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DISCRETE ASYMPTOTIC HOMOMORPHISMS IN
E-THEORY AND KK-THEORY

KLAUS THOMSEN

Abstract

We obtain six-term exact sequences for E-theory and KK-theory which involve discrete asymptotic
homomorphisms and generalize the extension of groups from the UCT theorem.

1. Introduction

In this paper we show how the homotopy classes of discrete asymptotic ho-
momorphisms

ϕ = (ϕn)n∈N : SA→ B ⊗K

can be organized to become a bivariant functorD(A,B)with many of the same
properties as the E-theory of Connes and Higson. Furthermore, we show that
this bi-functor is related to E-theory via two six-term exact sequences of the
form

D(A,B)
id−σ−−−−−→ D(A,B) −−−−−→ E(A,B)

↑
↓

E(A, SB)←−−−−− D(A, SB) ←−−−−−
id−σ D(A, SB)

D(A,B)
id−σ−−−−−→ D(A,B) −−−−−→ E(A,B)

↑
↓

E(SA,B)←−−−−− D(SA,B) ←−−−−−
id−σ D(SA,B)

The map σ is the automorphism induced by the shift:

σ(ϕ)n = ϕn+1.

By restricting all considerations to asymptotic homomorphisms where the
individual maps are completely positive linear contractions we get similar exact
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sequences involving KK-theory, and we show how an appropriate unsplicing
of one of the resulting six-term exact sequences reduces to the extension of
groups from the UCT theorem in the form it has been given by Rørdam in [14]
and Dadarlat and Loring in [6].

Because E-theory and KK-theory both have equivariant versions which
are used in connection with the Novikov conjecture and the Baum-Connes
conjecture we have taken the trouble to develop the equivariant theory and
obtain the six-term exact sequences in that setting.

Although the sole purpose of this paper is to demonstrate how the theory
of discrete asymptotic homomorphisms give rise to bifunctors which are in-
timately related to KK-theory and E-theory, we comply with the referees wish
and include at the end a remark about the possibility of actually calculating
these new bifunctors.

2. Basics

In the following G will be a fixed locally compact topological group. A C∗-
algebra with a pointwise normcontinuous action of G by automorphisms will
be called a G-algebra. Let A and B be G-algebras.

Definition 2.1. An asymptotic homomorphism ϕ = {ϕt }t∈[0,∞) : A→ B

is a family of functions ϕt : A→ B such that

(1) t �→ ϕt (a) is continuous for all a ∈ A,
(2) lim

t→∞[ϕt (ab)− ϕt (a)ϕt (b)] = 0 for all a, b ∈ A,

(3) lim
t→∞[ϕt (a + λb)− ϕt (a)− λϕt (b)] = 0 for all a, b ∈ A and all λ ∈ C,

(4) lim
t→∞[ϕt (a

∗)− ϕt (a)
∗] = 0 for all a ∈ A,

(5) lim
t→∞[ϕt (g · a)− g · ϕt (a)] = 0, g ∈ G, a ∈ A.

Note that we do not require any continuity of ϕt on A, so in order to be able
to work with asymptotic homomorphisms we need the following property. A
proof can be found in [15].

Lemma 2.2. Let ϕ = {ϕt }t∈[0,∞) : A→ B be an asymptotic homomorph-
ism. Then

lim
t→∞

sup
s≥t
‖ϕs(y)‖ ≤ ‖y‖

for all y ∈ A.
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Definition 2.3. An asymptotic homomorphism ϕ = {ϕt }t∈[0,∞) : A→ B

is sequentially trivial when

lim
n→∞ϕn(a) = 0, a ∈ A.

Most of the asymptotic homomorphisms ϕ = {ϕt } we shall work with will
have the following additional properties :

For all a ∈ A and all ε > 0 there is a neighbourhood U of e such that

(6) sup
t∈[0,∞)

‖g · ϕt (a)− ϕt (a)‖ ≤ ε, g ∈ U.

For all a ∈ A and all ε > 0 there is a δ > 0 such that

(7) sup
t∈[0,∞)

‖ϕt (a)− ϕt (b)‖ ≤ ε when ‖a − b‖ ≤ δ.

An asymptotic homomorphism is called equicontinuous when (6) and (7)
hold.

Proposition 2.4. Let ϕ = {ϕt }t∈[0,∞) : A→ B be a (sequentially trivial)
asymptotic homomorphism. There is then a (sequentially trivial) equicontinu-
ous asymptotic homomorphism ϕ′ = {ϕ′t }t∈[0,∞) : A→ B such that

lim
t→∞[ϕt (a)− ϕ′t (a)] = 0

for all a ∈ A.

The proof of this fact is based on the following result.

Theorem 2.5 (Brown). Let

0 −−→ J i−−−→ E
p−−−→ B −−→ 0

be an extension of C∗-algebras. Let α : G → Aut J , β : G → AutE and
γ : G→ AutB be homomorphisms such G � g �→ αg(j) is continuous for
all j ∈ J and G � g �→ γg(b) is continuous for all b ∈ B. Assume that i
and p are G-equivariant, i.e. that i ◦ αg = βg ◦ i and γg ◦ p = p ◦ βg for all
g ∈ G. It follows that G � g �→ βg(e) is continuous for all e ∈ E.

This result was obtained in [16] in the case where G is σ -compact and
the C∗-algebras separable. We will have to restrict our considerations to such
cases below (in order to define the composition products), so for all our results
Theorem 2.1 of [16] will suffice. However, Larry Brown has obtained the
general result in [1]. In fact, Brown proves a result which is much more general
than Theorem 2.5 and deals with Banach spaces.
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We can now give the

Proof of Proposition 2.4. Let Cb([0,∞), B) denote the C∗-algebra
of bounded continuous functions f : [0,∞) → B and consider SB =
C0(0,∞) ⊗ B as an ideal of Cb([0,∞), B) in the obvious way. We let p :
Cb([0,∞), B) → Cb([0,∞), B)/SB be the quotient map. The given action
α : G → AutB defines a representation β : G → AutCb([0,∞), B) in the
obvious way :

βg(f )(t) = αg(f (t)), t ∈ [0,∞).

This action is generally not continuous, but its restriction to SB is. β defines a
representation γ of G as automorphisms of Cb([0,∞), B)/SB in the obvious
way, i.e. such that γg ◦ p = p ◦ βg for all g ∈ G. By Lemma 2.2 there is a
map ψ : A→ Cb([0,∞), B) given by

ψ(a)(t) = ϕt (a), t ∈ [0,∞).

By conditions (1)–(4) in Definition 2.1 we have thatp◦ψ is a∗-homomorphism
and hence in particular continuous. By condition (5) of Definition 2.1 we have
that ψ is G-equivariant with respect to γ , and it follows that γ restricts to
a continuous representation of G as automorphisms of ψ(A). Then Theorem
2.5 implies that β is continuous on p−1(ψ(A)). By the Bartle-Graves se-
lection theorem we can find a continuous section s : ψ(A) → p−1(ψ(A))

for the restriction of p to p−1(ψ(A)). Set ϕ′t (a) = s ◦ ψ(a)(t), a ∈ A,
t ∈ [0,∞). Then ϕ′ is an equicontinuous asymptotic homomorphism such
that limt→∞ ‖ϕt (a) − ϕ′t (a)‖ = 0 for all a ∈ A. In particular, ϕ′ is sequen-
tially trivial when ϕ is.

When X is a locally compact Hausdorff space, we consider C0(X)⊗ B as
a G-algebra with the action

(g · f )(x) = g · f (x), x ∈ X, f ∈ C0(X)⊗ B.

The equivariant homomorphismC0(X)⊗B → B given by evaluation at x ∈ X
will be denoted by πx . The special cases X = (0,∞) and X = [0, 1] will be
used so often that a special notation is convenient. We shall denote the C∗-
algebras C0(0,∞) � C0(0, 1) and C[0, 1] by S and I , respectively, and set
SB = C0(0,∞)⊗ B, IB = C[0, 1]⊗ B.

Two (sequentially trivial) asymptotic homomorphisms ϕ,ψ : A→ B are
homotopic when there is a (sequentially trivial) asymptotic homomorphism
� = {�t } : A → C[0, 1] ⊗ B such that π0 ◦ �t = ϕt , π1 ◦ �t = ψt for all
t ∈ [0,∞). This is an equivalence relation, and we denote the set of homotopy
classes of asymptotic homomorphisms by [[A,B]], and the set of homotopy
classes of sequentially trivial asymptotic homomorphisms by [[A,B]]0.
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When dealing with asymptotic homomorphisms which are equicontinuous
it is natural to impose the condition of equicontinuity on the homotopies also.
Thus two equicontinuous (sequentially trivial) asymptotic homomorphisms
ϕ,ψ : A → B are homotopic when there is a (sequentially trivial) equicon-
tinuous asymptotic homomorphism � = {�t } : A→ C[0, 1] ⊗ B such that
π0 ◦�t = ϕt , π1 ◦�t = ψt for all t ∈ [0,∞). Let us (temporarily) introduce
the notation [[A,B]]u and [[A,B]]u0 for the set of homotopy classes of equicon-
tinuous asymptotic homomorphisms, and sequentially trivial equicontinuous
asymptotic homomorphisms, respectively.

Lemma 2.6. The natural maps [[A,B]]u → [[A,B]] and [[A,B]]u0 →
[[A,B]]0 are bijections.

Proof. This follows readily from Proposition 2.4

Having proved this lemma we will identify [[A,B]]u with [[A,B]], and
[[A,B]]u0 with [[A,B]]0.

3. Products and pairings

We are now going to define the composition product of (sequentially trivial)
asymptotic homomorphisms, and a pairing between asymptotic homomorph-
isms and sequentially trivial asymptotic homomorphisms. For this purpose we
need to restrict our considerations to separableG-algebras and need to assume
that G is σ -compact. These restrictions will be in force in the rest of the paper.

The constructions in this section are all essentially identical to the corres-
ponding constructions in [3] and [8]. The only difference is that we have to
take additional care to handle sequentially trivial asymptotic homomorphisms.

Definition 3.1. A parametrization (of [0,∞)) is a continuous non-decrea-
sing function r : [0,∞)→ [0,∞) such that limt→∞ r(t) = ∞.

Note that when ϕ = {ϕt } : A→ B is an equicontinuous asymptotic homo-
morphism and r : [0,∞)→ [0,∞) is a parametrization, ϕr(·) is an equicon-
tinuous asymptotic homomorphism which is homotopic to ϕ. But of course
not necessarily sequentially trivial even when ϕ is. This is the main reason that
we have to take additional care in the construction of the composition product
for sequentially trivial asymptotic homomorphisms.

Definition 3.2. Let A, B and C be G-algebras, and let ϕ = {ϕt }t∈[0,∞) :
A→ B and ψ = {ψt }t∈[0,∞) : B → C be equicontinuous asymptotic homo-
morphisms. A composition pair for ψ and ϕ is a dense subset X ⊆ A which is
the union of a sequence of compact subsets containing 0 and a parametrization
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r : [0,∞)→ [0,∞) such that

(8) lim
t→∞

sup
s≥r(t)

‖ψs ◦ ϕt (ab)− ψs ◦ ϕt (a)ψs ◦ ϕt (b)‖ = 0,

(9) lim
t→∞

sup
s≥r(t)

‖ψs ◦ ϕt (a + λb)− ψs ◦ ϕt (a)− λψs ◦ ϕt (b)‖ = 0,

(10) lim
t→∞

sup
s≥r(t)

‖ψs ◦ ϕt (a∗)− ψs ◦ ϕt (a)∗‖ = 0,

for all a, b ∈ X, λ ∈ C, and for every compact subset K ⊆ G, every pair
a, b ∈ X and every ε > 0 there is a t0 ∈ [0,∞) such that

(11) sup
s≥r(t)

‖g · ψs ◦ ϕt (a)− ψs ◦ ϕt (h · b)‖ ≤ ‖g · a − h · b‖ + ε,

for all g, h ∈ K when t ≥ t0.

Note that if (X, r) is a composition pair for ϕ and ψ , then so is (X, r ′) for
any parametrization r ′ such that r ′ ≥ r .

Proposition 3.3. Let A, B and C be G-algebras. Let ϕ = {ϕt }t∈[0,∞) :
A → B and ψ = {ψt }t∈[0,∞) : B → C be equicontinuous asymptotic ho-
momorphisms, and let X ⊆ A be a dense subset which is the union of a
countable family of compact sets containing 0. There is then a parametriza-
tion r : [0,∞) → [0,∞) such that (X, r) is a composition pair for ψ and
ϕ.

Proof. This follows straightforwardly by using the separability of the C∗-
algebras, the σ -compactness of the group and the equicontinuity of the asymp-
totic homomorphisms.

Theorem 3.4 (Connes and Higson, [3]). There is a map

[[A,B]]× [[B,C]] � (x, y) �→ y • x ∈ [[A,C]]

with the following properties :
(a) (Definition): When ϕ : A → B and ψ : B → C are equicontinuous

asymptotic homomorphisms, and (X, r) is a composition pair for ψ and ϕ,
then

[ψ] • [ϕ] = [λ]

where λ : A→ C is any equicontinuous asymptotic homomorphism such that

lim
t→∞[λt (x)− ψs(t) ◦ ϕt (x)] = 0, x ∈ X,

for some parametrization s ≥ r .
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(b) (Associativity):

z • (y • x) = (z • y) • x,
x ∈ [[A,B]], y ∈ [[B,C]], z ∈ [[C,D]].

Proof. The proof of this is basically the same as in the case dealt with by
Connes and Higson in [3]. Since all the details can be read out of the following
proofs just by ignoring all references to sequential triviality we shall omit them
here.

Lemma 3.5. Let ϕ : A → B, ψ : B → C be equicontinuous asymp-
totic homomorphisms. Assume that ϕ is sequentially trivial. Let (X, r) be a
composition pair for ψ and ϕ.

(a) For any parametrization s ≥ r there is a sequentially trivial equicon-
tinuous asymptotic homomorphism λs : A→ C such that

lim
t→∞ λst (x)− ψs(t) ◦ ϕt (x) = 0, x ∈ X.

λs is unique up to asymptotic equality.
(b) When s1, s2 are parametrizations such that si ≥ r , i = 1, 2, the two

sequentially trivial asymptotic homomorphisms λs1 and λs2 are homotopic.

Proof. (a): Since 0 ∈ X, it follows from conditions (9) and (11) of Defin-
ition 3.2 that

lim sup
t→∞

‖ψs(t) ◦ ϕt (x)‖ ≤ ‖x‖, x ∈ X.

In the notation from the proof of Proposition 2.4 this shows that every element
x ∈ X defines an element Fx ∈ Cb([0,∞), C) such that Fx(t) = ψs(t) ◦
ϕt (x), t ∈ [0,∞). In fact Fx ∈ CG

b (C), where

CG
b (C) = { f ∈ Cb([0,∞), C) : g �→ g · f is continuous },

because of condition (11) of Definition 3.2. Let q : CG
b (C) → CG

b (C)/SC

be the quotient map. Since ‖q(Fx) − q(Fy)‖ ≤ ‖x − y‖ for all x, y ∈ X by
condition (11) of Definition 3.2, the map x �→ q(Fx) extends by continuity to
a map 0 : A→ CG

b (C)/SC, and conditions (8)–(10) of Definition 3.2 ensure
that 0 is a ∗-homomorphism, and 0 is G-equivariant by condition (11). By
the Bartle-Graves selection theorem there is a continuous right inverse s for
q and we set λst (a) = s ◦ 0(a)(t), t ∈ [0,∞). It is clear that this proves the
existence of an equicontinuous asymptotic homomorphism λs : A→ C such
that

lim
t→∞[λst (x)− ψs(t) ◦ ϕt (x)] = 0, x ∈ X.
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Sinceψ is equicontinuous and ϕ sequentially trivial, it follows that lim
n→∞ λsn(a)

= 0 for all a ∈ X. By equicontinuity of λs this must then hold for all a ∈ A,
i.e. λs is sequentially trivial. The uniqueness up to asymptotic equality follows
from equicontinuity and the density of X.

(b) It suffices to show that λs is homotopic to λr for every parametrization
s ≥ r . To this end note that we may define, for each t ∈ [0,∞), a map
�t : X→ C[0, 1]⊗ C by

�t (x)(α) = ψαs(t)+(1−α)r(t) ◦ ϕt (x), α ∈ [0, 1].

Since αs(t) + (1 − α)r(t) ≥ r(t) for all α, t , it follows from the condi-
tions on (X, r), that limt→∞ ‖�t (ab) − �t (a)�t (b)‖ = 0 for all a, b ∈ X,
limt→∞ ‖�t (a + λb)−�t (a)− λ�t (b)‖ = 0 for all a, b ∈ X and all λ ∈ C,
limt→∞ ‖�t (a

∗) − �t (a)
∗‖ = 0 for all a ∈ X, and for every compact subset

K ⊆ G, every a, b ∈ X and every ε > 0 there is a t0 ∈ [0,∞) such that

sup
s≥t
‖�s(g · a)− h ·�s(b)‖ ≤ ‖g · a − h · b‖ + ε

for all g, h ∈ K when t ≥ t0. Hence, as in the first part of the proof, we obtain
an equicontinuous asymptotic homomorphism � : A → C[0, 1] ⊗ C such
that

lim
t→∞

sup
α∈[0,1]

‖�t (x)(α)− ψαs(t)+(1−α)r(t) ◦ ϕt (x)‖ = 0,

for all x ∈ X. Since ϕ is sequentially trivial and ψ equicontinuous we have
automatically that� is sequentially trivial. Thus�defines a homotopy between
a sequentially trivial asymptotic homomorphism which is asymptotically equal
to λs and one which is asymptotically equal to λr . It follows that λr and λs are
homotopic as sequentially trivial asymptotic homomorphisms.

Theorem 3.6. There is a map

[[A,B]]0 × [[B,C]] � (x, y) �→ y • x ∈ [[A,C]]0

with the following properties :
(a) (Definition): When ϕ : A → B and ψ : B → C are equicontinuous

asymptotic homomorphisms, ϕ is sequentially trivial and (X, r) is a compos-
ition pair for ψ and ϕ, then

[ψ] • [ϕ] = [λ]

where λ : A→ C is any equicontinuous asymptotic homomorphism such that

lim
t→∞[λt (x)− ψs(t) ◦ ϕt (x)] = 0, x ∈ X,
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for some parametrization s ≥ r .
(b) (Associativity):

z • (y • x) = (z • y) • x,
in [[A,D]]0, when x ∈ [[A,B]]0, y ∈ [[B,C]], z ∈ [[C,D]].

Proof. (a) Let ϕ′ : A → B, ψ ′ : B → C be equicontinuous asymptotic
homomorphisms such that [ϕ] = [ϕ′] in [[A,B]]0 and [ψ] = [ψ ′] in [[B,C]].
Let (X1, r1) be a composition pair forψ and ϕ, and (X2, r2) a composition pair
for ψ ′ and ϕ′. Let s1 ≥ r1, s2 ≥ r2 be parametrizations. Assume that λ1, λ2 :
A → C are equicontinuous sequentially trivial asymptotic homomorphisms
such that

lim
t→∞[λ1

t (x)− ψs1(t) ◦ ϕt (x)] = 0, x ∈ X1,

and
lim
t→∞[λ2

t (x)− ψ ′s2(t)
◦ ϕ′t (x)] = 0, x ∈ X2.

We must show that λ1 and λ2 are homotopic. Let � : A → C[0, 1] ⊗ B

be a sequentially trivial equicontinuous asymptotic homomorphism such that
π0 ◦ � = ϕ and π1 ◦ � = ϕ′. Let � : C[0, 1] ⊗ B → C[0, 1] ⊗ C be the
equicontinuous asymptotic homomorphism given by �t (f )(α) = ψt(f (α)),
α ∈ [0, 1], f ∈ C[0, 1]⊗B. Let �1 : B → C[0, 1]⊗C be an equicontinuous
asymptotic homomorphism with π0 ◦ �1 = ψ and π1 ◦ �1 = ψ ′. Set Y =
X1 ∪ X2. By Proposition 3.3 there is a composition pair (Y, v) for � and �

and a composition pair (Y, v1) for �1 and ϕ′ such that v ≥ s1 and v1 ≥ s2.
By Lemma 3.5, applied to � and �, this gives us, for every parametrization
w ≥ v∨v1, an equicontinuous sequentially trivial asymptotic homomorphism,
λ3 : A→ C, which is homotopic to λ1 and satisfies that

lim
t→∞[λ3

t (x)− ψw(t) ◦ ϕ′t (x)] = 0, x ∈ Y.

Similarly, by applying Lemma 3.5 to �1 and ϕ′, we get an equicontinuous se-
quentially trivial asymptotic homomorphism λ4 : A→ C which is homotopic
to λ2 and satisfies that

lim
t→∞[λ4

t (x)− ψw(t) ◦ ϕ′t (x)] = 0, x ∈ Y.

SinceY is dense inA, λ3 andλ4 are asymptotically equal and hence homotopic.
(b) Let ϕ : A→ B,ψ : B → C, λ : C → D be equicontinuous asymptotic

homomorphisms, with ϕ sequentially trivial, such that [λ] = z, [ψ] = y,
[ϕ] = x. Let (X, r) be a composition pair for ψ and ϕ, and µ : A → C

an equicontinuous sequentially trivial asymptotic homomorphism such that
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limt→∞ ‖µt(x) − ψr(t) ◦ ϕt (x)‖ = 0, x ∈ X. Let (X,w) be a composition
pair for λ and µ which satisfies several additional properties which we now
describe. By choosing w to be sufficiently rapidly increasing we can ensure
that

(12) lim
t→∞

sup
s≥t
‖λw(s) ◦ ψr(s) ◦ ϕt (ab)

− λw(s) ◦ ψr(s) ◦ ϕt (a)λw(s) ◦ ψr(s) ◦ ϕt (b)‖ = 0,

(13) lim
t→∞

sup
s≥t
‖λw(s) ◦ ψr(s) ◦ ϕt (a + zb)

− λw(s) ◦ ψr(s) ◦ ϕt (a)− zλw(s) ◦ ψr(s) ◦ ϕt (b)‖ = 0,

(14) lim
t→∞

sup
s≥t
‖λw(s) ◦ ψr(s) ◦ ϕt (a∗)− λw(s) ◦ ψr(s) ◦ ϕt (a)∗‖ = 0

for all a, b ∈ X, z ∈ C, and for every compact subset C ⊆ G, any pair
a, b ∈ X and any ε > 0 there is a t0 ∈ [0,∞) such that

(15) sup
s≥t
‖λw(s) ◦ ψr(s) ◦ ϕt (g · a)− h · λw(s) ◦ ψr(s) ◦ ϕt (b)‖

≤ ‖g · a − h · b‖ + ε

for all g, h ∈ C when t ≥ t0. Let us show how to meet the last condition. Write
G =⋃

n Gn where each Gn is open with Gn compact, and X =⋃
n Kn where

each Kn is a compact subset of A. Both sequences are chosen so that they are
increasing. For each n there is a tn such that

sup
s≥t
‖ψr(s) ◦ ϕt (g · a)− h · ψr(s) ◦ ϕt (b)‖ ≤ ‖g · a − h · b‖ + 1

n

for all g, h ∈ Gn, a, b ∈ Kn, t ≥ tn. This follows from condition (11) of
Definition 3.2. We may assume that tn < tn+1 for alln and that limn→∞ tn = ∞.
By equicontinuity and compactness we can find sn ∈ [0,∞) such that

sup
y≥sn
‖λy(g · ψr(s) ◦ ϕt (a))− g · λy ◦ ψr(s) ◦ ϕt (a)‖ ≤ 1

n
,

and

sup
y≥sn
‖λy ◦ ψr(s) ◦ ϕt (g · a)− λy(h · ψr(s) ◦ ϕt (a))‖

≤ ‖ψr(s) ◦ ϕt (g · a)− h · ψr(s) ◦ ϕt (a)‖ + 1

n

for all g, h ∈ Gn, a, b ∈ Kn, s, t ∈ [0, tn+1]. We may assume that sn < sn+1

for all n and that limn→∞ sn = ∞. Let v : [0,∞)→ [0,∞) be an increasing
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parametrization with v(tn) = sn. Let w be any parametrization w ≥ v, and
consider any a, b ∈ Kn, g, h ∈ Gn. When t ≥ tm, m ≥ n and s ≥ t , there is a
k ≥ m such that s ∈ [tk, tk+1]. Then w(s) ≥ v(s) ≥ v(tk) = sk and hence

‖λw(s) ◦ ψr(s) ◦ ϕt (g · a)− h · λw(s) ◦ ψr(s) ◦ ϕt (b)‖
≤ ‖λw(s) ◦ ψr(s) ◦ ϕt (g · a)− λw(s)(h · ψr(s) ◦ ϕt (b))‖
+ ‖λw(s)(h · ψr(s) ◦ ϕt (b))− h · λw(s) ◦ ψr(s) ◦ ϕt (b)‖

≤ ‖ψr(s) ◦ ϕt (g · a)− h · ψr(s) ◦ ϕt (b)‖ + 2

k

≤ 2

k
+ 1

m
+ ‖g · a − h · b‖ ≤ 3

m
+ ‖g · a − h · b‖,

for all a, b ∈ Kn, g, h ∈ Gn. This shows that the last condition holds for all
parametrizationswwhich are sufficiently large. The first conditions are met via
similar, but slightly simpler arguments. Since limt→∞ ‖µt(x)−ψr(t)◦ϕt (x)‖ =
0, x ∈ X, we can make w increase so rapidly that

lim
t→∞‖λw(t) ◦ µt(x)− λw(t) ◦ ψr(t) ◦ ϕt (x)‖ = 0, x ∈ X.

Finally, let Y be a dense subset of B which is a countable union of compact
sets containing 0 such that

⋃
t ϕt (X) ⊆ Y . We take w such that (Y,w) is a

composition pair for λ andψr(·), in addition to all the other requirements. Then
[λ] • ([ψ] • [ϕ]) = [β] where β : A→ D is an equicontinuous sequentially
trivial asymptotic homomorphism such that

lim
t→∞‖βt (x)−λw(t)◦µt(x)‖ = lim

t→∞‖βt (x)−λw(t)◦ψr(t)◦ϕt (x)‖ = 0, x ∈ X.

Let ν : B → D be an equicontinuous asymptotic homomorphism such that

lim
t→∞‖νt (y)− λw(t) ◦ ψr(t)(y)‖ = 0, y ∈ Y.

Let (X, s) be a composition pair for ν and ϕ such that s(t) ≥ t for all t ∈
[0,∞). By using that

⋃
t ϕt (X) ⊆ Y , we can choose the parametrization

s : [0,∞)→ [0,∞) such that

lim
t→∞‖νs(t) ◦ ϕt (x)− λw(s(t)) ◦ ψr(s(t)) ◦ ϕt (x)‖ = 0, x ∈ X.

Thanks to the special properties of w we can construct homotopic equicon-
tinuous asymptotic homomorphisms, λ0, λ1 : A→ D, such that

lim
t→∞‖λ

0
t (x)− λw(t) ◦ ψr(t) ◦ ϕt (x)‖ = 0, x ∈ X,
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and
lim
t→∞‖λ

1
t (x)− λw(s(t)) ◦ ψr(s(t)) ◦ ϕt (x)‖ = 0, x ∈ X.

The homotopy is given by an equicontinuous asymptotic homomorphism � =
(�t ), where

lim
t→∞

sup
α∈[0,1]

‖�t (x)(α)− λw(αs(t)+(1−α)t) ◦ ψr(αs(t)+(1−α)t) ◦ ϕt (x)‖ = 0

for all x ∈ X. � exists by the requirements we put on w. Note that the
equicontinuity of λ, ψ and �, combined with the sequential triviality of ϕ,
implies that � must be sequentially trivial. Since β and λ0 are asymptotically
equal we conclude that [β] = [λ1] in [[A,D]]0. Since limt→∞ ‖λ1

t (x)−νs(t) ◦
ϕt (x)‖ = 0, x ∈ X, we have that [λ1] = [ν] • [ϕ] = ([λ] • [ψr(·)]) • [ϕ] =
([λ] • [ψ]) • [ϕ].

To get a pairing of [[A,B]]× [[B,C]]0 → [[A,C]]0 we use the following
definition.

Definition 3.7. A parametrization r : [0,∞) → [0,∞) is said to be
invertible when r is strictly increasing and r(0) = 0. Let A, B and C be G-
algebras, and let ϕ = {ϕt }t∈[0,∞) : A→ B and ψ = {ψt }t∈[0,∞) : B → C be
equicontinuous asymptotic homomorphisms. Assume that ψ is sequentially
trivial. A composition pair (X, r) for ϕ and ψ is said to be invertible when r

is invertible and

(16) lim
t→∞

sup
{n∈N:n≥r(t)}

‖ψn ◦ ϕt (a)‖ = 0

for all a ∈ X.

By using that ψ is sequentially trivial one sees that invertible composition
pairs always exist. The crucial point about this notion is that when (X, r) is an
invertible composition pair,

lim
n→∞ψn ◦ ϕs−1(n)(x) = 0

for all x ∈ X and all invertible parametrizations s ≥ r .

Lemma 3.8. Let ϕ : A → B, ψ : B → C be equicontinuous asymp-
totic homomorphisms. Assume that ψ is sequentially trivial. Let (X, r) be an
invertible composition pair for ψ and ϕ.

(a) For any invertible parametrization s ≥ r there is a sequentially trivial
equicontinuous asymptotic homomorphism µs : A→ C such that

lim
t→∞µs

t (x)− ψt ◦ ϕs−1(t)(x) = 0, x ∈ X.
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µs is unique up to asymptotic equality.
(b)When s1, s2 are invertible parametrizations such that si ≥ r , i = 1, 2, the

two sequentially trivial asymptotic homomorphismsµs1 andµs2 are homotopic.

Proof. (a) Construct λs exactly as in the proof of (a) in Lemma 3.5. Set
then

µs
t (a) = λs

s−1(t)
(a).

Then
lim
t→∞‖µ

s
t (x)− ψt ◦ ϕs−1(t)(x)‖ = 0

for all x ∈ X. Since r satisfies (16) and s ≥ r it follows that limn→∞ µs
n(x) = 0

for all x ∈ X. By equicontinuity of µs and density of X in A it follows that µs

is sequentially trivial.
(b) follows in the same way as (b) of Lemma 3.5. The only difference is

that the homotopy � is now obtained by setting

�t (x)(α) = ψt ◦ ϕ[αs+(1−α)r]−1(t)(x).

Theorem 3.9. There is a map

[[A,B]]× [[B,C]]0 � (x, y) �→ y • x ∈ [[A,C]]0

with the following properties:
(a) (Definition): When ϕ : A → B and ψ : B → C are equicontinu-

ous asymptotic homomorphisms, with ψ sequentially trivial, and (X, r) is an
invertible composition pair for ψ and ϕ, then

[ψ] • [ϕ] = [λ],

where λ : A → C is any sequentially trivial equicontinuous asymptotic ho-
momorphism such that

lim
t→∞[λt (x)− ψt ◦ ϕs−1(t)(x)] = 0, x ∈ X,

for some invertible parametrization s ≥ r .
(b) (Associativity):

z • (y • x) = (z • y) • x
in [[A,D]]0, when x ∈ [[A,B]], y ∈ [[B,C]], z ∈ [[C,D]]0.

Proof. (a) follows in the same way as (a) of Theorem 3.6. One uses
Lemma 3.8 instead of Lemma 3.5, of course. The proof of (b) is very sim-
ilar to the proof of (b) of Theorem 3.6, and we leave the details to the reader.
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4. Excision and Bott-periodicity

In this section we describe how the pairings of Theorem 3.6 and Theorem 3.9
can be used to prove a series of fundamental properties of [[A,B]]0. The meth-
ods are basically those developed in [3], [2], [5] and [8] and they all build on the
Bott-periodicity theorem of Cuntz, [4]. In particular, the corresponding results
involving [[A,B]] instead of [[A,B]]0 are all contained in [8]. Accordingly
what we offer in this section is to a large extend merely a reading guide which
shows how the known arguments can be adopted to deal with sequentially
trivial asymptotic homomorphisms.

An extension

(17) 0 −−→ J
j−−−→ A

p−−−→ B −−→ 0

of C∗-algebras, where A,B and J are G-algebras, is said to be an extension
of G-algebras when j and p are G-equivariant.

By using Lemma 1.4 of [10] the Connes-Higson construction from [3]
can be used to obtain an asymptotic homomorphism SB → J from a given
extension of G-algebras of the form (17), cf. Proposition 5.5 in [8].

Theorem 4.1. For any G-algebra D,

[[D, S−]]0,

is a functor from G-algebras to groups which is half-exact with respect to
extensions of G-algebras.

Proof. Consider the G-extension (17), and let

Cp = { (a, f ) ∈ A⊕ CB : f (1) = p(a) }
be the mapping cone of p, and let α : Cp → A be the projection. Then

(18) [[D,Cp]]0
α∗−−−−→ [[D,A]]0

p∗−−−−→ [[D,B]]0

is exact (as pointed sets). Indeed, if ϕ : D → A is a sequentially trivial
asymptotic homomorphism such that p∗[ϕ] = 0, there is a sequentially trivial
asymptotic homomorphism � : D→ IB such that π0 ◦�t = 0 and π1 ◦�t =
p ◦ ϕt for all t ∈ [0,∞). Note that � is a sequentially trivial asymptotic
homomorphism � : D→ CB = {f ∈ IB : f (0) = 0} and that

ψt(d) = (ϕt (d),�t (d)),

defines a sequentially trivial asymptotic homomorphism ψ : D → Cp such
that α∗[ψ] = [ϕ]. By applying (18) to the suspension of (17) we conclude that

(19) [[D, SCp]]0
α∗−−−−→ [[D, SA]]0

p∗−−−−→ [[D, SB]]0
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is exact. By Proposition 5.14 of [8] SCp is equivalent to SJ in the category of
homotopy classes of asymptotic homomorphisms. Therefore the pairing from
Theorem 3.6 allows us to replace SCp with SJ in (19).

We now stabilize the functor. So let K denote the compact operators on an
infinite-dimensional separable Hilbert space. For anyG-algebraAwe consider
A⊗K as a G-algebra with the given G-action on A tensored with the trivial
action on K . Set

D(A,B) = [[SA⊗K , SB ⊗K ]]0 .

ThenD is a bivariant functor from the category ofG-algebras to the category of
abelian groups. Since we consider K as a trivial G-algebra the standard proof
shows that there is natural isomorphism D(A,B) � [[SA, SB⊗K ]]0. More
importantly, we also have Bott-periodicity in the form known fromKK-theory
and E-theory.

Theorem 4.2 (Bott periodicity). There are natural isomorphisms,

D(A, S2B) � D(A,B) and D(S2A,B) � D(A,B).

Furthermore, the suspension map S : D(A,B) → D(SA, SB) is an iso-
morphism.

Proof. By Proposition 6.16 of [8], S3K and SK are equivalent in the
category of homotopy classes of asymptotic homomorphisms. Hence the two
isomorphisms, D(A, S2B) � D(A,B) and D(S2A,B) � D(A,B), are ob-
tained by using Theorem 3.6 and Theorem 3.9, respectively. The fact that the
suspension map is an isomorphism follows in the same way as in Proposi-
tions 6.16 and 6.17 of [8].

It follows from Theorem 4.1 that D(A,−) is half-exact with respect to
extensions of G-algebras. Similarly, by using Theorem 4.2 we can show that
D(−, B) is half-exact as a contravariant functor, but we are not going to need
this fact.

Set
E(A,B) = [[SA⊗K , SB ⊗K ]].

As in the case of D we can remove K on the left, i.e. we have a natural
isomorphismE(A,B) � [[SA, SB⊗K ]]. WhileD is a new bivariant functor,
E is only a slight generalization of the equivariantE-theory, denoted byEG, of
Guentner, Higson and Trout, [8]. To explain the relation, consider the Hilbert
space

HG = ⊕∞i=1L
2(G).
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The direct sum of copies of the regular representation makes the C∗-algebra
of compact operators on HG into a G-algebra which we denote by KG. Then

EG(A,B) = E(A⊗KG,B ⊗KG).

5. The six-term exact sequences

Definition 5.1. A discrete asymptotic homomorphism ϕ = (ϕn)n∈N : A→
B is a sequence of maps ϕn : A→ B, n ∈ N, such that

(20) lim
n→∞[ϕn(ab)− ϕn(a)ϕn(b)] = 0, a, b ∈ A,

(21) lim
n→∞[ϕn(a + λb)− ϕn(a)− λϕn(b)] = 0, a, b ∈ A, λ ∈ C,

(22) lim
n→∞[ϕn(a

∗)− ϕn(a)
∗] = 0, a ∈ A.

(23) lim
n→∞[ϕn(g · a)− g · ϕn(a)] = 0, g ∈ G, a ∈ A.

Definition 5.2. Two discrete asymptotic homomorphisms, ϕ = (ϕn)n∈N :
A→ B and ψ = (ψn)n∈N are homotopic when there is a discrete asymptotic
homomorphism � = (�n)n∈N : A→ IB such that π0 ◦�n(a) = ϕn(a) and
π1 ◦�n(a) = ψn(a) for all n ∈ N, a ∈ A.

The set of homotopy classes of discrete asymptotic homomorphisms from
A toB will be denoted by [[A,B]]N. Then [[A, SB]]N is a group, [[A, S2B]]N

is an abelian group, and [[A, SB]]N is abelian when B is stable.
In order to relate discrete asymptotic homomorphisms to sequentially trivial

asymptotic homomorphisms, we need the following lemma.

Lemma 5.3. Let ϕ : A → B be a sequentially trivial asymptotic homo-
morphism. There is then a sequence {δn} in ]0, 1[ and a sequentially trivial
asymptotic homomorphism ψ : A→ B such that

(1) ψt = 0, t ∈ [n− δn, n+ δn],

(2) limt→∞ ϕt (a)− ψt(a) = 0, a ∈ A.

Proof. By Proposition 2.4 we may assume that ϕ is equicontinuous. Let
a1, a2, a3, . . ., be a dense sequence in A. For each n ∈ N, choose δn ∈ ]0, 1[
such that

‖ϕt (ai)‖ ≤ ‖ϕn(ai)‖ + 1

n
, i = 1, 2, . . . , n, t ∈ [n− 2δn, n+ 2δn].

Let f : [0,∞) → [0, 1] be a continuous function such that f (t) = 1, t /∈⋃
n[n − 2δn, n + 2δn] and f (t) = 0, t ∈ ⋃

n[n − δn, n + δn]. Set ψt(a) =
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f (t)ϕt (a). Then limt→∞ ψt(a) − ϕt (a) = 0 for all a ∈ {a1, a2, a3, . . .}, and
by equicontinuity the same is true for all a ∈ A.

Let ϕ = (ϕn)n∈N : A → SB = C0(0, 1) ⊗ B be a discrete asymptotic
homomorphism. For each t ∈ [0,∞), define α(ϕ)t : A→ B by

α(ϕ)t (a) = ϕn(a)(t − n), t ∈ [n, n+ 1].

It is straightforward to check thatα(ϕ) = (α(ϕ)t )t∈[0,∞) is a sequentially trivial
asymptotic homomorphism.

Lemma 5.4. The map [ϕ] �→ [α(ϕ)] is a bijection α : [[A, SB]]N →
[[A,B]]0.

Proof. It is easy to see that the map is well-defined. Let ϕ : A→ B be a se-
quentially trivial asymptotic homomorphism. By Lemma 5.3 [ϕ] ∈ [[A,B]]0

is also represented by a sequentially trivial asymptotic homomorphism ψ

which satisfies thatψn = 0 for alln ∈ N. Define, for eachn ∈ N, λn : A→ SB

by λn(a)(t) = ψn+t (a), t ∈ ]0, 1[. Then λ is a discrete asymptotic homo-
morphism such that α(λ) = ψ . This proves the surjectivity of α. To prove the
injectivity, let ϕ,ψ : A → SB be discrete asymptotic homomorphisms, and
let � : A → IB be a sequentially trivial asymptotic homomorphism such
that π1 ◦ �t (a) = α(ϕ)t (a), π0 ◦ �t (a) = α(ψ)t (a), a ∈ A, t ∈ [0,∞).
By Lemma 5.3 and the preceding argument we can find a discrete asymp-
totic homomorphism � : A→ ISB such that limt→∞ α(�)t (a) − �t (a) =
0 for all a ∈ A. It follows that limn→∞ π0 ◦ �n(a) − ψn(a) = 0 and
limn→∞ π1 ◦ �n(a) − ϕn(a) = 0 for all a ∈ A. Thus ϕ and ψ are homo-
topic to π1 ◦� and π0 ◦�, respectively, and hence also to each other.

Combining the bijection α with the obvious (forgetful) map [[A,B]]0 →
[[A,B]], we get a map

c0 : [[A, SB]]N → [[A,B]].

We seek the kernel of c0, i.e. the set of elements in x ∈ [[A, SB]]N such
that c0(x) = 0 in [[A,B]]. To this end we introduce an automorphism σ of
[[A, SB]]N. When ϕ = (ϕn)n∈N is a discrete asymptotic homomorphism we
define a new discrete asymptotic homomorphism, σ(ϕ), by σ(ϕ)n = ϕn+1.
It is clear that we get a group automorphism, σ , of [[A, SB]]N by defining
σ [ϕ] = [σ(ϕ)].

Lemma 5.5. Let x ∈ [[A, SB]]N. Then c0(x) = 0 in [[A,B]] if and only if
there is a y ∈ [[A, SB]]N such that x = yσ(y)−1.
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Proof. Let ϕ = (ϕn)n∈N be a discrete asymptotic homomorphism. Then
c0([ϕ][σ(ϕ)]−1) is represented by an asymptotic homomorphism ψ =
(ψt )t∈[0,∞) such that

(24) ψn−s = ψn+s , n ∈ N, s ∈ [
0, 1

2

]

and ψn+ 1
2
= 0, n ∈ N. For each λ ∈ [0, 1], define κλ : [0,∞)→ [0,∞) by

κλ(t) =


λt + (

n− 1
2

)
(1− λ), t ∈ [

n− 1
2 , n

[

λt + (
n+ 1

2

)
(1− λ), t ∈ [

n, n+ 1
2

]
.

Although κλ is not continuous when λ �= 1, we can, thanks to (24), define an
asymptotic homomorphism � : A→ IB by �t (a)(λ) = ψκλ(t)(a), λ ∈ [0, 1].
Then π1 ◦� = ψ and π0 ◦� = 0, showing that c0([ϕ][σ(ϕ)]−1) = 0.

Conversely, let ϕ = (ϕn)n∈N be a discrete asymptotic homomorphism such
that c0[ϕ] = 0. This means that there is an asymptotic homomorphism � :
A→ IB such thatπ1◦� = 0, π0◦� = α(ϕ). For each s ∈ [0, 1], t ∈ [0,∞),
define �(t, s) : A → B by �(t, s)(a) = πs ◦ �t (a). Define ψn : A → SB

by ψn(a)(t) = �(n, t). Since � is an asymptotic homomorphism we see
that ψ = (ψn)n∈N is a discrete asymptotic homomorphism. We claim that
[ϕ] = [ψ][σ(ψ)]−1. To see this, choose continuous maps 0n : [n, n + 1] ×
[0, 1]→ [n, n+ 1]× [0, 1] such that the following hold:

(1) 0n(n, y) = (n, 0), y ∈ [0, 1] ,

(2) 0n(n+ 1, y) = (n+ 1, 0), y ∈ [0, 1] ,

(3) 0n(x, 0) = (x, 0), x ∈ [0, 1] ,

(4) 0n

(
n+ 1

3 , 1
) = (n, 1),

(5) 0n

(
n+ 2

3 , 1
) = (n+ 1, 1),

(6) 0n maps
{
(x, 1) : x ∈ [

n, n + 1
3

] }
homeomorphically onto {(n, y) :

y ∈ [0, 1]},
(7) 0n maps

{
(x, 1) : x ∈ [

n+ 1
3 , n+ 2

3

] }
homeomorphically onto {(x, 1) :

x ∈ [0, 1]},
(8) 0n maps

{
(x, 1) : x ∈ [

n + 2
3 , n + 1

] }
homeomorphically onto {(n +

1, y) : y ∈ [0, 1]}.
Define �n : A→ ISB by �n(a)(s, t) = �(0n(n+ t, s))(a), s ∈ [0, 1], t ∈
(0, 1). Then � = (�n)n∈N is a discrete asymptotic homomorphism giving us
a homotopy between ϕ : A→ SB and a discrete asymptotic homomorphism
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λ = (λn)n∈N : A→ SB such that

λn(a)(t) =




ψn(a)(µ+(t)), t ∈ (
0, 1

3

)

0, t ∈ [
1
3 ,

2
3

]

ψn+1(a)(µ−(t)), t ∈ (
2
3 , 1

)
,

where µ+ :
[
0, 1

3

]→ [0, 1] is a homeomorphism homotopic to t �→ 3t , and
µ− :

[
2
3 , 1

]→ [0, 1] is a homeomorphism homotopic to t �→ −3t + 3. Since
λ is clearly homotopic to [ψ][σ(ψ)]−1, this completes the proof.

Whenϕ = (ϕt )t∈[0,∞) : A→ B is an asymptotic homomorphism we letϕ|N
denote the discrete asymptotic homomorphism (ϕn)n∈N. We can then define a
map d0 : [[A,B]]→ [[A,B]]N such that d0[ϕ] = [ϕ|N].

Lemma 5.6. The sequence

[[A, SB]]N
c0−−−→ [[A,B]] d0−−−→ [[A,B]]σN −−→ 0

is an exact sequence of pointed sets.

Proof. d0([[A,B]]) ⊆ [[A,B]]σN: Let ϕ = (ϕt )t∈[0,∞) be an asymp-
totic homomorphism. Define �n : A → IB by �n(a)(t) = ϕn+t (a). Then
� = (�n)n∈N : A→ IB is a discrete asymptotic homomorphism defining a
homotopy between d0[ϕ] and σ(d0[ϕ]).

[[A,B]]σN ⊆ d0([[A,B]]): Let ϕ = (ϕn)n∈N : A→ B be a discrete asymp-
totic homomorphism such that [ϕ] = σ [ϕ]. There is then a discrete asymp-
totic homomorphism � = (�n)n∈N : A → IB such that π0 ◦ �n = ϕn and
π1 ◦ �n = ϕn+1. Define an asymptotic homomorphism ψ = (ψt )t∈[0,∞) :
A→ B by ψt(a) = �n(a)(t − n), t ∈ [n, n+ 1]. Then d0[ψ] = [ϕ].

It is clear that c0([[A, SB]]N)∈ ker d0. To prove that ker d0⊆c0([[A, SB]]N),
let ϕ = (ϕt )t∈[0,∞) : A → B be an asymptotic homomorphism such that
d0[ϕ] = 0. There is then a discrete asymptotic homomorphism � = (�n)n∈N :
A → IB such that π0 ◦ �n = 0 and π1 ◦ �n = ϕn for all n ∈ N. For each
n ∈ N, set >n = [n, n+ 1]× {1} ∪ {n} × [0, 1] ∪ {n+ 1} × [0, 1] which is a
subset of [n, n+ 1]× [0, 1]. For each a ∈ A we define a continuous function
�n(a) : >n→ B by

�n(a)(t, s) =




ϕt (a), (t, s) ∈ [n, n+ 1]× {1}
�n(a)(s), (t, s) ∈ {n} × [0, 1]

�n+1(a)(s), (t, s) ∈ {n+ 1} × [0, 1]
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Let 0n : [n, n + 1] × [0, 1] → >n be a continuous retraction, and define a
function �t (a) : A → IB by �t (a)(s) = �n(a)(0n(t, s)), t ∈ [n, n + 1],
s ∈ [0, 1]. Then � = (�t )t∈[0,∞) : A → IB is an asymptotic homomorph-
ism giving us a homotopy connecting ϕ to a sequentially trivial asymptotic
homomorphism.

By using Lemma 5.4 we identify D(A,B) with [[SA⊗K , S2B ⊗K ]]N.
In this way σ defines a group automorphism of D(A,B), and the map c0

becomes the obvious (forgetful) map c : D(A,B) → E(A,B). d0 becomes
a map d = α−1 ◦ d0 : E(A, SB) → D(A,B). Let finally B : E(A,B) →
E(A, S2B) be the Bott-isomorphism.

Theorem 5.7. The sequence

D(A,B)
id−σ−−−−−→ D(A,B) c−−−−→ E(A,B)

↑
d ↓d◦B

E(A, SB)←−−−−
c

D(A, SB)←−−−−−
id−σ D(A, SB)

is exact.

Proof. By Lemma 5.5 and Lemma 5.6 it suffices to prove exactness at
E(A,B). But this follows from Lemma 5.6 and the trivial observation that the
diagram

D(A,B) c−−−→ E(A,B) d◦B−−−→ D(A, SB)

↓B ↓B
↗

�d

D(A, S2B) c−−−→ E(A, S2B)

commutes.

It is clear that there is also a dual version of the six-terms exact sequence
of Theorem 5.7. All one has to do is to use suspension and Bott-periodicity
(in the second variable) to translate the sequence of Theorem 5.7 to another
where it is the first variable which becomes suspended and de-suspended.
To describe how the maps are changed, let ϕ = (ϕn)n∈N : A → B be a
discrete asymptotic homomorphism. Define an asymptotic homomorphism
c′(ϕ) : SA → B by c′(ϕ)t (f ) = ϕn(f (t − n)), t ∈ [n, n + 1]. c′ gives us a
map c′ : [[A,B]]N → [[SA,B]]0. The composition

[[A,B]] d0−−−→ [[A,B]]N
c′−−−→ [[SA,B]]0

will be denoted by d ′. Then d ′ gives rise to a map d ′ : E(A,B)→ D(SA,B).
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Theorem 5.8. The sequence

D(A,B)
id−σ−−−−→ D(A,B) c−−−−→ E(A,B)

↑
d◦S−1◦B ↓d ′
E(SA,B) ←−−−−

c
D(SA,B)←−−−−

id−σ D(SA,B)

is exact.

Proof. In order to transform the diagram of Theorem 5.7 to get the dual
version, observe that the following two diagrams commute :

[[A,B]]N
S−−→ [[SA, SB]]N

❅↘c′ ↓α
[[SA,B]]0

D(A,B) B−−−→ D(A, S2B)

↓σ ↓α
D(A,B) B−−−→ D(A, S2B)

The first diagram is seen to commute by checking on a simple tensor g ⊗ a,
g ∈ S, a ∈ A. As for the last diagram, it suffices to remember that the Bott-
isomorphism D(A,B) → D(A, S2B) is induced by a genuine (equivariant)
∗-homomorphism SB ⊗K → S3B ⊗K . With the commutativity of these
two diagrams established, the rest is merely a little diagram chasing which we
leave to the reader.

Notice that Lemma 5.4 shows that [[A,B]]0 has the structure of a group.
The automorphism σ of [[A, SB]]N corresponds to the automorphism (again
denoted by σ ) on [[A,B]]0 which is given by σ(ϕ)t = ϕt+1.

We have the following lemma which removes a couple of redundant sus-
pensions and will be used in the next section.

Lemma 5.9. There is a natural isomorphism

D(A, SB)σ � [[SA, SB ⊗K ]]σN.

Proof. The Bott-isomorphism B gives us a commuting diagram

[[SA, SB ⊗K ]]0
B−−−→ [[SA, S3B ⊗K ]]0

↓c ↓c
[[SA, SB ⊗K ]] B−−−→ [[SA, S3B ⊗K ]]
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By Lemma 5.6 this diagram can be completed to give us a natural isomorphism

[[SA, SB ⊗K ]]σN � [[SA, S3B ⊗K ]]σN.

Since [[SA, S3B ⊗K ]]σN � D(A, SB)σ , this completes the proof.

6. KK-theory

A (discrete) asymptotic homomorphism will be called completely positive
when the individual maps are completely positive linear equivariant contrac-
tions. By imposing the condition of complete positivity on the homotopies we
obtain the sets [[A,B]]cp and [[A,B]]N,cp, of homotopy classes of completely
positive asymptotic homomorphisms from A to B, and discrete completely
positive asymptotic homomorphisms from A to B, respectively. Similarly, we
let [[A,B]]0,cp denote the homotopy classes of sequentially trivial completely
positive asymptotic homomorphisms. The composition products and pairings
between [[·, ·]]cp and [[·, ·]]0,cp can then be defined in a similar, but simpler way
as in Section 3. And the proof of Lemma 5.4 allows us to identify [[A, SB]]N,cp

with [[A,B]]0,cp. However, to have the Connnes-Higson construction avail-
able we need to stabilize and saturate the G-algebras by tensoring with the
G-algebra KG which was introduced at the end of Section 4 to compare E

and EG. By tensoring all G-algebras by KG we come in a situation where
the Connes-Higson construction out of an extension of G-algebras with a
completely positive contractive and equivariant section for the quotient map
produces an asymptotic homomorphism which is not only completely positive,
but also equivariant, cf. Lemma 3.3 and Lemma 4.4 of [17]. As a result we find
that

[[SA⊗KG, SB ⊗KG]]cp = KKG(A,B),

cf. Theorem 4.9 of [17]. In this way the six-term exact sequences of The-
orem 5.7 and Theorem 5.8 turn into the following two, where

KJG(A,B) = [[SA⊗KG, S
2B ⊗KG]]N,cp

= [[SA⊗KG, SB ⊗KG]]0,cp.

Theorem 6.1. The following two sequences are exact.

KJG(A,B)
id−σ−−−−−→ KJG(A,B) c−−−−→ KKG(A,B)

↑
d ↓d◦B

KKG(A, SB) ←−−−−
c

KJG(A, SB)←−−−−
id−σ KJG(A, SB)
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KJG(A,B)
id−σ−−−−−→ KJG(A,B) c−−−−→ KKG(A,B)

↑
d◦S−1◦B ↓d ′
KKG(SA,B) ←−−−−

c
KJG(SA,B)←−−−−

id−σ KJG(SA,B)

To see in which way these exact sequences are related to the UCT, let us
restrict attention to the non-equivariant case, i.e. the case G = 0. In this case
the Connes-Higson construction gives us an isomorphism

CH : Ext−1(A,B)→ [[SA,B ⊗K ]]cp.

This was pointed out in [12], but is really something which follows from [11],
[7] and [9]. Let us assume that A is in the Bootstrap-category for which the
UCT holds, cf. [13], [6]. Then Pext(K∗(A),K∗−1(B)) can be realized as a
subgroup of Ext−1(SA,B), and it was shown in [12] that the isomorphism
CH takes this subgroup onto the range of

c : [[S2A⊗K , B ⊗K ]]0,cp → [[S2A⊗K , B ⊗K ]]cp � KK(A,B),

i.e. onto the subgroup of [[S2A⊗K , B ⊗K ]]cp consisting of the elements
which may be represented by a sequentially trivial asymptotic homomorphism.
It follows from this, the exactness of the diagram(s) in Theorem 6.1 and the
version of the UCT from [6], that the range of the map d◦B in Theorem 6.1 can
be identified with KL(A,B). In other words, by unsplicing the first six-term
exact sequence of Theorem 6.1 we obtain an extension of groups which is the
same as the extension in the UCT theorem, in the form it was given in [6].
And by using the version of Lemma 5.9 which involves completely positive
asymptotic homomorphisms, this leads us to the conclusion that

KL(A,B) � KJ(A, SB)σ � [[SA, SB ⊗K ]]σN,cp.

7. Unsuspending D-theory

In order to keep our promises from the introduction we must show thatD(A,B)
� [[SA,B ⊗K ]]N. The argument for this is a repetition of the arguments of
Dadarlat and Loring from [7] once we have obtained the following pairing.

A discrete asymptotic homomorphism ϕ = (ϕn)n∈N : A → B is called
equicontinuous when the obvious analogues of (6) and (7) hold. In analogy
with Lemma 2.6 we have that the set of homotopy classes of discrete asymptotic
homomorphisms is the same as the set of homotopy classes of equicontinuous
discrete asymptotic homomorphisms. This is helpful in the construction of a
pairing [[A,B]]N × [[B,C]]→ [[A,C]]N in the same way as equicontinuity
was helpful in Section 3.
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Definition 7.1. LetA,B andC beG-algebras. Let ϕ = {ϕn} : A→ B be
an equicontinuous discrete asymptotic homomorphism and ψ = {ψt }t∈[0,∞) :
B → C an equicontinuous asymptotic homomorphism. A composition pair
for ψ and ϕ is a dense subset X ⊆ A which is the union of a sequence of
compact subsets containing 0 and a parametrization r : [0,∞) → [0,∞)

such that

(25) lim
n→∞

sup
s≥r(n)

‖ψs ◦ ϕn(ab)− ψs ◦ ϕn(a)ψs ◦ ϕn(b)‖ = 0,

(26) lim
n→∞

sup
s≥r(n)

‖ψs ◦ ϕn(a + λb)− ψs ◦ ϕn(a)− λψs ◦ ϕn(b)‖ = 0,

(27) lim
n→∞

sup
s≥r(n)

‖ψs ◦ ϕn(a∗)− ψs ◦ ϕn(a)∗‖ = 0,

for all a, b ∈ X, λ ∈ C, and for every compact subset K ⊆ G, every pair
a, b ∈ X and every ε > 0 there is a n0 ∈ N such that

(28) sup
s≥r(n)

‖g · ψs ◦ ϕn(a)− ψs ◦ ϕn(h · b)‖ ≤ ‖g · a − h · b‖ + ε,

for all g, h ∈ K when n ≥ n0.

We can then repeat the proof of Theorem 3.6 to obtain the following.

Theorem 7.2. There is a map

[[A,B]]N × [[B,C]] � (x, y) �→ y • x ∈ [[A,C]]N

with the following properties:
(a) (Definition): When ϕ : A→ B is an equicontinuous discrete asymptotic

homomorphism and ψ : B → C an equicontinuous asymptotic homomorph-
ism, and (X, r) is a composition pair for ψ and ϕ, then

[ψ] • [ϕ] = [λ]

where λ : A→ C is any equicontinuous discrete asymptotic homomorphism
such that

lim
n→∞[λn(x)− ψs(n) ◦ ϕn(x)] = 0, x ∈ X,

for some parametrization s ≥ r .
(b) (Associativity):

z • (y • x) = (z • y) • x,
in [[A,D]]N, when x ∈ [[A,B]]N, y ∈ [[B,C]], z ∈ [[C,D]].
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By using this pairing it follows that [[SA,−⊗K ]]N is a split-exact functor
from the category of G-algebras to the category of abelian groups for any G-
algebra A, cf. Proposition 3.2 of [7].1

Lemma 7.3. The suspension map S : [[SA,B ⊗K ]]N → [[S2A, SB ⊗
K ]]N is an isomorphism.

Proof. The standard proof shows that [[SA,B⊗K ]]N � [[SA⊗K , B⊗
K ]]N. It suffices therefore to show that S : [[SA⊗K , B⊗K ]]N → [[S2A⊗
K , SB ⊗K ]]N is an isomorphism. This follows now as in [7]. The inverse
of S is given by

[ϕ] �→ [α] • [(Sϕ) ◦ β],

where α : S2B ⊗K → B ⊗K is an asymptotic homomorphism and β :
SA⊗K → S3A⊗K is a ∗-homomorphism.

Theorem 7.4. D(A,B) � [[SA,B ⊗K ]]N.

Proof. By Lemma 7.3 we have that [[SA,B⊗K ]]N � [[S3A⊗K , S2B⊗
K ]]N. By Lemma 5.4 the latter group is D(S2A,B) and this is the same as
D(A,B) by Theorem 4.2.

By restricting attention to completely positive asymptotic homomorphisms
we get of course a similar de-suspension of the functor KJG(A,B) from
Section 6:

KJG(A,B) � [[SA,B ⊗K ]]N,cp.

Remark 7.5. Most, if not all, of the tools available for the calculation
of KK(A,B) can also be used for calculating D(A,B), at least in the non-
equivariant case where G = 0. To illustrate this, note first that it is easy
to see that D(C, B) = [[C0(R), B ⊗ K ]]N = ∏∞

n=1 K1(B)/ ⊕∞n=1 K1(B).
Hence, by Bott-periodicity,D(C0(R), B) =∏∞

n=1 K0(B)/⊕∞n=1K0(B). Since
D(−, B) has excision (the argument for this was omitted in Section 4), we can
therefore calculateD(C(X), B) for any finite CW-complexX. Secondly, recall
that thanks to the work of Cuntz in [4] we know that the Pimsner-Voiculescu
exact sequence and Connes’Thom isomorphism hold for the functorD(A,−).
The contravariant version of Cuntz’s results show that the same is true for
D(−, B). Finally, the pairings obtained in Section 3 give us immediately that
D(A,B) = D(A1, B1)whenA isE-theory equivalent toA1 andB isE-theory
equivalent to B1. In fact, it seems that the only major tool for the calculation
of KK-theory and E-theory which at this point is not readily available for D-
theory is the universal coefficient theorem of Rosenberg and Schochet, [13].
We may return to this point in a future publication.

1 Since we are working in the category of G-algebras split-exactness refers to extensions of
G-algebras which split via an equivariant ∗-homomorphism.
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Concerning calculations of KJ(A,B) we only remark that KJ(A,B) =
D(A,B) when A is nuclear (and G = 0).
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