see that d ≤ 14.
So it will be sufficient to assign to d the values from 3 to 14, to compute the

corresponding values of m and to determine the numerical invariants of S. In
addition, note that d ≡ 0 or 1 (mod 3). We obtain for d,m and π the following
values:

1. d = 3, π = 0, m = 2;

2. d = 4, π = 1, m = 3;
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3. d = 6, π = 3, m = 4;

4. d = 3, π = 1, m = 3;

5. d = 4, π = 0, m = 2;

6. d = 13, π = 21, m = 8.

We use now Lemma 3.2 and Lemma 3.4 to decide that the cases 4., 5. and
6. are not possible.

Using the classification in low degrees ([10]) or a direct argument, we can
decide that all the three remaining cases represent rational surfaces in P4. In
fact, we have only to show that the linear systems

|2L− P1|,
∣∣∣∣3L−

5∑
i=1

Pi

∣∣∣∣ and

∣∣∣∣4L−
10∑
i=1

Pi

∣∣∣∣
are very ample on P2. We conclude:

Theorem 4.1 (Hartshorne, unpublished). There exist only three families
of non-degenerate rational surfaces S ⊂ P4, which dominate P2 and are em-
bedded so that all their exceptional curves are lines. Such a polarised surface
(S, |H |) may be:

(P̂2(P1), |f ∗(2L)− E1|)(
P̂2(P1, . . . , P5),

∣∣∣∣f ∗(3L)−
5∑
i=1

Ei

∣∣∣∣
)

or (
P̂2(P1, . . . , P10),

∣∣∣∣f ∗(4L)−
10∑
i=1

Ei

∣∣∣∣
)
.

5. The case: Smin = Fn, n �= 1

Let S be a rational surface in P4 which dominates one of the surfaces Fn, n 
= 1,
embedded such that all its exceptional curves are lines. Let

|H | = |f ∗(H0)− E1 − . . .− Er |
be the linear system of hyperplane sections on S, whereH0 is an ample divisor
on Fn. Using 2.4 and 2.3 we decide that

H0 ∼ aC + bF,
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where

(C2) = −n, (F 2) = 0, (C.F ) = 1, a > 0 and b > an.

Let K0 = −2C − (n+ 2)F be the canonical divisor on Fn. We denote

α := 2a, β := 2b − na.
Observe that α > 0, β > 0 and 2β > nα. Since

(H 2
0 ) = −na2 + 2ab = 1

2
αβ,

(H0.K0) = an− 2a − 2b = −(α + β),
(K2

0 ) = 8,

the double-point formula becomes

(3α − 10)(3β − 10) = 6(d − 3)(d − 4)+ 4

and
4π = (α − 2)(β − 2).

Suppose for the moment that β = 1; since π ≥ 0 and α is odd, we obtain that
(d − 3)(d − 4) = 4, which is a contradiction.

Since α ≥ 2 and β ≥ 2 we deduce that

(3α − 10)(3β − 10) = 9(α − 2)(β − 2)− 12((α − 2)+ (β − 2))+ 16

≤ 36π − 48
√
π + 16

Suppose now that d ≥ 13. We use Lemma 3.2 and the above inequality to get
that

6d2 − 42d + 76 ≤ 9

2
d2 − 12d

√
2 + 16

and then d ≤ 13.
So it will be sufficient to assign to d the values from 3 to 13 and to determine

α and β so that (3α− 10)(3β− 10) = 6(d− 3)(d− 4)+ 4. Note that 3α− 10
and 3β−10 are ≡ 2 (mod 3) and that 3α−10 is odd. We obtain the following
types of numerical invariants:

I.
1. d = 4, π = 1, r = 4, α = 4, β = 4;

2. d = 5, π = 2, r = 7, α = 4, β = 6 or α = 6, β = 4.
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II.
1. d = 3, π = 1;

2. d = 6, π = 4;

3. d = 7, π = 7;

4. d = 8, π = 11;

5. d = 9, π = 9 or π = 16;

6. d = 10, π = 12 or π = 22;

7. d = 12, π = 37;

8. d = 13, π = 21.

III.
1. d = 6, π = 3, α = 6, β = 5;

2. d = 11, π = 14, α = 10, β = 9.

We can use Lemma 3.2 and Lemma 3.3 to eliminate the cases II. 1–8. We
use the inequality 2β > nα and the condition n 
= 1 to eliminate the cases
III. 1. and 2.: in both cases we obtain that n must be zero, and then b = β

2 can
not be an integer.

The case I. 1. gives n = 0, a = b = 2 and the case I. 2. gives n = 0, a = 2,
b = 3 or n = 0, a = 3, b = 2 or n = 2, a = 2, b = 5. For the existence of
such surfaces in P4, we can use the classification in low degrees ([10]) or an
ad-hoc argument. In fact, using monoidal transformations, we have to verify
the very ampleness of linear systems of type

∣∣∣∣3L−
5∑
i=1

Pi

∣∣∣∣ and

∣∣∣∣4L− 2P0 −
7∑
i=1

Pi

∣∣∣∣
on P2, where, in the second case, P1 is an ordinary point or is infinitely near
P0. We obtain:

Proposition 5.1. There exist only three families of non-degenerate rational
surfaces S ⊂ P4 which dominate Fn, n 
= 1 and are embedded so that all their
exceptional curves are lines. Such a polarised surface (S, |H |) may be

(
F̂0(P1, . . . , P4),

∣∣∣∣f ∗(2C1 + 2C2)−
4∑
i=1

Ei

∣∣∣∣
)
,

(
F̂0(P1, . . . , P7),

∣∣∣∣f ∗(3C1 + 2C2)−
7∑
i=1

Ei

∣∣∣∣
)
,
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or (
F̂2(P1, . . . , P7),

∣∣∣∣f ∗(2C + 5F)−
7∑
i=1

Ei

∣∣∣∣
)
.

Remark 5.2. In [6], Ellia proves that if S ⊂ P4 is a smooth, non-degenerate
surface isomorphic to Fn blown-up at r points y1, . . . yr such that the points
yi lie in different fibers of g : Fn → P1 and no yi lies on C for n ≥ 1, then
deg(S) ≤ 12. Under more general conditions, we prove that, in fact, deg(S)
can be only 4 or 5.
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