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EXTREME INTEGRAL POLYNOMIALS ON
A COMPLEX BANACH SPACE

SEÁN DINEEN∗

Abstract

We obtain upper and lower set-theoretic inclusion estimates for the set of extreme points of the unit
balls of PI (nE) and PN (nE), the spaces of n-homogeneous integral and nuclear polynomials,
respectively, on a complex Banach space E. For certain collections of Banach spaces we fully
characterise these extreme points. Our results show a difference between the real and complex
space cases.

1. Introduction

Geometric properties of spaces of polynomials, e.g. smoothness, extreme
points, exposed points, norm attaining polynomials, etc. have been invest-
igated by a number of authors in recent years. We refer to [1], [3], [7], [8],
[13], [12], [18], [20]. In particular, Ryan-Turett [18] and Boyd-Ryan [3] in
their investigations examined the extreme points of the unit ball of the space
of integral polynomials defined on a real Banach space. In this paper we study
the extreme points of the unit ball of the space of integral polynomials defined
on a complex Banach space. Throughout this paper E will, unless otherwise
stated, denote a Banach space over the complex numbers C. We let BE or B

denote the open unit ball of E. We refer to [11] for basic facts on polynomials
on Banach spaces and to [9], [10] for the geometry of Banach spaces.

2. Extreme Points

If E is a Banach space over C we let

ExtR(E) = { x ∈ E : ‖x‖ = 1, ‖x+λy‖ ≤ 1 for −1 ≤ λ ≤ 1 implies y = 0 }
and

ExtC(E) = {x ∈ E : ‖x‖ = 1, ‖x + λy‖ ≤ 1 for |λ| ≤ 1 implies y = 0 }.
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Thus, ExtR(E) is the set of all (real) extreme points of the unit ball of E

and ExtC(E) is the set of complex extreme points of the same set. Clearly
ExtR(E) ⊂ ExtC(E). The inclusion may be proper since ExtR(L1(0, 1)) is
empty while ExtC(L1(0, 1)) consists of all unit vectors.

A Banach space is strictly convex (or rotund) (respectively strictly c-convex)
if

ExtR(E) = { x ∈ E : ‖x‖ = 1 }
(respectively ExtC(E) = { x ∈ E : ‖x‖ = 1 }). As noted above the Banach
space L1(0, 1) is strictly c-convex but is not strictly convex.

The role of extreme points in functional analysis, convexity theory, linear
programming and optimisation theory is well documented. Complex extreme
points were introduced by Thorpe and Whitley [21] in order to prove a strong
maximum modulus principle for Banach-valued holomorphic functions. Since
their introduction they have proved useful in the study of the Shilov boundary,
complex geodesics, invariant metrics, bounded symmetric domains and JB∗-
triple systems. We refer to [2], [4], [5], [14], [15], [22], [23] for details.

3. Integral and Nuclear Polynomials

If E is a complex Banach space P(nE) denotes the space of continuous n-
homogeneous polynomials on E endowed with the norm ‖·‖ := ‖·‖B of uni-
form convergence over the unit ball B of E. A polynomial P ∈ P(nE) is
said to be integral if there exists a regular Borel measure µ on the unit ball of
E′, BE′ endowed with the weak∗ topology, such that

(1) P (x) =
∫

BE′
φ(x)n dµ(φ)

for all x in E. We let PI (
nE) denote the space of all n-homogeneous integral

polynomials on E and we endow this space with the norm ‖·‖I := inf ‖µ‖
where the infimum is taken over all µ satisfying (1).

An n-homogeneous polynomial P on E is nuclear if there exists a bounded
sequence (φj )j ⊂ E′ and (λj )j ∈ l1 such that

(2) P (x) =
∞∑

j=1

λjφj (x)n

for all x in E. The space of all nuclear n-homogeneous polynomials on E,
PN(nE), is a Banach space when ‖P ‖N is defined to be the infimum of∑∞

j=1 |λj | ‖φj‖n taken over all representations of P satisfying (2).

Proposition 3.1. Let E denote a complex Banach space.
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(a) The space PI (
nE) is isometrically isomorphic to

( ⊗̂
n,s,ε

E
)′

.

(b) PN(nE) ⊂ PI (
nE) ⊂ P(nE) and ‖·‖ ≤ ‖·‖I ≤ ‖·‖N .

(c) If φ ∈ E′ then φn ∈ PN(nE) and

‖φ‖n = ‖φn‖I = ‖φn‖N

(d) If E′ has the approximation property then PN(nE) is isometrically iso-
morphic to

⊗̂
n,s,π

E′ and PN(nE)′ = P(nE′) isometrically.

(e) If �1 �↪→ ⊗̂
n,s,ε

E (in particular if E′ has the Radon-Nikodým Property)

then PI (
nE) and PN(nE) are isometrically isomorphic.

(f) ExtR(PI (
nE)) ⊂ { φn : φ ∈ E′, ‖φ‖ = 1 }.

(g) ExtR(PI (
nE)) ⊂ ExtR(PN(nE)).

Proof. Parts (a), (b), (c) and (d) are well known. Parts (e) and (f) are due
independently to C. Boyd-R. A. Ryan [3] and D. Carando-V. Dimant [6] while
(g) can be deduced from the proof of [3, Theorem 2].

Remarks. (i) By (b) and (g) we have

PN(nE) ⊂ PI (
nE) and ExtR(PI (

nE)) ⊂ ExtR(PN(nE)).

This contrasting information is quite useful since ExtR(PI (
nE)) has good ab-

stract properties while calculations are easier with elements of ExtR(PN(nE)).
(ii) In general we do not know if PN(nE) is a dual Banach space but, by

(a) and (g), ExtR(PN(nE)) is non-empty.

For real Banach space we also have the following result which is in contrast
to the results we obtain in the next section for complex Banach spaces.

Proposition 3.2 ([3], [18]). If E is a reflexive Banach space over R and
n > 1 then

ExtR(PI (
nE)) = { ±φn : φ ∈ E′, ‖φ‖ = 1 }.

4. Extreme Polynomials

Proposition 4.1. If E is a complex Banach space and n ≥ 1 then

{ φ ∈ E′ : φn ∈ ExtR(PN(nE)) } ⊂ ExtC(E′).
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Proof. Suppose ‖φ‖ = 1 and φ �∈ ExtC(E′). Then there exists ψ ∈ E′,
ψ �= 0, such that ‖φ + λψ‖ ≤ 1 for all λ ∈ C, |λ| ≤ 1. If ω = e

2πi
n+1 then

n∑
j=0

(φ + ωjψ)n =
n∑

k=0

(
n

k

)
ψkφn−k

( n∑
j=0

ωkj

)
.

If k �= 0 then
∑n

j=0 ωkj = 0. Hence

1

n + 1

n∑
j=0

(φ + ωjψ)n = φn.

Since ‖φ‖ = 1 and ‖φ + ωjψ‖ ≤ 1 for all j , Proposition 3.1(c) implies
‖φn‖N = 1 and, ‖(φ + ωjψ)n‖N ≤ 1 for all j . Hence φn /∈ ExtR(PN(nE)).
This completes the proof.

If E is a complex Banach space we say that x and y in E are equivalent if
there exists α ∈ C, |α| = 1, such that x = αy. If A ⊂ E we denote by �[A] the
cardinality of the set of equivalence classes in A. For example it is well known
that �[ExtR(�n

1)] = n. For complex extreme points we obtain a different type
of result.

Corollary 4.2. If E is a finite dimensional complex Banach space of
dimension ≥ 2 then �[ExtC(E)] = ∞.

Proof. By Proposition 4.1 and the Krein-Milman Theorem

dim(PI (
nE′)) ≤ �[ExtC(E)]

for any positive integer n. Since the monomials zjwn−j , j = 1, 2, . . . , n

are linearly independent, dim(PI (
nE′)) = dim(P(nE′)) is at least n. Hence

�[ExtC(E)] ≥ n for all n. This completes the proof.

If E is a Banach space we say that A ⊂ E′ is E-transitive if for all θ , φ

in A there exists an isometry of E onto itself, T , such that φ ◦ T = θ , that is
t T (φ) = θ where t T denotes the transpose of T .

Corollary 4.3. If the set of complex extreme points of the unit ball of E′
is E-transitive then

ExtR(PI (
nE)) = { φn : φ ∈ E′, φ ∈ ExtC(E′) }

and, in particular,
ExtR(E′) = ExtC(E′).
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Proof. By Proposition 3.1(a), (f) and (g) and Proposition 4.1, ExtR(PI(
nE))

contains an element φn where φ ∈ ExtC(E′). Let ψ ∈ ExtC(E′). By E-
transitivity of the set of complex extreme points there exists an isometry T

of E such that ψ ◦ T = φ. If P ∈ PI (
nE) and ‖ψn ± P ‖I ≤ 1 then

‖ψn◦T ±P ◦T ‖I ≤ 1. Since ψn◦T = (ψ◦T )n = φn and φn ∈ ExtR(PI (
nE))

this implies P ◦T = 0. Hence P = 0 and ψn ∈ ExtR(PI (
nE)). An application

of Proposition 4.1 completes the proof.

Example 4.4. Let A denote a W ∗-algebra , i.e. a C ∗-algebra which is
also a dual Banach space. We can suppose, without loss of generality, that A
is a C ∗-subalgebra of B(H ), the space of bounded linear operators on the
Hilbert space H . By [15] the real and complex extreme points of the unit ball
of a C ∗-algebra coincide.

Let

A ⊥ = { w ∈ N (H ) : trace(vw) = 0 for all v ∈ A }.
where N (H ) is the space of trace class operators on H . By [17, Theorem
4.2.9], A∗ := N (H )/A ⊥ is the unique isometric predual of A . The (A , A∗)
duality is given by

(u, w + A ⊥) = trace(uw) =
∑
x∈E

〈uw(x), x〉

where u ∈ A , w + A ⊥ ∈ A∗ and E is an orthonormal basis for H . Let U
denote the set of unitary elements in A , i.e.

U = { u ∈ A : uu∗ = u∗u = 1H }.
Clearly uw ∈ A ⊥ for u unitary in A and w in A ⊥. Hence the mapping

ut : A∗ ↪→ A∗, ut (v + A ⊥) := uv + A ⊥

is well defined and easily seen to be an isometry of A∗. If v1 and v2 are unitary
elements in A then v∗

2v1 is also unitary and for all w + A ⊥ ∈ A∗ we have

(v2 ◦ (v∗
2v1)t , w + A ⊥) = (v2, v∗

2v1w + A ⊥) =
∑
x∈E

〈v2v
∗
2v1w(x), x〉

=
∑
x∈E

〈v1w(x), x〉 = (v1, w + A ⊥).

Hence
v1 = v2 ◦ (v∗

2v1)t
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and U is A∗-transitive. Results in [16] (see also Example 4.6) imply that

ExtC(A ) = ExtR(A ) = U

i.e. the real (and complex) extreme points coincide with the set of unitary
elements when A is one of the following :

(a) a commutative W ∗-algebra,
(b) B(H ), H finite dimensional,
(c) a type II1 factor.
Hence, by Corollary 4.3, if A is any of the above W ∗-algebras then

ExtR(PI (
nA∗)) = { φn : φ ∈ ExtC(A ) }.

If dim(A ) ≥ 2 then ExtC(A ) is a proper subset of {x : x ∈ A , ‖x‖ = 1}.
(See for instance [5, Theorem 1.9]). For example if A = �m∞ then its predual
is �m

1 and ExtR(PI (
n�m

1 )) consists of all φn where φ lies in the distinguished
boundary of the unit polydisc in Cm.

The above method does not extend to all W ∗-algebras. By [16, Corollary 2]

ExtC(B(H )) = { u ∈ B(H ) : uu∗ = IH or u∗u = IH }.
If H is infinite dimensional then the forward shift, S, is a non-unitary extreme
point of the unit ball of B(H ). By [16] isometries of B(H ) map extreme
points to extreme points and unitaries to unitaries. Hence no isometry ofB(H )

maps S to IH and ExtC(B(H )) = ExtR(B(H )) is not B(H )∗-transitive.

Proposition 4.5. If E is a finite dimensional complex Banach space then

{ φn : φ ∈ ExtR(E′) } ⊂ ExtR(PI (
nE))

for all n.

Proof. Let φ ∈ ExtR(E′). Suppose φn /∈ ExtR(PI (
nE)). Since E is finite

dimensional Proposition 3.1(e) implies that φn /∈ ExtR(PN(nE)).
Hence there exist P and Q in PN(nE), P �= Q, and λ ∈ R, 0 < λ < 1,

such that
φn = λP + (1 − λ)Q

and ‖P ‖ = ‖Q‖ = 1.

Since E is finite dimensional so also is PN(nE). Hence the unit ball of
PN(nE) is the convex hull of its extreme points and thus, by Proposition 3.1(f),
there exists (φi)

k+l
i=1 ⊂ E′, φi �= 0, such that λP = ∑k

i=1 φn
i , ‖λP ‖N =∑k

i=1 ‖φn
i ‖, (1 − λ)Q = ∑k+l

i=k+1 φn
i and ‖(1 − λ)Q‖N = ∑k+l

i=k+1 ‖φn
i ‖.
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Hence

‖φn‖N = ‖φn‖ = 1 =
k+l∑
i=1

‖φn
i ‖.

Choose x0 ∈ E, ‖x0‖ = 1, such that φ(x0) = 1. On differentiating φn =∑k+l
i=1 φn

i at x0 we obtain

φ = φn−1(x0)φ =
k+l∑
i=1

φn−1
i (x0)φi.

Hence

1 = ‖φ‖ ≤
k+l∑
i=1

|φn−1
i (x0)|‖φi‖ ≤

k+l∑
i=1

‖φi‖n = 1.

and we can choose for each i, βi ∈ C, with |βi | = 1 such that

φ =
k+l∑
i=1

|φn−1
i (x0)| · ‖φi‖ · βiφi

‖φi‖ .

Since φ ∈ ExtR(E′) this implies that for each i, φi = αiφ for some αi ∈ C.
Hence P = φn = Q. This contradicts our hypothesis and shows that φn ∈
ExtR(PN(nE)) = ExtR(PI (

nE)) and completes the proof.

Example 4.6. If J is a JB∗-algebra then, by [4, Lemma 4.1] and [15,
Theorem 11],

ExtR(J ) = ExtC(J ).

Hence Propositions 4.1 and 4.5 imply

{φn : φ ∈ ExtR(J )} = ExtR(PI (
nJ ′))

for any finite dimensional JB∗-algebra J . This result gives an independent
proof of the result in Example 4.4 for finite dimensional C ∗-algebras.

Example 4.7. If E′ is a strictly convex finite dimensional Banach space
then

ExtR(PI (
nE)) = { φn : φ ∈ E′, ‖φ‖ = 1 }.

This is similar to the result for real Banach spaces quoted above (Proposi-
tion 3.2).

To extend Proposition 4.5 to infinite dimensional spaces we require weak∗-
exposed points. For convenience we introduce these in complex form.

Definition 4.8. Let E denote a Banach over C. A linear functional φ ∈ E′
is a weak∗-exposed point of the unit ball of E′ if ‖φ‖ = 1 and there exists
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x ∈ E, ‖x‖ = 1, such that �(φ(x)) = 1 and �(ψ(x)) < 1 for all ψ ∈ E′,
‖ψ‖ ≤ 1 and ψ �= φ. We say that x weak∗-exposes φ. We let Expω∗(E′)
denote the set of all weak∗-exposed points of the unit ball of E′.

If φ : E −→ C is complex linear then φ̃ := �(φ) is a real linear mapping.
Moreover, ‖φ‖ = ‖φ̃‖ and φ(x) = φ̃(x) − iφ̃(ix) for all x in E. Hence if φ1

and φ2 are complex linear then φ1 = φ2 if and only if �(φ1) = �(φ2).
If x weak∗-exposes φ and φ = φ1+φ2

2 with ‖φ1‖ = ‖φ2‖ = 1 then, |φ1(x)| ≤
1 and |φ2(x)| ≤ 1 imply φ1(x) = φ2(x) = 1. Hence φ1 = φ2 = φ and
Expω∗(E′) ⊂ ExtR(E′).

For our next result, which was motivated by [3, Proposition 5], we require
the following Lemma [3, Lemma 4].

Lemma 4.9. Let E be a normed space and let φ be a unit vector in E′. Sup-
pose that for each finite dimensional subspace F of E there exists a subspace
G of E, F ⊂ G, such that φ|G is an extreme point of the unit ball of G′. Then
φ is an extreme point of the unit ball of E′.

Proposition 4.10. If E is a complex Banach space then

{ φn : φ ∈ Expω∗(E′) } ⊂ ExtR(PI (
nE)).

Proof. Let φ ∈ Expω∗(E′) and suppose x weak∗-exposes φ. Given a finite
dimensional subspace X of

⊗
n,s,ε

E choose a finite dimensional subspace F

of E such that x ∈ F and X ⊂ ⊗
n,s,ε

F . Since x ∈ F , ‖φ|F ‖ = 1. Let

ψ ∈ F ′, ‖ψ‖ = 1 and ψ �= φ|F . By the Hahn-Banach Theorem there exists
ψ̃ ∈ E′ such that ψ̃ |F = ψ and ‖ψ̃‖ = ‖ψ‖ = 1. Since ψ̃ �= φ we have
�(ψ̃(x)) = �(ψ(x)) < 1 and φ|F ∈ Expω∗(F ′) ⊂ ExtR(F ′).

By Proposition 4.5

(φ|F )n = φn|F ∈ ExtR(PI (
nF )) = ExtR

((⊗
n,s,ε

F
)′)

.

By Proposition 3.1(a) and Lemma 4.9,

φn ∈ ExtR
((⊗

n,s,ε

E
)′) = ExtR(PI (

nE)).

This completes the proof.

Example 4.11. If E is a complex Banach space let

D(E)={x ∈ E : ‖x‖ = 1 and f (·) := ‖·‖ is real Gâteaux differentiable at x}.



extreme integral polynomials on a complex banach space 137

Then, see [19] and [10],

Expω∗(E′) = { φ ∈ E′ : φ = f ′(x) for some x ∈ D(E) }.
For many classical Banach spaces, e.g. �p, 1 < p < ∞, this result can be used
to show that

{ φ : φ ∈ E′, ‖φ‖ = 1 } = Expω∗(E′)

and hence, by Proposition 4.10, that

ExtR(PI (
nE)) = { φn : φ ∈ E′, ‖φ‖ = 1 }.

If E = �1 then x = (xn)n ∈ D(�1) if and only if xn �= 0 for all n. Hence
φ := (yn)n ∈ Expω∗(�∞) if and only if |yn| = 1 for all n and Expω∗(�∞) =
ExtR(�∞). Since ExtR(�∞) = ExtC(�∞) this implies

{ φn : φ ∈ ExtR(�∞) } = ExtR(PI (
n�1))

and we recover a special case of Example 4.4 since �∞ is a W ∗-algebra.

Example 4.12. Let �m∞ denote Cm endowed with the supremum norm. By
Proposition 3.1(f)

ExtR(PI (
n�m

∞)) ⊂ { φn : φ ∈ �m
1 , ‖φ‖ = 1 }

for n ≥ 2. If φ := (w1, . . . , wm) ∈ �m
1 , θ := (θ1, . . . , θm) ∈ Rm and σ is a

permutation of {1, . . . , m} let

φθ,σ := (eiθ1wσ(1), . . . , eiθmwσ(m)).

It is easily seen that φn
θ,σ ∈ ExtR(PI (

n�m∞)) if and only if φn ∈ ExtR(PI (
n�m∞)).

Hence to show

(3) ExtR(PI (
n�m

∞)) = { φn : φ ∈ �m
1 , ‖φ‖ = 1 }.

it suffices to show that αn ∈ ExtR(PI (
n�m∞)) where α := (α1, . . . , αm) sat-

isfies 0 ≤ α1 ≤ α2 ≤ · · · ≤ αm and
∑m

i=1 αi = 1. Let l denote the smallest
positive integer such that αl > 0. If l = m then α ∈ ExtR(�m

1 ) and Proposi-
tion 4.5 implies that αn ∈ ExtR(PI (

n�m∞)). We may thus suppose, from now
on, that l < m.

By Proposition 3.1(d), (PI (
n�m∞))′ = P(n�m

1 ) with duality 〈φn, P 〉 =
P(φ) for P ∈ P(n�m

1 ) and φ ∈ (�m∞)′ = �m
1 . By the Krein-Milman Theorem

|P |, P ∈ P(n�m
1 ), achieves its maximum over the unit ball of �m

1 at a point φ

where φn ∈ ExtR(PI (
n�m∞)).
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Now consider the 2-homogeneous polynomial on �m
1

Pα(z1, . . . , zm) :=
∑

l≤i<j≤m

zizj +
∑
k≥l

αk − αl

2αk

z2
k.

Since
|Pα(z1, . . . , zm)| = |Pα(0, . . . , 0, zl, . . . , zm)|

≤
∑

l≤i<j≤m

|zi ||zj | +
∑
k≥l

αk − αl

2αk

|zk|2

= Pα(0, . . . , 0, |zl|, . . . , |zm|)

≤ ‖Pα‖ ·
(∑

k≥l

|zk|
)2

it follows that |Pα| achieves its maximum, ‖Pα‖ := ‖Pα‖B�m
1

, at some point

which has the form eiθ (0, . . . , 0, xl, . . . , xm) where xi ≥ 0 for i ≥ l,
∑m

i=l xi =
1 and θ ∈ R.

Applying the method of Lagrange multipliers to the problem of maximizing
|Pα| on the set T := {

(0, . . . , 0, xl, . . . , xm) : xi > 0 and
∑m

i=l xi = 1
}

yields
the equations ∑

i>l

xi = λ = 1 − xl

and ( m∑
i=l

xi

)
− xk + αk − αl

2αk

2xk = λ

for k > l. Hence αlxk = αkxl for k ≥ l. Since
∑m

i=l xi = ∑m
i=l αi = 1 this

implies αi = xi for i ≥ l.
Hence

sup{ |Pα(x)| : x ∈ T } =
∑

l≤i<j≤m

αiαj +
∑
k≥l

αk − αl

2αk

α2
k

= 1

2

( m∑
i=l

αi

)2

− 1

2
αl ·

m∑
k=l

αk

= 1

2
(1 − αl).
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If l∗ ≥ l, {l∗} ⊂ S ⊂ {l∗, . . . , m} let

S =
{

x ∈ Rm : x = (0, . . . , 0, xl∗ , . . . , xm),

xi > 0 if i ∈ S, xi = 0 if i /∈ S and
m∑

i=l

xi = 1

}
.

An analysis similar to the above shows that

sup{ |Pα(x)| : x ∈ S } =
(∑

i∈S αi

) − αl

2
(∑

i∈S αi

) = 1

2

(
1 − αl∑

i∈S αi

)

Since αi>0 when i≥l this shows that ‖Pα‖ = |Pα(z1, . . . ,zm)|, ∑m
i=1 |zi |=1, if

and only if (z1, . . . , zm) = eiθα for some θ ∈ R. Hence α2 ∈ ExtR(PI (
2�m∞))

and we have established (3) when n = 2.
If β := (1, 1, . . . , 1) ∈ �m∞ then ‖β‖ = 1 and 〈β, (z1, . . . , zm)〉 = ∑m

i=1 zi

for (z1, . . . , zm) ∈ �m
1 . Hence |β| achieves its maximum over the unit ball of �m

1
precisely at all points of the form eiθ (x1, . . . , xm) where xi ≥ 0,

∑m
i=1 xi = 1

and θ ∈ R.
If n > 2 then Q := Pα · βn−2 is an n-homogeneous polynomial on �m

1
and |Q| achieves its maximum over the unit ball of �m

1 precisely at those
points which have the form eiθα where θ ∈ R is arbitrary. Hence αn ∈
ExtR(PI (

n�m∞)) and we have established (3) for all n ≥ 2 and all m.

Note that the function

f ((yn)n) := 1 + Pα

((
eiθnyσ(n)

)m

n=1

)
satisfies |f (y)| < |f (x)| for all y �= x in the closed unit ball of �1. This may be
used to show that all finitely supported unit vectors are peak points of different
algebras of holomorphic functions (we refer to [2] for details).
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