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PROREGULAR SEQUENCES, LOCAL
COHOMOLOGY, AND COMPLETION

PETER SCHENZEL

Abstract
As a certain generalization of regular sequences there is an investigation of weakly proregular
sequences. Let M denote an arbitrary R-module. As the main result it is shown that a system of
elements x with bounded torsion is a weakly proregular sequence if and only if the cohomology
of the Čech complex Čx ⊗M is naturally isomorphic to the local cohomology modules Hi

�(M)

and if and only if the homology of the co-Čech complex RHom(Čx ,M) is naturally isomorphic to
Li
�(M), the left derived functors of the �-adic completion, where � denotes the ideal generated
by the elements x. This extends results known in the case ofR a Noetherian ring, where any system
of elements forms a weakly proregular sequence of bounded torsion. Moreover, these statements
correct results previously known in the literature for proregular sequences.

1. Introduction

Let R denote a commutative ring R and � an ideal of R, Then the local co-
homology functor �� is defined as the subfunctor of the identity functor such
that

��(M) = {m ∈ M : SuppRm ⊆ V (�) }
for an R-module M . Let Hi

� denote the i-th local cohomology functor, i.e.
the i-th right derived functor of ��. In the case � is generated by a system of
elements x = x1, . . . , xr the local cohomology is closely related to the Čech
complex Čx := ⊗ri=1Čxi , where Čxi is defined as the mapping cone of the
natural homomorphism R→ Rxi of R-modules.

At the early times of local cohomology, see [9, Exposé II] or [10, The-
orem D], it was shown that there are functorial isomorphims

Hi
�(M) 	 Hi(Čx ⊗M), i ∈ Z,

for any R-module M provided R is a Noetherian ring. This was generalized
in [1, Proposition 3.1.1] and [8] to the case of x = x1, . . . , xr a proregular
sequence in an arbitrary commutative ring R. It turned out that this is not
correct. To this end J. Lipman suggested the notion of a weakly proregular
sequence.
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A system of elements x is called a weakly proregular sequence whenever
for each integer n > 0 there is an m ≥ n such that the natural homomorphism
of the Koszul homology

Hi(x
m)→ Hi(x

n)

is zero for each i ≥ 1, see 2.3. It follows that in a Noetherian ring R any
sequence of elements forms a weakly proregular sequence. Moreover, a regular
sequence is also a weakly proregular sequence.

Originally the notion of a proregular sequence was introduced by Greenlees
and May, see [8, Definition 1.8], in order to study the left derived functors Li
�

of the �-adic completion 
� = lim←−(R/�n ⊗ ·).
There is a large amount of research articles about local cohomology. Not so

much is known about the functors Li
�. The main sources for their study are
[1], [8], [13], and [17]. By the work of Greenlees and May [8] it turns out that
the completion is closely related to a certain dual of the Čech complex, namely
RHom(Čx,M) for an R-module M . This was extended also to the study of
formal schemes and non-Noetherian schemes in [3].

Because Čx is a bounded complex of flat R-modules it is not necessary to
work in the derived category in order to elaborate on Čx⊗M . This is no longer
the case for RHom(Čx,M). In the derived category we may represent it by

Hom(Lx,M), Hom(Čx, I ), resp. Hom(Lx, I ),

where Lx ∼−→ Čx resp. M ∼−→ I denotes a free resolution of Čx resp. an
injective resolution of M . See Section 4 for an explicit construction of Lx , a
bounded complex of free R-modules. Let X denote a complex of R-modules.
One of the main results of the paper is the following result:

Theorem 1.1. Let R be commutative ring. Let x = x1, . . . , xr denote a
system of elements ofR and � = xR. Suppose thatR is of bounded xiR-torsion
for i = 1, . . . , r . Then the following conditions are equivalent:

(i) x is a weakly proregular sequence.

(ii) Hi(Čx ⊗ I ) = 0 for each i �= 0 and each injective R-module I .

(iii) Hi(RHom(Čx, F )) = 0 for each i �= 0 and each flat R-module F .

(iv) There is a functorial isomorphism

R��(X) ≈ Čx ⊗X
in the derived category.

(v) There is a functorial isomorphism

RHom(Čx, X) ≈ L
�(X)
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in the derived category, provided X is a bounded complex.

This corrects several results shown in [1], [8], [9], and [10]. It was extended
to the case of schemes, see [1] and [2]. In particular, it is noteworthy to say
that there is no finiteness condition on the cohomology of the complex X in
(iv) and (v). The proof requires several steps in Section 3 and 4. As a main
technical tool we need the Koszul complexes and cocomplexes. A corollary of
these investigations is the following result about weakly proregular sequences,
analogous to a corresponding result for regular sequences:

Proposition 1.2. Let R denote a commutative ring. Let x = x1, . . . , xr be
a system of elements of R. Then the following conditions are equivalent:

(i) x is a weakly proregular sequence.

(ii) y is a weakly proregular sequence for a system of elements y=y1, . . . , ys
such that Rad xR = Rad yR.

(iii) For each i �= 0 the Koszul homology modules {Hi(x
n)}n∈N are pro-zero.

Here pro-zero means that for each n there is an m ≥ n such that the natural
homomorphismHi(x

m)→ Hi(x
n) is zero. Note that for a Noetherian ring the

claim in (iii) was shown by Grothendieck, see [9, Exposé II, Lemme 9] and
[10, Lemma 2.5].

For a complex ofR-modulesXwe freely use the existence ofF ∼−→ X, a flat
resp. X ∼−→ I , an injective resolution of X. The existence of such a resolution
was proved by Spaltenstein, see [18]. Another approach was developed by
Avramov and Foxby, see [4]. See also Weibel’s paper [20, Appendix] for a
short account to this subject. Moreover, we refer also to Foxby’s forthcoming
book [6] for all the technical details about derived functors and categories
developed by Hartshorne in [12].

Another representative of RHom(Čx, X),X an arbitrary complex, in the
derived category is

Hom(Čx, I ) 	 lim←−K•(x
n, I ),

whereX ∼−→I denotes an injective resolution. The Koszul complexesK•(xn; I )
satisfy an important homological property.

Proposition 1.3. Let x = x1, . . . , xr denote a sequence of elements of
R such that R is of bounded xiR-torsion for i = 1, . . . , r . Let I be a com-
plex of injective R-modules. Then the tower of inverse systems of complexes
{K•(xn; I )}n∈N satisfies the Mittag-Leffler condition.

The paper is organized as follows. In Section 2 we start with the study of
weakly proregular sequences. Section 3 is devoted to the investigation about
local cohomology. Section 4 contains the results about completions.
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The author is grateful to Hans-Bjørn Foxby for some stimulating questions
concerning the results of 1.1. He also thanks J. Lipman for the discussion
concerning a gap in a preliminary version of the paper and suggesting the
notion of a weakly proregular sequence.

2. Weakly Proregular Sequences

For the next couple of results we need the Koszul homology and cohomology.
For a system of elements x = x1, . . . , xr let K•(x) resp. K•(x) denote the
Koszul complex resp. the Koszul cocomplex. For an arbitrary complex of R-
modules X we define

K•(x;X) = K•(x)⊗X and K•(x;X) = Hom(K•(x),X),

see [5, § 9]. There are the following Koszul duality isomorphisms

K•(x;X) 	 K•(x)⊗X and K•(x;X) 	 Hom(K•(x),X).

Denote by Hi(x;X) resp. Hi(x;X) the homology resp. cohomology of the
corresponding complexes.

For an integer n put xn = xn1 , . . . , xnr . By the construction of the complexes
there are natural homomorphisms

K•(xm;X)→ K•(xn;X) and K•(xn;X)→ K•(xm;X)
for all m ≥ n > 0 such that {K•(xn;X)} resp. {K•(xn;X)} forms an inverse
resp. a direct system of complexes. Clearly they induce inverse systems resp.
direct systems on the homology resp. cohomology modules.

In the following putxj , 1 ≤ j ≤ r , for the subsystem of elementsx1, . . . , xj .
In particular x0 = ∅ and xr = x.

Definition 2.1. The inverse system of R-modules {Mn, φ
m
n } is called

pro-zero if for each n ∈ N there is an m ≥ n such that the map

φmn : Mm→ Mn

is the zero homomorphism.

This definition is useful in order to elaborate on inverse limits as follows
by the next observation.

Proposition 2.2. a) Let {Mn, φ
m
n } denote an inverse system that is pro-zero.

Then
lim←−Mn = lim←−

1Mn = 0.
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b) Let 0 → {M ′n} → {Mn} → {M ′′n } → 0 denote a short exact sequence of
inverse systems of R-modules. Then the middle inverse system is pro-zero if
and only if the two outside ones are pro-zero.

Proof. For the proof of a) note that lim←−Mn and lim←−
1 Mn are kernel and

cokernel of the following homomorphism

� :
∏
n∈N

Mn→
∏
n∈N

Mn, (xn) �→ (xn − φn+1
n (xn+1)),

see e.g. [19, Corollary 3.5.4]. In the case {Mn, φ
m
n } is pro-zero it is easily seen

that � is an isomorphism, i.e. Ker� = Coker� = 0.
The statement in b) is obviously true, see [10, Remark 2, p. 24].

The previous statements prepare the following definition; in a certain sense
it is a generalization of the notion of a regular sequence.

Definition 2.3. A system of elements x = x1, . . . , xr of R is called a
weakly proregular sequence if for each i = 1, . . . , r the inverse system of
Koszul homology modules {Hi(x

n)} is pro-zero, i. e. for each n ∈ N there is
an m ≥ n such that the natural homomorphism Hi(x

m)→ Hi(x
n) is the zero

homomorphism.

The next lemma provides the first couple of properties related to the homo-
logical applications we will study in the following.

Lemma 2.4. Let x = x1, . . . , xr denote a system of elements of R. Then the
following conditions are equivalent:

(i) x is a weakly proregular sequence.

(ii) {Hi(x
n;F)} is pro-zero for all i �= 0 and each flat R-module F .

(iii) lim−→Hi(xn; I ) = 0 for all i �= 0 and for each injective R-module I .

Proof. While the implication (ii)⇒ (i) is trivial we first show the reverse
implication in order to see that the first two conditions are equivalent. This
follows because

Hi(x
n)⊗ F 	 Hi(x;F)

for all i since F is a flat R-module.
Now let us prove (i)⇒ (iii). Since I is an injective R-module

Hi(Hom(K•(xn), I )) 	 Hom(Hi(x
n), I )

for all i. Therefore

lim−→Hi(xn; I ) 	 lim−→Hom(Hi(x
n), I ).
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By the assumption {Hi(x
n)} is pro-zero for i �= 0. Whence the direct limit

lim−→Hi(xn; I ) vanishes, as required.
In order to complete the proof we have to show that (iii) ⇒ (i). Let f :

Hi(x
n)→ I denote an injection into an injective R-module I . Then

f ∈ Hom(Hi(x
n), I ) 	 Hi(xn; I )

since I is an injective R-module. Because of the assumption we have the
vanishing lim−→Hi(xn; I ) = 0. So there must be an integer m ≥ n such that the

image of f in Hi(xm; I ) has to be zero. In other words, the composite of the
map

Hi(x
m)→ Hi(x

n)
f→ I

is zero. Since f is an injection it follows that the first map has to be zero.

As an application of Lemma 2.4 let us derive a few more properties of
weakly proregular sequences, similar to those of a regular sequence.

Corollary 2.5. Let x = x1, . . . , xr denote a system of elements of R.
Then the following conditions are equivalent:

(i) x is a weakly proregular sequence.

(ii) There is an m > 0 such that xm is a weakly proregular sequence.

(iii) For any permutation σ of {1, . . . , r} the sequence xσ(1), . . . , xσ(r) is a
weakly proregular sequence.

Proof. The equivalence of the first and the third condition follows since
the corresponding Koszul complexes are isomorphic. In order to complete the
proof one has to show that (ii)⇒ (i). To this end note that

lim−→Hi(xn; I ) 	 lim−→Hi(xmn; I ) = 0

for any injective R-module. Then the claim follows by 2.4.

The following notion of a proregular sequence was introduced by Greenlees
and May, see [8, Definition 1.8] It was also studied in [1, Section 3] and [7].
We shall relate it to the definition of the weakly proregular sequence of 2.3.

Definition 2.6. A system of elements x = x1, . . . , xr of R is called a
proregular sequence if for each i = 1, . . . , r and each n > 0 there is anm ≥ n
such that

(xm1 , . . . , x
m
i−1)R :R x

m
i ⊆ (xn1 , . . . , xni−1)R :R x

m−n
i .
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In the case R is a Noetherian ring for a fixed integer n the increasing
sequence of ideals

(xn1 , . . . , x
n
i−1) :R x

m−n
i , m ≥ n,

will stabilize. Therefore in a Noetherian ringR any sequence of elements forms
a proregular sequence.

It follows by the definition that x is a proregular sequence if and only if
for each i = 1, . . . , r and each n > 0 there exists an m ≥ n such that the
multiplication map

(xm1 , . . . , x
m
i−1)R :R x

m
i /(x

m
1 , . . . , x

m
i−1)R

xm−ni−−−→ (xn1 , . . . , x
n
i−1)R :R x

n
i /(x

n
1 , . . . , x

n
i−1)R

is zero. This indicates the homological flavour of this notion related to that of
a weakly proregular sequence.

Lemma 2.7. Let x = x1, . . . , xr denote a system of elements of R. Suppose
that it is a proregular sequence. Then it is also a weakly proregular sequence.

Proof. We proceed by induction on r . For r = 0 there is nothing to prove.
Put y = xr+1. Then the Koszul homology provides the following diagram

0 −−→ H0(y
m;Hi(x

m)) −−→ Hi(x
m, ym) −−→ H1(y

m;Hi−1(x
m)) −−→ 0

↓ ↓ ↓
0 −−→ H0(y

n;Hi(x
n)) −−→ Hi(x

n, yn) −−→ H1(y
n;Hi−1(x

n)) −−→ 0

for each i ∈ Z and any pair of integersm ≥ n. The modules at the first vertical
map are derived by the following commutative diagram

Hi(x
m) −−→ H0(y

m;Hi(x
m)) −−→ 0

↓ ↓
Hi(x

n) −−→ H0(y
n;Hi(x

n)) −−→ 0.

By virtue of 2.2 b) and the inductive hypothesis it follows that the first vertical
map of the first diagram above is pro-zero for each i �= 0.

The modules on the last vertical map of the diagram above are derived by
the following commutative diagram

0 −−→ H1(y
m;Hi−1(x

m)) −−→ Hi−1(x
m)

↓ ↓
0 −−→ H1(y

n;Hi−1(x
n)) −−→ Hi−1(x

n).
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By the same argument as above the vertical map at the first place is pro-zero
for all i �= 1. In the case i = 1 we have

H1(y
n;H0(x

n)) 	 xnR :R y
n/xnR.

Therefore, by the assumption the vertical homomorphism is also pro-zero in
this case. Then by 2.2 b) the first diagram above implies that {Hi(x

n, yn)} is
essentially zero for each i �= 0, completing the inductive step.

It is noteworthy to say that a weakly proregular sequence is – in general – not
proregular. The following example was kindly communicated by J. Lipman to
the author, see [2]. Let R = ∏

n>0 Z/2nZ and x = (2, 2, 2, . . .). Then it
follows that Hi(x

n) = 0 for the sequence x = x, 1 and all i ∈ Z. Therefore
x is weakly proregular. But it is not proregular, while 1, x is so. Whence the
example shows also that a proregular sequence is not permutable without any
additional assumption.

3. Local cohomology and Čech complexes

Let x = x1, . . . , xr denote a sequence of elements of a commutative ring R.
Then the direct limit of the Koszul cocomplexes lim−→K•(xn) is called the Čech
complex Čx of R with respect to x. It is easily seen that Čx 	 ⊗ri=1Čxi , where
Čxi is the complex

Čxi : . . .→ 0→ R→ Rxi → 0→ . . . ,

see e.g. [15, Section 1.1] for the details. In particular Čx is a bounded complex
of flat R-modules.

On the other hand let � be an ideal ofR. Then�� denotes the section functor
with respect to �. That is, �� is the subfunctor of the identity functor given by

��(M) = {m ∈ M : SuppRm ⊆ V (�) }
for an R-module M . It extends to a functor on complexes of R-modules. Let
X ∼−→ I be an injective resolution of X, see [4] resp. [18], for the details.
Then define R��(X) = ��(I ), the right derived functor of �� in the derived
category. In fact the construction is independent on the particular choice of I ,
see [12] for the details.

Proposition 3.1. Let x = x1, . . . , xr be a system of elements of R and
� = xR the ideal generated by it. For a complex X of R-modules there is a
functorial morphism

R��(X)→ Čx ⊗X
in the derived category.
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Proof. Let X ∼−→ I denote an injective resolution of X, see [4] resp. [18].
Then R��(X) resp. Čx ⊗ X are – in the derived category – represented by
��(I ) resp. by Čx ⊗ I . In order to prove the claim we have to show that there
is a natural injection ��(I )→ Čx ⊗ I . Since ��(I

n) = Ker(I n → I n ⊗ Č1
x )

for each n ∈ Z the following diagram

(��(I ))
n −−→ (��(I ))

n+1

↓ ↓
(Čx ⊗ I )n −−→ (Čx ⊗ I )n+1

commutes. Here the vertical homomorphisms map ��(I
n) to Č0

x ⊗ I n = I n

by the natural inclusion. So there is an injection

��(I )→ Čx ⊗ I
of complexes. This proves the morphism of the claim. It is easily seen functorial
and independent on the particular choice of I .

Now it is natural to ask whether the morphism of Proposition 3.1 is an
isomorphism. In particular this yields an isomorphism

Hi
�(X) 	 Hi(Čx ⊗X)

for all i. This was shown to be true whenever R is a Noetherian ring, see [9,
Exposé II] and [10].

Theorem 3.2. Let x = x1, . . . , xr be a system of elements ofR and � = xR.
Then the following conditions are equivalent:

(i) x is a weakly proregular sequence.

(ii) Hi(Čx ⊗ I ) = 0 for each i �= 0 and each injective R-module I .

(iii) For each complex X the functorial morphism

R��(X)→ Čx ⊗X
is an isomorphism in the derived category.

Proof. The equivalence of (i) and (ii) is an easy consequence of Lemma 2.4.
Note that lim−→ is exact and lim−→K•(xn) 	 Čx . The implication (iii)⇒ (ii) holds

trivially since Hi
�(I ) = 0 for each i �= 0 and each injective R-module I .

Now let us prove (ii)⇒ (iii). To this end take an injective resolutionX ∼−→ I

of X, see [4] resp. [18]. The j -th column Čx ⊗ I j of the double complex

Či
x ⊗ I j , 0 ≤ i ≤ m, j ∈ Z,
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is – by the assumption – an injective resolution of ��(I
j ), so that the inclusion

��(I )→ Čx ⊗ I
induces an isomorphism in cohomology. This completes the proof.

The previous result was originated by [1] and [8]. In fact, Theorem 3.2
shows the equivalence of the conditions (i), (ii), and (iv) of Theorem 1.1.

There is an application concerning another property of proregular sequ-
ences.

Corollary 3.3. Let x = x1, . . . , xr resp. y = y1, . . . , ys denote two
systems of R such that Rad xR = Rad yR. Then x is a weakly proregular
sequence if and only if y is a weakly proregular sequence.

Proof. Let � = xR and � = yR. Then R��(X) = R��(X) for any
complex of R-modules X since Rad � = Rad �. Therefore the claim follows
by the Theorem 3.2 and 2.4.

As mentioned above, in a Noetherian ring R any system of elements forms
a weakly proregular sequence since it is proregular. Conversely it would be
of some interest to characterize those commutative rings for which any finite
system of elements forms a weakly proregular sequence.

The proof of Proposition 1.2 is now a consequence of Corollary 3.3 together
with Lemma 2.4.

In the following we will continue with a result concerning the composite
of two section functors. It is well known in the case of a Noetherian ring R.

Corollary 3.4. Let x, y = x1, . . . , xr , y1, . . . , ys denote a weakly prore-
gular sequence consisting of the two weakly proregular subsystems x, y. Put
� = xR resp. � = yR. Then there is a functorial isomorphism

R��(R��(X)) ≈ R��+�(X))

for a complex of R-modules X.

Proof. Since x, y forms a weakly proregular sequence it follows that

R��+�(X)) ≈ Čx,y ⊗X,
see 3.2. Moreover both x and y form a weakly proregular sequence by the

assumption. Furthermore, by the construction of the Čech complex we have
the isomorphism Čx,y 	 Čx ⊗ Čy . So the claim is a consequence of 3.2 and
the associativity of the tensor product.
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In the particular case that s = 1 and y consists of a single element y there
is a short exact sequence useful for an inductive increase of the number of
elements in local cohomology.

Corollary 3.5. Let x = x1, . . . , xr , y, and x, y denote weakly proregular
sequences. For each i ∈ Z there is a functorial short exact sequence

0→ H 1
yR(H

i−1
� (X))→ Hi

�+yR(X)→ H 0
yR(H

i
�(X))→ 0,

where X denotes an arbitrary complex of R-modules.

Proof. By the fact that x, y, and x, y form a weakly proregular sequence
resp. we may compute the right derived functor of the corresponding section
functors by the Čech complexes. Now Čx,y is by construction the mapping cone
of the natural homomorphism Čx → Čx ⊗Ry . So the short exact sequence of
complexes

0→ Čx ⊗ Ry[−1]→ Čx,y → Čx → 0

provides the exact sequences of the statement. Note that the localization Ry is
exact.

In the case of a Noetherian ringR 3.5 has been shown in [15, Corollary 1.4].
The property of y being a weakly proregular sequence is equivalent to saying
that yR is of bounded yR-torsion, see the definition in 4.2.

4. Completion and co-Čech complexes

In a certain sense – which will become more precise in the following – comple-
tion is a construction dual to the local cohomology. While the local cohomology
modules are studied in several research papers not so much is known about the
derived functors of the completion.

The most significant papers to the present research are – first of all – the
work of Greenlees and May, see [8], and the papers [1], [13], and [17]. For an
ideal � of R let 
� denote the �-adic completion functor lim←−(R/�n ⊗ ·). For
an arbitrary complex X of R-modules let F ∼−→ X denote a flat resolution of
X, see [4] resp. [18] for its existence.

Definition 4.1. In the derived category the left derived functor L
�(X)

of X is defined by 
�(F ), where F ∼−→ X denotes a flat resolution.

In fact, this construction is functorial and independent of the choice of the
particular resolution F , see [1], [8], and [17] for the details.

Let x = x1, . . . , xr denote a system of elements of the ring R. Let X be
an arbitrary complex of R-modules. Then the complex, the so-called co-Čech
complex,

RHom(Čx, X)
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in a certain sense the dual of Čx ⊗ X, is of a great importance related to the
completion functor. While the complex Čx⊗X is well-defined in the category
of modules, the co-Čech complex is an object in the derived category. It is rep-
resented by Hom(Čx, I ), where X ∼−→ I denotes an injective resolution of X.
Another representative of RHom(Čx, X) will be constructed in the following.

Let x ∈ R denote an element. The naturally defined short exact sequence

0→ R[T ] xT−1−−−→ R[T ]→ Rx → 0

provides a free resolution of Rx as an R-module. Let Px denote the truncated
resolution consisting of R[T ] in degree 0 and −1 and zero elsewhere. Let Lx
denote the mapping cone of the natural homomorphism of complexesR→ Px .
Then it follows by the construction that Lx ∼−→ Čx is a free resolution of the
Čech complex Čx .

Now let x = x1, . . . , xr denote a system of elements of R. Then define

Lx = ⊗ri=1Lxi .

Clearly Lx ∼−→ Čx is a free resolution of the Čech complex Čx . Therefore, in
the derived category the complex RHom(Čx, X) is represented by each of the
following complexes

Hom(Čx, I ) ∼−→ Hom(Lx, I ) and Hom(Lx,X) ∼−→ Hom(Lx, I ),

where X ∼−→ I denotes an injective resolution of X.
We continue here with another property of a proregular sequence. It requires

the following definition concerning the torsion properties.

Definition 4.2. Let � denote an ideal ofR. ThenR is said to be of bounded
�-torsion if the increasing sequence {0 :R �m}m∈N stabilizes.

Note that whenever x = x1, . . . , xr denotes a proregular sequence, R is
of bounded x1R-torsion. In the case of R a Noetherian ring it is of bounded
�-torsion for any ideal � of R.

Now note that RHom(Čx, X) is – in the derived category – also represented
by

Hom(Čx, I ) 	 Hom(lim−→K•(xn), I ) 	 lim←−K•(x
n; I ),

where X ∼−→ I denotes an injective resolution of X. Here we are interested in
the complex lim←−K•(x

n; I ) and its cohomology.

Theorem 4.3. Let x = x1, . . . , xr denote a system of elements of R. Then
the following conditions are equivalent:

(i) R is of bounded xj -torsion for each j = 1, . . . , r .
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(ii) For each injectiveR-module I and each j = 1, . . . , r the multiplication
map I

xj−→ I becomes stable, i.e. there is an integer n such that xnj I =
xmj I for all m > n.

(iii) The tower of inverse systems of complexes {K•(xn; I )} satisfies the
Mittag-Leffler condition.

Proof. First we show the implication (i) ⇒ (ii). To this end let x ∈ R

denote an arbitrary element. For each pair of integers m ≥ n there is the
following diagram induced by multiplications

0 −−→ 0 :R xn −−→ R xn−−−→ R −−→ R/xnR −−→ 0

↓ ↓xm−n ↓xm−n
0 −−→ 0 :R xm −−→ R xm−−−→ R −−→ R/xmR −−→ 0.

Since I is an injective R-module it induces – as easily seen – a commutative
diagram of the following type

0 −−→ xmI −−→ I −−→ Hom(0 :R xm, I ) −−→ 0

↓f ↓g
0 −−→ xnI −−→ I −−→ Hom(0 :R xn, I ) −−→ 0,

where f is injective and g is surjective. Hence, the snake lemma provides
that Ker g = Coker f . In case R is of bounded xR-torsion condition (ii) is
satisfied. Note that Ker g = 0 in this situation.

We proceed by an induction on r in order to prove (ii)⇒ (iii). For r = 0
there is nothing to show. Suppose the claim is true for r . Now put y = xr+1.
We shall prove the claim for the system of r + 1 elements x, y.

For each n and m ≥ n the natural commutative diagram of Koszul com-
plexes

0 −−→ I −−→ K•(ym; I ) −−→ I [1] −−→ 0

↓ ↓ym−n
0 −−→ I −−→ K•(yn; I ) −−→ I [1] −−→ 0,

induces the following commutative diagram

0 −−→ K•(xm; I ) −−→ K•(xm, ym; I ) −−→ K•(xm; I )[1] −−→ 0

↓ ↓ ↓ψm
n

0 −−→ K•(xn; I ) −−→ K•(xn, yn; I ) −−→ K•(xn; I )[1] −−→ 0.

The vertical map ψm
n at the right is the composite of the natural map

φmn : K•(xm; I )→ K•(xn; I )
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with the multiplication by ym−n on K•(xn; I ). The tower of inverse systems
of complexes on the left satisfies the Mittag-Leffler condition by the induction
hypothesis.

We claim now that the tower of inverse systems of complexes at the right
satisfies the Mittag-Leffler condition too. To this end put Kn = Ki(x

n; I ).
Then we have to show that for each i and each n ≥ 1 there is an integer m
such that the image of the homomorphisms ψm+s

n : Km+s → Kn are the same
for all s ≥ 1. By the inductive hypothesis this is true for the homomorphisms
φmn : Km→ Kn, i.e. for a givenn there is anm ≥ n such that Im φm+sn = Im φmn
for each s ≥ 0.

For the fixed integer m consider now the multiplication map ρys : Km →
Km by ys . SinceKm is an injective R-module there exists - by the assumption
- an integer t such that Im ρyt+s = Im ρyt for each s ≥ 1. Therefore

Imψm+s+t
n = ym−n+s+tφm+s+tn (Kn+s+t ) = ym−n+s+tφmn (Km)

= φmn (ym−n+s+tKm) = φmn (ym−n+tKm)

= ym−n+tφmn (Km) = ym−n+tφm+tn (Km+t )

= Imψm+t
n

for all s ≥ 0.
Now the above commutative diagram is split exact in each homological

degree. Both of the towers of complexes on the left and on the right satisfy the
Mittag-Leffler condition. By [11, 13.2.1] it follows that the tower of complexes
in the middle satisfies the Mittag-Leffler condition too. This finishes the proof
of (iii).

Finally we have to show the implication (ii)⇒ (i). To this end letK denote an
injective co-generator of the category ofR-modules, see [14, p. 79]. That is, for
each R-module M and an element 0 �= m ∈ M there is a homomorphism f ∈
Hom(M,K) such that f (m) �= 0. By the assumption (iii) the inverse system
{K1(x

n;K)} satisfies the Mittag-Leffler condition. Because of K1(x
n;K) 	

⊕ri=1K and because of the homomorphism K1(x
m;K) → K1(x

n;K) which
is the multiplication by xm−nj on the j -th component, j = 0, . . . , r , it turns out
that the multiplication map by xm−nj onK is stable. By the above commutative
diagram it follows that

Hom(0 :R x
m
j ,K) = Hom(0 :R x

n
j ,K)

for a large n and all m > n. The corresponding short exact sequence implies
that Hom(0 :R xmj /0 :R xnj ,K) = 0. Since K is an injective co-generator it
follows that 0 :R xmj = 0 :R xnj , i.e. R is of bounded xj -torsion.
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The previous result has an important application concerning the computa-
tion of the homology of the complex lim←−K•(x

n; I ) for a complex of injective
R-modules I .

Corollary 4.4. Let I denote a complex of injective R-modules. Let x =
x1, . . . , xr denote a system of elements such that R is of bounded xj -torsion
for each j = 1, . . . , r . Then there is a short exact sequence

0→ lim←−
1Hi+1(x

n; I )→ Hi(lim←−K•(x
n; I ))→ lim←−Hi(x

n; I )→ 0

for each i ∈ Z.

Proof. In order to show the claim take the homomorphism of complexes

� :
∏
n∈N

K•(xn; I )→
∏
n∈N

K•(xn; I )

as considered in the proof of 2.2. Because of the Mittag-Leffler condition
shown in 4.3 it induces a short exact sequence of complexes

0→ lim←−K•(x
n; I )→

∏
n∈N

K•(xn; I )→
∏
n∈N

K•(xn; I )→ 0.

The long exact cohomology sequence induces the short exact sequences of the
statement, see also [8] for some more details.

The proof of Proposition 1.3 follows now by the result shown in 4.4. The
short exact sequence on the cohomology is of some importance in the follow-
ing.

There is a functorial homomorphism K•(xn;X) → X ⊗ R/�n for each
n ≥ 0. Whence, for each i it induces a functorial homomorphism

Hi(lim←−K•(x
n; I ))→ L
�

i (X),

where X ∼−→ I denotes an injectice resolution of X. Recall that lim←−K•(x
n; I )

is another representative of RHom(Čx, X), where X ∼−→ I is an injective
resolution of X.

Theorem 4.5. Let x = x1, . . . , xr denote a system of elements of R.
Suppose that R is of bounded xj -torsion for j = 1, . . . , r . Then the following
conditions are equivalent:

(i) x is a weakly proregular sequence.

(ii) For each R-module M with M ∼−→ I its injective resolution the homo-
morphism

Hi(lim←−K•(x
n; I )) 	 Li


�(M)

is a functorial isomorphism.
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(iii) For each bounded complex X the functorial morphism

RHom(Čx, X) ≈ L
�(X)

is an isomorphism in the derived category.

(iv) Hi(RHom(Čx, F )) = 0 for each i �= 0 and each flat R-module F .

Proof. Firstly we show the implication (i) ⇒ (ii). Since for each i ∈ Z
there is a functorial isomorphism

Hi(lim←−K•(x
n; I )) 	 Hi(Hom(Px,M)) =: Hi(M)

it will be enough to show the following steps:

1. H0(M) 	 L0

�(M).

2. Hi(F ) = 0 for each i �= 0 and each flat R-module F .

3. {Hi}i≥0 forms a connected sequence of functors.

The statement in 3. is true because Px is a bounded complex of freeR-modules
such that Hom(Px, ·) is a covariant functor that preserves quasi-isomorphisms.
In order to prove 2. note that for each i there is a short exact sequence

0→ lim←−
1Hi+1(x

n; J )→ Hi(F )→ lim←−Hi(x
n; J )→ 0,

where F ∼−→ J denotes an injective resolution, see 4.3. Since Hi(x
n;F) 	

Hi(x
n; J ) and x forms a weakly proregular sequence the inverse system

{Hi(x
n;F)} is pro-zero, see 2.4. Therefore

Hi(F ) =
{

0 if i �= 0,


�(F ) if i = 0,

which proves 2. Note that H0(x
n;F) 	 F/xnF for each n > 0.

So the claim in 1. remains to prove. As shown above it is true for a flat R-
module F . Let F1 → F0 → M → 0 be a resolution of M by free R-modules
Fi, i = 0, 1. Then it induces a commutative diagram

H0(F1) −−→ H0(F0) −−→ H0(M) −−→ 0

↓ ↓ ↓
L0


�(F1) −−→ L0

�(F0) −−→ L0


�(M) −−→ 0.

Note that H−1(·) = 0, as easily seen. Therefore H0(M) 	 L0

�(M), as

required.
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Now the implication (ii)⇒ (iii) is a consequence of the way-out techniques
by Hartshorne, see [12, Chapter I, § 7]. More precisely for n ∈ Z an integer let

σ>n : . . .→ 0→ Im dnX → Xn+1 → Xn+2 → . . . and

σ≥n : . . .→ 0→ Coker dn−1
X → Xn+1 → Xn+2 → . . . .

Then there is a quasi-isomorphism σ>n−1
∼−→ σ≥n and a short exact sequence

0→ Hn(X)[−n]→ σ≥n→ σ>n−1 → 0.

Then we show by descending induction on n that

RHom(Čx, σ>n) ≈ L
�(σ>n)

in the derived category. For n sufficiently large σ>n is the zero complex. So
the claim is certainly true. Because of the assumption in (ii) the above short
exact sequence provides the claim for σ≥n. Since σ>n−1

∼−→ σ≥n is a quasi-
isomorphism and both functors preserve quasi-isomorphisms the claim is true
for σ>n−1.

Next note that (iii)⇒ (iv) follows since Li
�(F ) = 0 for each i �= 0 and a
flat R-module F . Finally we have to show the implication (iv)⇒ (i) in order
to finish the proof.

To this end let I be an arbitrary injective R-module. Let K denote an in-
jective co-generator of the category of R-modules, see [14, p. 79]. Because
Hom(I,K) is a flat R-module the assumption in (ii) implies that

Hi(RHom(Čx,Hom(I,K))) = 0 for each i �= 0.

Because RHom(Čx,Hom(I,K)) is represented by Hom(Čx ⊗ I,K) and be-
cause K is an injective R-module it follows that

0 = Hom(H i(Čx ⊗ I ),K) for all i �= 0.

Therefore Hi(Čx ⊗ I ) = 0 for each i �= 0 and each injective R-module I . By
Theorem 3.2 this completes the proof.

It is an open problem to the author whether (iii) in Theorem 4.5 holds for
any complex, similar to the result for the local cohomology in Theorem 3.2,
see [1] for various results in this direction. It is true in the case of a Noetherian
ring R, as shown by different methods in [16].

Finally we mention that Theorem 4.5 proves the equivalence of the state-
ments (i), (iii), and (v) of Theorem 1.1 of the introduction.
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Corollary 4.6. Let x, y = x1, . . . , xr , y1, . . . , ys denote a weakly pro-
regular sequence consisting of the two weakly proregular subsystems x, y.
Suppose that R is of bounded xiR-torsion for i = 1, . . . , r and is of bounded
yj -torsion for j = 1, . . . , s. Put � = xR resp. � = yR. Then there is a
functorial isomorphism

L
�+�(X)) ≈ L
�(L
�(X))

for a bounded complex of R-modules X.

Proof. Let X ∼−→ I denote an injective resolution of X. Then L
�+�(X))

is represented by Hom(Čx,y, I ) in the derived category, see 4.5. But now we

have that Čx,y 	 Čx ⊗ Čy . The adjunction formula provides the isomorphism

Hom(Čx,y, I ) 	 Hom(Čx,Hom(Čy, I )).

Furthermore both of the sequences x and y form a weakly proregular sequence

and Hom(Čy, I ) is a complex of injective R-modules. Whence by 4.5 the

second complex in the above isomorphism represents L
�(L
�(X)) in the
derived category. This completes the arguments.

In the case of s = 1, i.e. y consists of a single element y there is a short exact
sequence for computing the left derived functors of the completion inductively.
The proof of the following corollary is a little more complicated than the
corresponding result for the local cohomology shown in 3.5.

Corollary 4.7. Let x and x, y denote weakly proregular sequences.
Suppose that R is of bounded yR-torsion and of bounded xiR-torsion for
i = 1, . . . , r . For each i ∈ Z there is a functorial short exact sequence

0→ L0

yR(Li


�(X))→ Li

�+yR(X)→ L1


yR(Li−1

�(X))→ 0,

where X denotes a bounded complex of R-modules.

Proof. Let M denote an R-module. Then we first observe that Li
yR(M)

= 0 for all i �= 0, 1. BecauseR is of bounded y-torsion and because L
yR(M)

is represented by Hom(Čy, I ), whereM ∼−→ I denotes an injective resolution
of M . Then this claim follows by view of the homology sequence of

0→ I → Hom(Čy, I )→ Hom(Ry, I )[1]→ 0.

To this end recall that Hi(I ) = Hi(Hom(Ry, I )) = 0 for all i > 0.
Now consider the free resolution Lx of the Čech complex Čx as defined

at the beginning of this section. Then the derived functors of the completion
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may be represented by Hom(Lx,X). By the adjunction formula we have the
isomorphism of complexes

Hom(Lx,y, X) 	 Hom(Ly,Hom(Lx,X)),

note that Lx,y 	 Lx ⊗Ly . This yields the following spectral sequence for the
homology modules

E2
ij = Li


yR(Lj

�(X))⇒ E∞i+j = Li+j
�+yR(X).

Because of E2
ij = 0 for all i �= 0, 1 it degenerates partially to the short exact

sequences of the statement.

An inductive argument provides that Li
�(X) = 0 for all i > r , the
number of elements of x. A more detailed study of the largest integer i such
that Li
�(X) �= 0 will appear in a forthcoming article by the author.
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