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LANGLANDS PARAMETERS OF DERIVED FUNCTOR
MODULES AND VOGAN DIAGRAMS

PAUL D. FRIEDMAN

Abstract

Let G be a linear reductive Lie group with finite center, let K be a maximal compact subgroup,
and assume that rank G = rank K . Let � = � ⊕ � be a θ stable parabolic subalgebra obtained by
building � from a subset of the compact simple roots and form A�(λ). Suppose � = λ+2δ(�∩�) is
K-dominant and the infinitesimal character, λ+ δ, of A�(λ) is nondominant due to a noncompact
simple root. By interpreting these conditions on the level ofVogan diagrams, a conjecture by Knapp
is (essentially) settled for the groups G = SU(p, q), Sp(p, q), and SO∗(2n), thereby determining
the Langlands parameters of natural irreducible subquotient of A�(λ). For the remaining classical
groups, simple supplementary conditions are given under which the Langlands parameters may
be determined.

1. Introduction

Let G be a linear reductive Lie group with finite center, and let K be a max-
imal compact subgroup of G corresponding to a global Cartan involution �.
Suppose that rank G = rank K , so that there is a maximal abelian subspace
�0 of �0 that is also a Cartan subalgebra of �0. Let (π, V ) be an admissible
representation of G, that is, a representation in which each K-type occurs with
only finite multiplicity in π |K . Work by Langlands [8], and subsequent work
by Knapp and Zuckerman [7], parametrized irreducible admissible represent-
ations of G. The Langlands parameters of such a representation consist of
a cuspidal parabolic subgroup MAN , a discrete series or a limit of discrete
series on M , and a complex-valued linear functional on the Lie algebra of A

satisfying a positivity condition.
One approach to understanding a representation is to study it algebra-

ically through its underlying (�,K) module. Theorems of Harish-Chandra,
Lepowsky, and Rader show that every irreducible (�,K)module is the underly-
ing (�,K) module of an irreducible admissible representation of G. Therefore,
when one speaks of the Langlands parameters of an irreducible (�,K) module
V , one means those of an associated irreducible admissible representation of
G.
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Let (�,K) be a reductive pair, � = � ⊕� be a θ stable parabolic subalgebra,
Cλ be a one-dimensional (�, L ∩ K) module with weight λ, and consider the
admissible cohomologically induced module A�(λ) (see [6] for details). When
L is compact and the infinitesimal character of A�(λ), λ+ δ, lies in the “good
zone,” that is, has a positive inner product with the roots of �, then A�(λ) is in
the discrete series of G. By allowing λ + δ to vary outside of the good zone,
one produces “analytic continuations of discrete series” that are often nonzero
irreducible unitarizable modules.

In [4], assuming primarily that � = λ + 2δ(� ∩ �) is K-dominant, � is
compact, and A�(λ) lies outside of the good zone due to a noncompact simple
root, Knapp addressed the question of Langlands parameters of these analyt-
ically continued A�(λ)s (or of the unique irreducible subquotient of an A�(λ)

containing the K-type with highest weight �). He proposed a simple recurs-
ive process for doing so, and conjectured that his process produces Langlands
parameters. In certain cases, using combinatorial methods, he proved that his
procedure worked.

The work in [2] studies Knapp’s process and interprets it in the context of
cohomological induction and intertwining operators. A key result of that paper
gives a simple set of conditions on the roots in �+(�) and the infinitesimal
character that when satisfied often allows one to validate Knapp’s conjecture.
These conditions were checked in [2] when the simple system of roots corres-
ponding to �+(�) contained just one noncompact root.

This paper is primarily an investigation into the extent to which the tech-
niques of [2] are able to resolve the conjecture in [4], allowing for more polar-
izations of � = � ⊕ �. Under the equal rank hypothesis, we consider analytic
continuations of discrete series modules, A�(λ), in which � is compact, � is
K-dominant, and the parameter λ + δ has varied into a range where it is non-
dominant due to noncompact simple roots. (The requirement that � is compact
is not major, as Corollary 11.229 of [6] in essence reduces consideration to this
case.) We show in Theorem 4.1 that for the groups SU(p, q), Sp(p, q), and
SO∗(2n), the techniques of [2] work, and Knapp’s conjecture is (essentially)
settled. For the remaining two classes of classical groups satisfying the equal
rank hypothesis, namely SO(p, q) with p and q not both odd, and Sp(n,R),
the methods of [2] are NOT enough. For these groups, in Theorems 4.6 and
4.7, we try to develop additional hypotheses under which [2] resolves the con-
jecture in [4]. Theorem 4.7 provides a reasonable partial solution. Assuming
that λ + δ has a sufficiently positive inner product versus one distinguished
root of �+(�), the groups SO(p, q) are handled. For Sp(n,R), unfortunately,
we need to place a further restriction on λ + δ.

Further, in Theorem 4.9, we determine the extent of which the conditions
in [2] hold when A�(λ) is in the “weakly fair” zone. These modules are of
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particular interest for a number of reasons; in particular, results of Vogan
show they are unitarizable, and when � is of “symmetric-type,” they are the
underlying modules of the Flensted-Jensen discrete series.

This paper is organized as follows. Section 2 contains the preliminary in-
formation; in it we describe the conjectured method of [4], give the reduced
criteria of [2] that we will use to check Knapp’s process, and codify the inform-
ation contained in a Vogan diagram into calculation ready notation. Section
3 provides some simple but powerful computional lemmas. Section 4 con-
tains the main results, and Section 5 contains a collection of the computational
proofs.

2. Preliminaries

2.1. Basic Notational Conventions

Let G be a reductive Lie group with finite center and let K be a maximal
compact subgroup. We will always assume that rank G = rank K . We denote
Lie algebras of a Lie group by the corresponding Gothic letters with subscripts
0, and we denote complexifications by dropping the subscripts. We let bar
denote the conjugation of � with respect to �0. Let θ be the Cartan involution
of �0 corresponding to K and let �0 = �0 ⊕ �0 be the associated Cartan
decomposition.

Let �0 be a θ stable Cartan subalgebra of �0 and therefore of �0, and let
� = �(�, �) be the set of roots. We introduce in the usual way an inner
product 〈·, ·〉 and a norm squared | · |2 on the real linear span of the roots. We
use a hat to denote a coroot; that is, if α ∈ � then α̂ = 2α/|α|2. Since the
Cartan subalgebra lies in �0, each root vector lies in � or in �, and the roots are
called compact or noncompact accordingly. We denote the subset of compact
roots by �K and the subset of noncompact roots by �(�).

Let � = � ⊕ � be the θ stable parabolic subalgebra with � formed from a
subset of the compact simple roots, and � formed from the remaining positive
roots. Let λ be an analytically integral linear functional on � that is orthogonal
to all members of �(�), and with 〈λ, β〉 ≥ 0 for all other simple compact
roots. Let Cλ be the one-dimensional (�, L∩K) module with highest weight λ.
Let A�(λ) be the Zuckerman (�,K) module with infinitesimal character λ+ δ

defined (as in [6]) by
A�(λ) = LS(Cλ).

Since L is compact, one can combine an algebraic Borel-Weil theorem with
an induction-in-stages result to show that A�(λ) ∼= A�(λ), where � is a Borel
subalgebra contained in �. Let � = λ+2δ(�∩�) = λ+2δ(�) = (λ+δ)+(δ−
2δK). Throughout this paper, we shall always assume that � is �+

K -dominant
so that it occurs with multiplicity one in A�(λ).
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2.2. Langlands Parameters

The Langlands classification of irreducible admissible representations of G is
well known (see, for example, [3, Th. 14.91]) and by the Langlands parameters
of an irreducible (�,K) module V we mean a triple (MAN, σ, ν) such that

(1) MAN is a cuspidal parabolic subgroup of G

(2) σ is a discrete series or limit of discrete series on M with infinitesimal
character λσ

(3) ν is a complex-valued linear functional on the Lie algebra 	0 of A with
Re ν in the closed positive Weyl chamber

(4) the induced representation indG
MAN (σ ⊗ eν ⊗ 1) has a unique irreducible

quotient, called the Langlands quotient and denoted J (MAN, σ, ν)

(5) V is equivalent with the underlying (�,K) module of J (MAN, σ, ν).

As stated above, the Langlands parameters are not unique.

2.3. The Knapp Process

In this section we describe Knapp’s conjectural method [4] for determining
the Langlands parameters of the subquotient of A�(λ) containing the K-type
with highest weight �. Roughly, if the infinitesimal character λ+δ of A�(λ) is
nondominant versus a noncompact root α, then split, by the Cayley transform
relative to α, the Cartan subalgebra � into �′ ⊕ 	′. Project the infinitesimal
character onto the dual of each of these pieces, but negate the projection onto
the 	′ piece. Label these projections λσ ′ and ν. Form M ′ = ZG(	′) and the
roots �+(
′, �′), which may be identified with the roots of �+(�) orthogonal
to α. As shown in [4], the functional λσ ′ will be dominant versus the compact
simple roots of �+(
′) and the corresponding weight �′ will be M ′ ∩ K

dominant. Thus, one may continue this process on M ′ and the corresponding
A�
′ (λ

′) with infinitesimal character λσ ′ , increasing the dimension of 	 at each
step until a discrete series module is produced on a subsequent M .

More precisely, set M0 = G, A0 = {I }, �0
0 = �0, 	0

0 = 0, �0
0 = �0

0 ⊕ 	0
0,

λ0 = λ, δ0 = δ, λσ0 = λ0 + δ0, ν0 = 0, �0 = λσ0 + (δ0 − 2δ0,K). Suppose
Mj , Aj , �

j

0, 	
j

0, �
j

0, λj , δj , λσj , �j and νj are given with dim Aj = j and with
λσj dominant nonsingular with respect to all simple roots of Mj that are Mj

compact. There are now two cases:
(a) If 〈λσj , α〉 ≥ 0 for all simple roots α of Mj that are Mj noncompact,

the recursive construction ends. Define M = Mj,A = Aj , λσ = λσj , and
ν = ν0 +· · ·+νj . Define N so that ν is dominant relative to N . Then MAN, λσ ,
and ν are the cuspidal parabolic subgroup, the infinitesimal character of the M

representation, and the parameter on 	0 of a set of Langlands parameters for
the irreducible subquotient of A�(λ) containing the K-type �.
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(b) Otherwise, of the Mj noncompact simple roots α with 〈λσj , α〉 < 0, set
αj+1 to be one for which −〈λσj , α̂〉 is greatest. Further, set

(2.1) cj+1 = −〈λσj , αj+1〉
|αj+1|2 = 〈sαj+1(λσj ), αj+1〉

|αj+1|2

where sαj+1 is the Weyl group reflection corresponding to αj+1. Applying the

Cayley transform relative to αj+1 we write �
j+1
0 = �

j+1
0 ⊕ 	

j+1
0 for the trans-

formed version of �
j

0 and let Aj+1 = exp
(
	
j+1
0

)
with dim Aj+1 = j + 1.

Identifying αj+1 with its Cayley transform, set

(2.2) νj+1 = cj+1αj+1 and νj+1 = νj + νj+1.

Define Nj+1 so that νj+1 is dominant relative to Nj+1. Let Mj+1Aj+1 =
ZG(Aj+1), and we identify �(
j+1, �j+1) with the subset of �(
j , �j ) or-
thogonal to αj+1. Set �+

Mj+1
= �Mj+1 ∩ �+

Mj
, let δj+1 be half the sum of the

positive roots and δj+1,K be half the sum of the positive Mj+1 compact roots.
Define λσj+1 to be the projection of λσj orthogonal to αj+1, so that

(2.3)
λσj+1 = λσj − 〈λσj , αj+1〉

|αj+1|2 αj+1 = λσj + 〈sαj+1(λσj ), αj+1〉
|αj+1|2 αj+1

= λσj + cj+1αj+1 = λσj + νj+1.

We also define λj+1 so that λσj+1 = λj+1 +δj+1 and set �j+1 = λσj+1 + (δj+1 −
2δj+1,K). Then λσj+1 is dominant nonsingular relative to the Mj+1 compact
simple roots, and the recursive construction continues.

Proposition 10 of [4] shows that the Conjectural Method runs into no ob-
struction in finding parameters MAN , λσ , and ν. In particular,

(1) λj is analytically integral, and

(2) �j is �+
Mj,K

dominant.

Finally we isolate two conditions built into Knapp’s process. If α is the non-
compact simple root chosen by the process at a particular step, and β is another
noncompact simple root at that step, then

〈λ + δ, β̂〉 ≥ 〈λ + δ, α̂〉(P1)

〈λ + δ, α̂〉 ∈ Z≤−1(P2)
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2.4. Reduction of Problem

The principal results in [2] concern the determination of conditions under
which Knapp’s method does in fact give a set of Langlands parameters of
V , the subquotient of A�(λ) containing the K-type with highest weight �.
The results hinge on [2, Theorem 5.3] which determines explicit conditions
on roots at a given step in the Knapp process that when satisfied show that
a certain functor of cohomological induction maps the underlying module of
a principal series representation to another underlying module of a principal
series representation. When these conditions are satisfied at every step in the
Knapp process, then one can construct a map [2, Corollary 5.6] that often
allows one to conclude that Knapp’s method succeeds.

The root conditions at a particular step are as follows. Let αj ∈ �+(
j−1)

be the simple root chosen by the process. Form

Cj = {
γ ∈ �+(
j−1) − {αj }

∣∣ 〈γ, αj 〉 > 0, 〈sαj
(λσj−1), γ̂ 〉 ∈ Z − {0}}.

One wants to show that if

(2.4) if γ ∈ Cj then 〈sαj
(λ + δ), γ̂ 〉 = 〈λ + δ, sαj

(γ̂ )〉 > 0.

If Knapp’s process ends after n steps, and (2.4) holds at every step along the
way, then there exists a (�,K) map from a standard continuous series module
to A�(λ),

(2.5) ) : XK(ξh
n , ν

n) −→ A�(λ),

whose image contains the K-type with highest weight �. Here, ξh
n is a discrete

series (or limit of discrete series) (
n,Mn ∩ K) module with infinitesimal
character λσn

. From ) one can often read off the Langlands parameters.

2.5. Vogan diagrams

A Vogan diagram is an enhancement of a Dynkin diagram from which one
can clearly see whether a simple root of �+(�) is compact, noncompact or
complex. In the equal rank case, this diagram is obtained from the Dynkin
diagram by using hollow dots to represent the compact simple roots and black
dots to represent the noncompact simple roots [5]. Using the bracket relations
between � and �, one can show that a positive root containing an even (resp. odd)
number of noncompact simple roots in its decomposition into simple roots is
compact (resp. noncompact). Therefore, Vogan diagrams are a wonderful way
to see the structure of �K and �(�). Moreover, it is a simple task to determine
the Vogan diagram of �+

Mj+1
from that of �+

Mj
throughout the Knapp process.

Since we intend to get our hands dirty with explicit computations using roots to
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check Knapp’s conjecture (to check conditions such as (2.4) above), we want
to label a given Vogan diagram in a manner amenable to calculations.

We use the following notation to capture the information in a given Vogan
diagram of classical type: An,Bn, Cn, or Dn. Let β1, . . . , βn denote the simple
roots, labelled and ordered in the standard manner. Consider also, the “main
An′” subdiagram; for diagrams of type An, let n′ = n; for diagrams of type Bn

and Cn, let n′ = n − 1; for diagrams of type Dn, let n′ = n − 2. By the “main
An′” subdiagram, we mean the portion of the Vogan diagram corresponding
to the simple roots β1, . . . , βn′ . By the “tail,” we mean the remaining simple
roots. We use the phrase “compact tail” (resp. “noncompact tail”) if all of
the simple roots in the tail are compact (resp. noncompact). In the case of a
Dn diagram, a “mixed tail” means that exactly one of the two roots in the
tail is noncompact. In this case, without loss of generality, we assume βn is
noncompact. Moreover, in the case of a noncompact tail Dn diagram, we may
assume 〈λ + δ, βn−1〉 ≥ 〈λ + δ, βn〉.

Let β�1 , . . . , β�m
be an enumeration of the noncompact simple roots in the

main An′ , with �i < �j if i < j , and let �0 = 0. Let

(2.6)

si = �i+1 − �i − 1,

sm = n′ − �m,

and ci =
�i+1−1∑
j=�i+1

βj for 0 ≤ i ≤ m − 1

and cm =
n′∑

j=�m+1

βj .

Loosely, si is the number of compact simple roots between β�i
and β�i+1 and

ci is the sum of these simple roots. Further, let

(2.7) κi = β�i
+ ci + β�i+1 , for 1 ≤ i ≤ m − 1.

These are (some of the) simple roots of �+(�, �).
Suppose the Vogan diagram is of type Bn,Cn, or Dn. Let β�i

be in the main
An′ . Now form the Vogan subdiagram with β�i

as its first simple root. Let Pi

be the highest root in this subdiagram that is orthogonal to β�i
. For example,

if β�i
= ej − ej+1, then Pi = ej + ej+1. In particular,

(2.8) Pm = β�m
+ cm + E, where E =




cm + 2βn for Bn

cm + βn for Cn

cm + βn−1 + βn for Dn

.
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3. Preliminary Lemmas

To start, we would like to interpret the condition that � is K-dominant in terms
of λ+ δ. To do this, we make use of the assumption that � is built from a subset
of the compact simple roots, for in this case

� = λ + 2δ(� ∩ �) = λ + 2δ(�) = (λ + δ) + (δ − 2δK).

Therefore, if κ ∈ �+(�, �), then

〈�, κ〉 ≥ 0 ⇔ 〈λ + δ, κ〉 ≥ 〈2δK − δ, κ〉.
Since 2δK − δ is a function of the Vogan diagram, one can easily describe �

K-dominance in terms of the infinitesimal character λ+δ, the �+(�, �) simple
roots and the structural si parameters. We summarize this information in the
last column of the following table.

Lemma 3.1. In terms of the Vogan diagram si’s and ci’s in (2.6), the �+(�, �)
simple roots and the condition of � K-dominance are as in the table below.

Table 1.

Diagram Case �+(�, �) simple 〈λ + δ, �-simple〉 ≥

An − Dn βi compact simple in main An′ 1
κi, 1 ≤ i ≤ m − 1 −si

An no others

Bn βn compact βn 1/2
1. sm−1 �= 0 κ = β�m−1 + β�m

+ Pm −2(sm + 1)
2. sm−1 = 0

a. m ≤ 2 no others
b. m ≥ 3 κ = κm−2 + β�m

+ Pm −(sm−2 + 2sm + 3)

Bn βn noncompact κm = β�m
+ cm + βn −(sm + 1/2)

1. sm �= 0 κ = βn−1 + 2βn 0
2. sm = 0

a. m = 1 no others
b. m ≥ 2 κ = κm−1 + 2βn −(sm−1 + 1)

Cn βn compact βn 2
κ = β�m

+ Pm −2sm

(table continues on next page)
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Table 1. (continued)

Diagram Case �+(�, �) simple 〈λ + δ, �-simple〉 ≥

Cn βn noncompact κm = β�m
+ cm + βn −(sm + 1)

Dn Tail compact βn−1 1
βn 1

1. sm−1 �= 0 κ = β�m−1 + β�m
+ Pm −(2sm + 3)

2. sm−1 = 0
a. m ≤ 2 no others
b. m ≥ 3 κ = κm−2 + β�m

+ Pm −(sm−2 + 2sm + 4)

Dn Tail mixed βn−1 1
κm = β�m

+ cm + βn −sm

Dn Tail noncompact κma
= β�m

+ cm + βn−1 −sm
κmb

= β�m
+ cm + βn −sm

1. sm �= 0 κ = βn−2 + βn−1 + βn −1
2. sm = 0

a. m = 1 no others
b. m ≥ 2 κ = κm−1 + βn−1 + βn −(sm−1 + 2)

Consequently, if � is K-dominant then 〈λ + δ, κi + ci〉 ≥ −si + si = 0 for
1 ≤ i ≤ m − 1.

The power of the results of [2] is that the question of determining the
Langlands parameters of A�(λ) is often reduced to a question about roots. In
general, if α is the noncompact simple root selected at a particular step of
the Knapp process, then we are to consider the set C of positive roots at that
step with a positive inner product versus α (excluding α) and show that for all
γ ∈ C,

(3.1)
if 〈sα(λ + δ), γ̂ 〉 ∈ Z − {0}

then 〈sα(λ + δ), γ̂ 〉 = 〈λ + δ, sα(γ̂ )〉 ≥ 0.

Throughout this paper, we assume that� isK-dominant. Let κ be a compact
simple root, so that by Lemma 3.1 〈λ+δ, κ〉 > 0. If γ ∈ C such that γ −κ ∈ C

then 〈λ+δ, γ 〉 > 〈λ+δ, γ −κ〉. This enables us to reduce the set of roots in C

for which we need to check condition (3.1) to the roots in C that are contained
in Table 2 below.
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Table 2.

Case Diagram Roots to check

α = β�i
An − Dn γ A

j =
{
β�i

+ ci + · · · + β�j for i < j ≤ m

β�j + cj + · · · + β�i
for 1 ≤ j < i

α = β�i
An − Dn γ A

j =
{
β�i

+ ci + · · · + β�j for i < j ≤ m

β�j + cj + · · · + β�i
for 1 ≤ j < i

Bn − Dn γj =




γ A
j + Pj for i < j ≤ m

β�i−1 + β�i
+ Pi for j = i, �i �= 1

γ A
j + Pi for 1 ≤ j < i

Bn − Dn γ S = β�i
+ · · · + βn

Bn γ S+ = γ S + βn

Cn γ ′
i = β�i

+ Pi

α = βn Bn γ A
j = β�j + · · · + βn−1 + 2βn for 1 ≤ j ≤ m

α = βn Cn γ A
j = β�j + · · · + βn for 1 ≤ j ≤ m

α = βn Dn γ A
j = β�j + · · · + cm + βn for 1 ≤ j ≤ m

γ ′ = βn−2 + βn−1 + βn

γ S
j = β�j + · · · + βn for 1 ≤ j ≤ m

Next we make a few simple computations.

Lemma 3.2. Assume � is K-dominant. If α = β�i
is the noncompact simple

root selected by the Knapp process, then the roots γ A
j satisfy

〈
λ + δ, sα(γ

A
j )

〉 ≥ 0 for 1 ≤ (j �= i) ≤ m.

Moreover, in the notation of (2.6), equality exists exactly when

(1) 〈λ + δ, cx〉 = sx , for all i ≤ x < j if i < j , and all j ≤ x < i if j < i,

(2) 〈λ + δ, κx〉 = −sx , for all i ≤ x < j if i < j , and all j ≤ x < i if
j < i, and

(3) 〈λ + δ, β�i
〉 = 〈λ + δ, β�j

〉.
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Proof. Without loss of generality, we may assume i < j . Since |β�i
|2 =

|γ A
j |2 so that sα(γ A

j ) = γ A
j − β�i

, we compute

2〈λ + δ, γ A
j − β�i

〉 =
〈
λ + δ,

j−1∑
x=i

(cx + κx)

〉
+ 〈λ + δ, β�j

− β�i
〉

≥
〈
λ + δ,

j−1∑
x=i

cx

〉
−

j−1∑
x=i

sx + 〈λ + δ, β�j
− β�i

〉

by Lemma 3.1

≥ 〈λ + δ, β�j
− β�i

〉 by Lemma 3.1

≥ 0 by (P1)

to obtain the result.

Lemma 3.3. Assume � is K-dominant. If 1 ≤ j ≤ m−1 then 〈λ+δ, Pj 〉 ≥
〈λ + δ, Pj+1〉, with equality exactly when

(1) 〈λ + δ, cj 〉 = sj , and

(2) 〈λ + δ, κj 〉 = −sj .

Proof. An application of Lemma 3.1 gives

〈λ + δ, Pj 〉 = 〈λ + δ, κj + cj + Pj+1〉
≥ −sj + 〈λ + δ, cj 〉 + 〈λ + δ, Pj+1〉
≥ 〈λ + δ, Pj+1〉

for the result.

Lemma 3.4. Assume � is K-dominant and 〈λ + δ, Pm〉 ≥ 0. If α = β�i
is

the noncompact simple root selected by the Knapp process, then the roots γj
satisfy

〈λ + δ, sα(γj )〉 ≥ 0.

Proof. Since |β�i
|2 = |γj |2 we have sβ�i

(γj ) = γj − β�i
. If j �= i, then

〈λ + δ, γj − β�i
〉 = 〈λ + δ, γ A

j − β�i
+ Px〉 for some x ≥ i

= 〈λ + δ, sα(γ
A
j )〉 + 〈λ + δ, Px〉

≥ 〈λ + δ, Pm〉 ≥ 0. by Lemma 3.3
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Next suppose that j = i and �i �= 1. Then

〈λ + δ, γi − β�i
〉 = 〈λ + δ, β�i−1 + Pi〉 ≥ 〈λ + δ, β�i−1〉

by Lemma 3.3. If β�i−1 is compact then by Lemma 3.1 〈λ + δ, β�i−1〉 ≥ 1. If
β�i−1 is noncompact, then Lemma 3.1 implies 〈λ+ δ, β�i−1 +β�i

〉 ≥ 0 so that
〈λ + δ, β�i−1〉 ≥ −〈λ + δ, β�i

〉 ≥ 1 by(P1).

4. Main theorems

As a remarkable consequence of the simple lemmas in Section 3, we obtain
the following theorem.

Theorem 4.1. Suppose the Vogan diagram is of type An, Cn with a compact
tail, or Dn with a mixed tail. Let � = � ⊕ � be a θ stable parabolic subalgebra
where � is formed from a subset of compact simple roots. If � is K-dominant,
then the hypotheses of Corollary 5.6 of [2] are satisfied. Therefore there exists
a (�,K) map from a standard continuous series module to A�(λ),

(4.1) ) : XK(ξh
n , ν

n) −→ A�(λ),

whose image contains the K-type with highest weight �.

Remark. Theorem 4.1 handles the Lie algebras ��(p, q), ��(p, q) and
�∗(2n).

Corollary 4.2. Under the hypotheses in Theorem 4.1, let V be the irredu-
cible subquotient of A�(λ) containing the K-type with highest weight �. The
map (4.1), and therefore Knapp’s method, gives a set of Langlands parameters
of V if any of the following hold:

(1) A�(λ) is irreducible,

(2) A�(λ) is infinitesimally unitary,

(3) A�(λ) is weakly fair,

(4) � is the minimal K-type of XK(σ, ν),

(5) � is the minimal K-type of A�(λ).

Proof of Corollary 4.2. This is [2, Corollary 6.10].

Proof of Theorem 4.1. For the three Vogan diagrams in question, we
show that the K-dominance of � implies that (3.1) holds, and then that the
diagram type essentially remains the same throughout the Knapp process.
These two points, coupled with the fact that �-dominance persists throughout
the process will prove the theorem.
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We start by showing that (3.1) holds for the roots listed in Table 2. Suppose
α = β�i

is the noncompact simple root of�+(�) selected by the Knapp process.
For all Vogan diagrams, Lemma 3.2 handles the roots γ A

j . For an An diagram,
these are the only roots that need to be checked. Therefore, (3.1) holds for an
An diagram.

For the roots γj of Table 2, we show the following claim so that Lemma 3.4
provides the result.

Claim 4.3. If the Vogan diagram is of type Cn with a compact tail (that is,
��(p, q)) or Dn with a mixed tail (that is, �∗(2n)), then 〈λ + δ, Pm〉 ≥ 1.

Proof of Claim 4.3. For Cn, using Lemma 3.1 we compute

〈λ + δ, Pm〉 =
〈
λ + δ,

1

2
κ + cm + 1

2
βn

〉
≥ −sm + sm + 1 = 1.

For Dn, using Lemma 3.1 we compute

〈λ + δ, Pm〉 = 〈λ + δ, κm + cm + βn−1〉 ≥ 〈λ + δ, βn−1〉 ≥ 1.

This completes the proof of Claim 4.3.

Next we consider the root γ S . In the Cn case, since |β�i
|2 = |γ S |2 we have

sβ�i
(γ S) = γ S − β�i

. If i = m, then we have

〈λ + δ, γ S − β�m
〉 = 〈λ + δ, cm + βn〉 ≥ sm + 〈λ + δ, βn〉 ≥ 2.

Similiarly, if i < m, we may use Lemma 3.2 to deduce the same inequality.

〈λ+δ, γ S −β�i
〉 = 〈λ+δ, γ A

m −β�i
〉+〈λ+δ, cm+βn〉 ≥ sm+〈λ+δ, βn〉 ≥ 2.

In the Dn case, we write

γ S = (β�i
+ · · · + cm + βn) + (βn−1).

Since β�i
+ · · · + cm + βn lies in an An−1 subdiagram, and βn−1 is a compact

simple root, Lemmas 3.2 and 3.1 combine to give 〈λ + δ, γ S − α〉 ≥ 1. This
concludes the proof that (3.1) holds when α = β�i

in the Dn case.
Continuing the proof in the Cn case, we are only left to consider the root

γ ′
i . Since β�i

is a short root and γ ′
i is a long root, we have

〈λ + δ, sβ�i
(γ ′

i )〉 = 〈λ + δ, γ ′
i − 2β�i

〉
= 〈λ + δ, Pi − β�i

〉
≥ 〈λ + δ, Pm〉 + 1 by Lemma 3.3 and (P2)

≥ 2 by Claim 4.2.
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This concludes the proof that (3.1) holds in the Cn case.
We are only left to consider the Dn case in which α = βn. Arguments as in

Lemma 3.1 handle γ A
j and γ ′. Moreover, the Dn argument above for γ S also

handles the γ S
j . This completes the proof that (3.1) holds in the Dn case.

Claim 4.4. For the three Vogan diagrams in the theorem, the subsequent
Vogan diagrams arising in the Knapp process are of the same type, possibly
together with a union of singleton A1 diagrams.

Proof of Claim 4.4. For an An diagram this is clear; if the Vogan diagram
of �+(�) is Am, then the diagram of �+(
1) is Am−2.

Next, suppose the Vogan diagram is a Cn with a compact tail. Let α = β�x

be the noncompact simple root of �+(�) selected by the Knapp process. The
diagram of �+(
1) is Cn−2∪A1. The A1 node is the root Px . Since Px is ortho-
gonal but not strongly orthogonal to α, it is compact in �+(
1). Moreover, Px

is orthogonal to all other positive roots in �+(
1) and is therefore a compact
singleton A1 in the Vogan diagram for �+(
1). To show that the Cn−2 part of
�+(
1) has a compact tail, we consider the following two cases.

(1) If x ≤ n − 2, then the tail root of the Cn−2 part is βn ∈ �+(�). Since
βn is strongly orthogonal to α it remains compact as a root in �+(
1).

(2) If x = n − 1, then the tail root of the Cn−2 part is 2βn−2 + 2βn−1 + βn.
This root is compact as a root in �+(�). It remains compact in �+(
1) since
it is strongly orthogonal to βn−1.

This completes the proof of the claim for Cn. Another simple case-by-case
argument shows that subsequent diagrams are also of type Dn with a mixed
tail together with a union of noncompact A1 singletons. This completes the
proof of Claim 4.4.

Claim 4.4 and [4, Proposition 10] therefore give the result for An. For the
Cn case, the singleton roots are always compact and therefore not chosen in
the Knapp process. In the Dn case, Claim 4.3 implies that no noncompact
singleton will be chosen during the Knapp process. This completes the proof
of Theorem 4.1.

Under any of the conditions outlined in Corollary 4.2, Theorem 4.1 proves
that for SU(p, q), Sp(p, q), and SO∗(2n), the conjectural method of [4] to
produce Langlands parameters is correct.

Before we prove theorems similiar to Theorem 4.1 for the remaining clas-
sical diagrams, we highlight two properties of the compact tail Cn case and
the mixed Dn case of that theorem.

(1) � K-dominant implies that 〈λ + δ, Pm〉 ≥ 0. Therefore, since the prop-
erty of � being K-dominant is inherited throughout the process, and the
type of Vogan diagram remains the same,
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(2) the property 〈λ + δ, Pm〉 ≥ 0 is inherited throughout the process.

Unfortunately, for the remaining classical Vogan diagrams, neither of these
properties necessarily holds.

Example 4.5. Consider a D8 Vogan diagram with a noncompact tail. Let
m = 1 and �1 = 3 so that s0 = 2 and s1 = 3. Suppose

〈λ + δ, βi〉 =




1 for i = 1, 2, 5, 6

−6 for i = �1 = 3

2 for i = 4

−1 for i = 7, 8

.

One checks that � is K-dominant and 〈λ + δ, Pm〉 = 0. The Knapp process
selects α = β�m

and one shows that (3.1) holds at this first step.
Continuing the process, the Vogan diagram at the second step is a noncom-

pact tail D6 ∪ A1 with D6 data m = 1 and �1 = 2 so that s0 = 1, s1 = 2. At
this step, we have

〈λ + δ, βi〉 =



1 for i = 1, 3, 4

−3 for i = �1 = 2

−1 for i = 5, 6

.

Although the appropriate � is K-dominant, we now have 〈λ + δ, Pm〉 = −1.
The Knapp process selects α = β�m

and one shows that (3.1) still holds.
At the next step, the Vogan diagram is a noncompact D4 ∪ A1 ∪ A1 with

D4 data m = 1 and �1 = 1 so that s0 = 0 and s1 = 1. We now have

〈λ + δ, βi〉 =
{

1 for i = 2

−1 for i = 1, 3, 4
.

Again, 〈λ+ δ, Pm〉 = −1. If the Knapp process selects any of the noncompact
simple roots in the D4 piece, say β1, then (3.1) fails with respect to the sum of
the simple roots, γ S ∈ C:

〈λ + δ, sβ1(γ
S)〉 = 〈λ + δ, β2 + β3 + β4〉 = 1 − 1 − 1 = −1.

As we see from Example 4.5, � being K-dominant may not be a sufficient
condition to ensure that (3.1) holds. In fact, there are simple one-step examples
that show this is the case for the five classicalVogan diagrams not considered in
Theorem 4.1, not just the noncompact tail Dn case of Example 4.5. Therefore,
the techniques of [2] are insufficient to settle Knapp’s conjecture.
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However, for the classical Vogan diagrams not considered in Theorem 4.1,
we can show the following series of theorems. Theorem 4.6 assumes one
condition in addition to � being K-dominant so that (3.1) holds at a single
particular stage in the Knapp process. Theorem 4.7 assumes a slightly stronger
condition so that (3.1) holds at every stage in the Knapp process. Theorem 4.9
explores what happens assuming that � is K-dominant and that A�(λ) is in
the weakly fair range. These modules are of particular interest since they are
underlying modules of the Flensted-Jensen discrete series. Since the proofs
are computational, we present them in the sections following the statements
of the theorems.

Theorem 4.6. Let α be the noncompact simple root chosen by the Knapp
process. Suppose the classical Vogan diagram is NOT one of the following two
types

(1) Cn with

(a) βn noncompact,

(b) α �= βn, and

(c) 〈λ + δ, βn〉 < −sm, or

(2) Dn with

(a) noncompact tail,

(b) sm = 1, and

(c) 〈λ + δ, βn−1〉 = 〈λ + δ, βn〉 ≤ −2,

(d) 〈λ + δ, κm〉 = 〈λ + δ, κma
〉 = 〈λ + δ, κmb

〉 = −1

If � is K-dominant and 〈λ + δ, Pm〉 ≥ 0, then 〈λ + δ, γ 〉 > 0 for all γ ∈ C.

Remark. As Example 4.5 shows, the property 〈λ + δ, Pm〉 ≥ 0 may not
be inherited throughout the Knapp process. If it is inherited in a particular
example, and the subsequent Vogan diagrams are not one of the above two
types, then repeated application of Theorem 4.6 yields the same conclusion
as in Theorem 4.1. (We can also see from Example 4.5 that the property 〈λ +
δ, Pm〉 ≥ 0 is not a necessary condition for (3.1) to hold at a particular step.)

Ideally, one would like to find a property that when coupled with � K-
dominance implies (3.1) and is inherited by the subsequent diagrams arising
in the process. If we sacrifice just a little bit regarding 〈λ+ δ, Pm〉 we can find
one.

Theorem 4.7. Suppose the classical Vogan diagram is not of the following
type

(1) Cn with
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(a) βn noncompact,

(b) α �= βn, and

(c) 〈λ + δ, βn〉 < −sm

Suppose further that � is K-dominant and 〈λ + δ, Pm〉 ≥ 〈λ + δ, cm〉 − sm.
Then the hypotheses of Corollary 5.6 of [2] are satisfied. Therefore there exists
a (�,K) map from a standard continuous series module to A�(λ),

) : XK(ξh
n , ν

n) −→ A�(λ),

whose image contains the K-type with highest weight �.

Remark. This successfully handles the SO(m, n) cases. The excluded
Sp(n,R) case remains, at this time, an unresolved thorn.

Corollary 4.8. If the Vogan diagram has a compact tail, � is K-dominant,
and

(4.2) 〈λ + δ, β�m
〉 ≥

{ −2sm − 1 for Bn

−2sm − 2 for Dn

,

then Theorem 4.7 applies.

Proof. Under condition (4.2), Lemma 3.1 implies 〈λ + δ, Pm〉 ≥ 〈λ +
δ, cm〉 − sm.

Theorem 4.9. Suppose � is K-dominant, and that A�(λ) is in the weakly
fair range. Then 〈λ + δ, γ 〉 ≥ 0 for all γ ∈ C. That is, the first stage of the
Knapp process holds.

Remark 1. Unfortunately, the property of a Vogan diagram being weakly
fair is not necessarily inherited throughout the Knapp process. (This can be
seen by modifying Example 4.5 by extending the D8 diagram to a D18 diagram
by changing s0 from 2 to 12, setting 〈λ + δ, βj 〉 = 1 for the “new” compact
simple roots {βj }10

j=1, and forming � from all compact simple roots with inner
product = 1 versus λ + δ.) But, of course, if the subsequent Vogan diagrams
are all weakly fair, then repeated application of this theorem yields the same
conclusion as in Theorem 4.1.

Remark 2. Example 4.5, in its original guise, also shows that the weakly
fair condition is not necessary for (3.1) to hold at a particular step.

Remark 3. The weakly fairA�(λ)’s (without requiring that � ⊆ �) such that
� = λ+2δ(�∩�) is K-dominant are the underlying modules of the Flensted-
Jensen discrete series [1]. In [9], Schlichtkrull found the Langlands parameters
of most of these modules. In fact, Corollary 11.229 of [6] is essentially anA�(λ)
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formulation of this result. In [10], under an additional assumption – loosely,
that the restriction of λ + δ to the compact part of a maximally split Cartan
subalgebra of � satisfies a weakly fair condition – Schlichtkrull reduces the
question of Langlands parameters for the Flensted-Jensen modules to the case
in which � ⊆ �. The four theorems of this section then handle most of these.

5. Proofs and other results

Before coming to the proofs, let us restate and label our basic assumptions.
We always assume that rank G = rank K and the following:

(AS0) � is formed from a subset of compact simple roots;

(AS1) If α is the noncompact simple root chosen by the Knapp process and
β is another noncompact simple root, then

〈λ + δ, β̂〉 ≥ 〈λ + δ, α̂〉(P1)

〈λ + δ, α̂〉 ∈ Z≤−1(P2)

(AS2) � is K-dominant, so that Lemma 3.1 holds.

In general, we want to show that for the roots γ listed in Table 2

(5.1)
if 〈sα(λ + δ), γ̂ 〉 ∈ Z − {0}

then 〈sα(λ + δ), γ̂ 〉 = 〈λ + δ, sα(γ̂ )〉 ≥ 0

Under (AS0)–(AS2), Theorem 4.1 gives the best result for diagrams of type
An, Cn with a compact tail, and Dn with a mixed tail. In the proofs of the other
theorems, we only consider the remaining classical Vogan diagrams.

5.1. Proof of Theorem 4.6

In Theorem 4.6, we make the following additional assumption

(AS3) 〈λ + δ, Pm〉 ≥ 0.

We start the proof with diagrams of type Bn. First consider the case α =
βn, so that the tail is necessarily noncompact. In this case, (P1) implies that
〈λ + δ, β�j

〉 ≥ 〈λ + δ, 2βn〉 for 1 ≤ j ≤ m. According to Table 2, we only
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need to check (5.1) for the roots γ A
j . We compute

〈λ + δ, sα(γ
A
j )〉 = 〈λ + δ, γ A

j − 2βn〉

= 1

2

〈
λ + δ, β�j

+
m−1∑
x=j

(κx + cx) + β�m
+ 2cm

〉

≥ 1

2
〈λ + δ, β�j

+ β�m
+ 2cm〉 by Lemma 3.1

≥ 1

2
〈λ + δ, β�m

+ 2cm + 2βn by (P1)

= 〈λ + δ, Pm〉
≥ 0 by (AS3).

Therefore, (5.1) holds for Bn diagrams when α = βn.
Now consider the case where α = β�i

. The roots γ A
j and γj of Table 2 are

handled by Lemmas 3.2 and 3.4; we are only left to consider γ S and γ S+.
Since β�i

is a long root, sβ�i
(γ S) = γ S − β�i

and sβ�i
(γ S+) = γ S+ − β�i

.
First suppose that 〈λ + δ, βn〉 ≥ 0. If i = m then

〈λ + δ, γ S+ − β�i
〉 ≥ 〈λ + δ, γ S − β�i

〉 = 〈λ + δ, cm + βn〉 ≥ sm ≥ 0.

Ifi < m, then

〈λ + δ, γ S+ − β�i
〉 ≥ 〈λ + δ, γ S − β�i

〉
= 〈λ + δ, γ A

m − β�i
〉 + 〈λ + δ, cm + βn〉 ≥ sm ≥ 0.

Next suppose that 〈λ + δ, βn〉 ≤ − 1
2 . Then βn is noncompact so that (P1)

implies 〈λ + δ, 2βn〉 ≥ 〈λ + δ, β�i
〉. Therefore

〈λ + δ, γ S − β�i
〉 > 〈λ + δ, γ S+ − β�i

〉

= 1

2

〈
λ + δ,−β�i

+
m−1∑
x=i

(κx + cx) + β�m
+ 2cm + 4βn

〉

≥ 1

2
〈λ + δ,−β�i

+ β�m
+ 2cm + 4βn〉 by Lemma 3.1

≥ 1

2
〈λ + δ, β�m

+ 2cm + 2βn〉 by (P1)

= 1

2
〈λ + δ, Pm〉

≥ 0 by (AS3).
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This completes the case where α = β�i
, and therefore Vogan diagrams of type

Bn.
Suppose now that the diagram is of type Cn with a noncompact tail. First

consider the case where α = βn. In this case, (P1) gives 〈λ + δ, β�j
〉 ≥

1
2 〈λ + δ, βn〉 so that 〈λ + δ, β�j

− βn〉 ≥ − 1
2 〈λ + δ, βn〉. We then compute

〈λ + δ, sβn
(γ A

j )〉 = 〈λ + δ, γ A
j − βn〉

= 1

2

〈
λ + δ,

m∑
x=j

κx + cx

〉
+ 1

2
〈λ + δ, β�j

− βn〉

≥ 1

2
[−(sm + 1) + sm] − 1

2
〈λ + δ, βn〉 by Lemma 3.1, (P1)

≥ −1

2
+ 1 > 0, by (P2)

for the result in this case.
Now consider the case where α = β�i

. The roots γ A
j and γj are handled by

Lemmas 3.2 and 3.4; we are only left to consider the roots γ ′
i and γ S .

Since β�i
is a short root and γ ′

i is a long root, we have

〈λ + δ, sβ�i
(γ ′

i )〉 = 〈λ + δ, γ ′
i − 2β�i

〉
= 〈λ + δ, Pi − β�i

〉
≥ 〈λ + δ, Pm〉 + 1 by Lemma 3.3 and (P2)

≥ 1 by (AS3).

The root γ S is the one that gives us difficulties and forces us to exclude
the Cn diagram in the statement of the theorem. Since |β�i

|2 = |γ S |2 we have
sβ�i

(γ S) = γ S − β�i
. If i = m, then we have

(5.2) 〈λ + δ, γ S − β�m
〉 = 〈λ + δ, cm + βn〉 ≥ sm + 〈λ + δ, βn〉.

Similiarly, if i < m, we may use Lemma 3.2 to deduce the same inequality.

〈λ+ δ, γ S − β�i
〉 = 〈λ+ δ, γ A

m − β�i
〉 + 〈λ+ δ, cm + βn〉 ≥ sm + 〈λ+ δ, βn〉.

Since βn is noncompact (recall that Theorem 4.1 handles the compact tail
Cn diagrams), the additional hypothesis 〈λ + δ, βn〉 ≥ −sm then implies the
result. This completes the case whereα = β�i

, and therefore the allowedVogan
diagrams of type Cn.

Suppose now that the diagram is of type Dn and consider the case where
α = βn. Since α is a tail root, we are dealing with a noncompact tail. The roots
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γ A
j and γ ′ are roots in an An-type subdiagram and therefore arguments as in

Lemma 3.2 handle them. We are left with only the γ S
j to consider. Since we

are in a single line diagram, sβn
(γ S

j ) = γ S
j −βn. Additionally, we may assume

that m ≥ 1 and n ≥ 4.
First suppose sm = 0. For j = m we have that

〈λ + δ, γ S
m − βn〉 = 〈λ + δ, κma

〉 ≥ −sm = 0, by Lemma 3.1.

For j ≤ m − 1, we have

〈λ + δ, γ S
j − βn〉 =

〈
λ + δ,

(
1

2

m−2∑
x=j

kx + cx

)〉

+
〈
λ + δ,

1

2
β�j

+ 1

2
β�m−1 + cm−1 + β�m

+ βn−1

〉

≥
〈
λ + δ,

1

2
β�j

+ 1

2
β�m−1 + cm−1 + β�m

+ βn−1

〉

by Lemma 3.1

≥ 〈λ + δ, cm−1 + β�m
+ βn−1 + βn〉 by (P1)

= 〈λ + δ, cm−1 + Pm〉
≥ sm−1 ≥ 0 by Lemma 3.1, (AS3).

This settles the sm = 0 case.
Next suppose sm ≥ 2. Similiarly we compute

〈λ + δ, γ S
j − βn〉 =

〈
λ + δ,

(
1

2

m−1∑
x=j

kx + cx

)〉

+
〈
λ + δ,

1

2
β�j

+ 1

2
β�m

+ cm + βn−1

〉

≥
〈
λ + δ,

1

2
β�j

+ 1

2
β�m

+ cm + βn−1

〉
by Lemma 3.1(5.3)

≥ 〈λ + δ, cm + βn−1 + βn〉 by (P1)(5.4)

= 〈λ + δ, (cm − βn−2) + κ〉 since sm ≥ 1(5.5)

≥ (sm − 1) − 1 ≥ 0 by Lemma 3.1.

This settles the sm = 2 case.
Finally, suppose sm = 1. If 〈λ + δ, κ〉 �= −1, then integrality and Lemma

3.1 imply that 〈λ + δ, κ〉 ≥ 0. Continuing from (5.5) above we then get
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that 〈λ + δ, γ S
j − βn〉 ≥ 〈λ + δ, κ〉 ≥ 0. If 〈λ + δ, κ〉 = −1 and either

〈λ + δ, βn−1〉 > 〈λ + δ, βn〉 (strictly) or 〈λ + δ, κmb
〉 �= −1 then we continue

from (5.3) above so that

〈λ + δ, γ S
j − βn〉 ≥

〈
λ + δ,

1

2
β�j

+ 1

2
β�m

+ cm + βn−1

〉

≥
〈
λ + δ,

1

2
β�m

+ βn−2 + βn−1 + 1

2
βn

〉
by (P1)

= 1

2

(〈λ + δ, κma
〉 + 〈λ + δ, κ〉)

= 1

2

(〈λ + δ, κmb
〉 + 〈λ + δ, βn−1 − βn〉 − 1

)

> −1.

Integrality then implies that 〈λ + δ, γ S
j − βn〉 ≥ 0.

Therefore, we have shown that if α = βn then we have the result except if
sm = 1 (so that cm = βn−2 and β�m

= βn−3) and

〈λ + δ, βn−3〉 = 〈λ + δ, βn−1〉 = 〈λ + δ, βn〉 = −x,

and 〈λ + δ, βn−2〉 = 2x − 1.

Then condition (AS3) and integrality imply x ≥ 2. Since this is precisely the
Dn situation excluded in the theorem, this completes the case where α = βn.

Now consider the case where α = β�i
. The roots γ A

j and γj are handled
by Lemmas 3.2 and 3.4; we are only left to consider γ S ; we are to show that
〈λ + δ, γ S − β�i

〉 ≥ 0.
First suppose the tail is compact. If i = m, then γ S − β�i

is a sum of
compact simple roots and Lemma 3.1 gives the result. If i < m, then γ S =
γ A
m + cm + βn−1 + βn. Since cm + βn−1 + βn is a sum of compact simple roots

orthogonal to β�i
, Lemmas 3.1 and 3.2 give the result.

Now suppose the tail is noncompact. If sm = 0 and i = m then γ S lies in
an An type subdiagram and Lemma 3.2 gives the result. If i = m − 1, then

〈λ + δ, γ S − β�m−1〉 = 〈λ + δ, cm−1 + β�m
+ βn−1 + βn〉

= 〈λ + δ, cm−1 + Pm〉 ≥ sm−1,
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by Lemma 3.1 and (AS3). If i ≤ m − 2, then similiarly,

〈λ + δ, γ S − β�i
〉 = 〈λ + δ, γ A

m−1 − β�i
〉

+ 〈λ + δ, cm−1 + β�m
+ βn−1 + βn〉

≥ 〈λ + δ, cm−1 + β�m
+ βn−1 + βn〉 by Lemma 3.2

≥ sm−1 by Lemma 3.1 and (AS3).

This handles the case when sm = 0.
If sm ≥ 2 and i = m then γ S −β�m

= cm+βn−1+βn and then computations
from (5.5) onward give the result. Similiarly, if i ≤ m − 1, then γ S − β�i

=
(γ A

m − β�i
) + cm + βn−1 + βn and Lemma 3.1 along with the computations

from (5.4) onward give the result.
So we are left again with the case of sm = 1. Clearly, by the symmetry of a

D4 diagram, if i = m then we have the result except in the cases excluded in
the sm = 1, α = βn case above. If i < m then

〈λ + δ, γ S − β�i
〉 = 〈λ + δ, γ A

m − β�i
〉 + 〈λ + δ, κ〉 by Lemma 3.1.

The first term is ≥ 0 by Lemma 3.2, while the second term is ≥ −1 by
Lemma 3.1. Hence by integrality, if either inequality is strict, then 〈λ+δ, γ S −
β�i

〉 ≥ 0. Lemma 3.2 characterizes exactly when this occurs. In particular, if
〈λ + δ, γ A

m − β�i
〉 = 0, then 〈λ + δ, β�i

〉 = 〈λ + δ, β�m
〉 so that we could have

chosen α = β�m
and we have already discussed this case. This completes the

α = β�i
case in Dn, and therefore completes the proof of the theorem.

5.2. Proof of Theorem 4.7

In this theorem, we assume (AS0)–(AS2) as well as

(AS3′) 〈λ + δ, Pm〉 ≥ 〈λ + δ, cm〉 − sm.

Since conditions (AS3′) and (AS2) imply (AS3) of Theorem 4.6, the results
of that theorem apply. Further, hypothesis (AS3′) excludes the noncompact tail
Dn case we needed to avoid in Theorem 4.6. Therefore, we are only left with
showing that hypothesis (AS3′) is inherited throughout the Knapp process.

To do this, we need to understand how a Vogan diagram changes at the
different stages of the Knapp process. This is easy, but notationally a bit cum-
bersome. We use V x to denote the Vogan diagram of �+(
x, �x), and we
denote the corresponding β�i

, κi , α, ci , si , and Pi with a superscript: βx
�i

, κx
i ,

αx , cxi , sxi , and P x
i . Further, if αx = βx

�i
is the noncompact simple root of V x

chosen by the Knapp process then define

βx
α = βx

�i−1 + βx
�i

+ βx
�i+1.
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We start by listing what happens to the Dynkin diagram in passing from V x

to V x+1. If αx is a singleton in V x , then V x+1 = V x\{αx}. Otherwise

(5.6)

An �−→ An−2, Bn �−→
{
Bn−2 ∪ A1, αx ∈ main An′

Bn−1, α = βn

,

Dn �−→ Dn−2 ∪ A1, Cn �−→
{
Cn−2 ∪ A1, αx ∈ main An′

Cn−1, α = βn

.

(Recall that the cases of An, Cn with a compact tail, and Dn with a mixed tail
are already handled by Theorem 4.1.) The additional A1 component in V x+1

is precisely P x
i when α = β�i

. Assumption (AS3) ensures that this root will
never be selected by the Knapp process. Anyhow, since P x

i is orthogonal all
other positive roots of V x+1, it plays no role when we need to check condition
(5.1).

Our primary concern lies with howP x
m, sxm, and cxm are affected by the Knapp

process. We summarize this data in Table 3.

Table 3.

Case Px+1
m sx+1

m cx+1
m

I. αx = βx
�m−j for j ≥ 2 Px

m sxm cxm

II. αx = βx
�m−1

A. sxm−2 = 0 Px
m + κx

m−2 sxm cxm

B. sxm−2 �= 0 Px
m−2 sxm−2 + sxm (cxm−2 − βx

�m−1−1) + βx
α + cxm

III. αx = βx
�m

A. sxm = 0
1. sxm−1 = 0 Px

m−2 sxm−2 cxm−2
2. sxm−1 �= 0 Px

m−1 sxm−1 − 1 cxm−1 − βx
�m−1

B. sxm �= 0
1. sxm−1 = 0 Px

m−2 sxm−2 + sxm cxm−2 + βx
α + (cxm − βx

�m+1)

2. sxm−1 �= 0 βx
�m−1 + Px

m − βx
�m+1 sxm − 1 cxm − βx

�m+1

IV. αx = βx
n in Bn or Cn

A. sxm = 0 Px
m−1 sxm−1 cxm−1

B. sxm �= 0 Px
m sxm − 1 cxm − βx

n−1

V. αx = βx
n in Dn

A. sxm = 0
1. sxm−1 = 0 Px

m−2 sxm−2 cxm−2
2. sxm−1 �= 0 Px

m−1 sxm−1 − 1 cxm−1 − βx
n−3

B. sxm = 1 Px
m−1 sxm−1 cxm−1

C. sxm ≥ 2 Px
m sxm − 2 cxm − βx

n−2 − βx
n−3
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The heart of Theorem 4.7 is the following lemma:

Lemma 5.1. If the original Vogan diagram satisfies (AS3′), that is

〈λ + δ, Pm〉 ≥ 〈λ + δ, cm〉 − sm,

then so do all subsequent diagrams arising in the Knapp process.

Proof. We proceed by induction on the stage number in the Knapp process,
the base step assumed to be true. We assume that 〈λ+δ, P x

m〉 ≥ 〈λ+δ, cxm〉−sxm.
The proof proceeds in a case-by-case fashion, following Table 3.

Case I follows immediately from the inductive hypothesis. Case II.A follows
from the inductive hypothesis and Lemma 3.1, since 〈λ+δ, κx

m−2〉 ≥ −sxm−2 =
0. For Case II.B, we compute

〈λ + δ, P x+1
m 〉

= 〈λ + δ, P x
m−2〉

= 〈λ + δ, cxm−2 + κx
m−2〉 + 〈λ + δ, κx

m−1 + P x
m〉

≥ 〈λ + δ, cxm−2〉 − sm−2 + 〈λ + δ, κx
m−1 + P x

m〉 by Lemma 3.1

= 〈λ + δ, cxm−2 − βx
�m−1−1〉 − sxm−2 + 〈λ + δ, βx

�m−1−1 + κx
m−1 + P x

m〉
= 〈λ + δ, cxm−2 − βx

�m−1−1〉 − sxm−2 + 〈λ + δ, βx
α + P x

m〉
≥ 〈λ + δ, cxm−2 − βx

�m−1−1〉 − sxm−2 + 〈λ + δ, βx
α + cxm〉 − sxm

= 〈λ + δ, cx+1
m 〉 − sx+1

m

for the desired inequality.
In case III.A.1, we compute

〈λ + δ, P x+1
m 〉

= 〈λ + δ, P x
m−2〉 = 〈λ + δ, κx

m−2 + cxm−2 + κx
m−1 + P x

m〉
= 〈λ + δ, 2cxm−2〉 + 〈λ + δ, βx

�m−2
+ βx

�m−1
+ κx

m−1 + P x
m〉

≥ 〈λ + δ, 2cxm−2〉 + 〈λ + δ, βx
�m

+ βx
�m−1

+ κx
m−1 + P x

m〉, by (P1)

≥ 〈λ + δ, 2cxm−2〉 + 〈λ + δ, 2κx
m−1〉 by inductive hypothesis

≥ 〈λ + δ, cxm−2〉 by Lemma 3.1

≥ 〈λ + δ, cxm−2〉 − sxm−2

= 〈λ + δ, cx+1
m 〉 − sx+1

m
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for the desired inequality.

In case III.A.2, we compute

〈λ + δ, P x+1
m 〉 = 〈λ + δ, P x

m−1〉 = 〈λ + δ, κx
m−1 + cxm−1 + P x

m〉
≥ 〈λ + δ, κx

m−1 + cxm−1〉 by inductive hypothesis

≥ 〈λ + δ, cxm−1〉 − sxm−1 by Lemma 3.1

= 〈λ + δ, cxm−1 − βx
�m−1〉 − (sxm−1 − 1) + 〈λ + δ, βx

�m−1〉 − 1

≥ 〈λ + δ, cxm−1 − βx
�m−1〉 − (sxm−1 − 1) by Lemma 3.1

= 〈λ + δ, cx+1
m 〉 − sx+1

m

for the desired inequality.

In case III.B.1, we start by using (P1) to obtain

(5.7)

〈λ + δ, κx
m−2〉 = 〈λ + δ, βx

�m−2
+ cxm−2 + βx

�m−1
〉

≥ 〈λ + δ, cxm−2 + βx
�m−1

+ βx
�m

〉
= 〈λ + δ, cxm−2 + κx

m−1〉

Then, since βx
α − βx

�m+1 = βx
�m−1 + βx

�m
= κx

m−1, we may rewrite cx+1
m as

cxm−2 + cxm + κx
m−1. Finally, compute

〈λ + δ, P x+1
m 〉 = 〈λ + δ, P x

m−2〉 = 〈λ + δ, κx
m−2 + cxm−2 + κx

m−1 + P x
m〉

≥ 〈λ + δ, 2cxm−2 + 2κx
m−1 + P x

m〉 by (5.7)

≥ 〈λ + δ, cxm−2 + κx
m−1 + P x

m〉 by Lemma 3.1

≥ 〈λ + δ, cxm−2 + cxm + κx
m−1〉 − sxm by inductive hypothesis

> 〈λ + δ, cxm−2 + cxm + κx
m−1〉 − sxm−2 − sxm

= 〈λ + δ, cx+1
m 〉 − sx+1

m

for the desired inequality.
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In case III.B.2, we compute

〈λ + δ, P x+1
m 〉

= 〈λ + δ, βx
�m−1 + P x

m − βx
�m+1〉

≥ 〈λ + δ, βx
�m−1 + cxm − βx

�m+1〉 − sxm by inductive hypothesis

= 〈λ + δ, βx
�m−1〉 + 〈λ + δ, cxm+1〉 − sxm

≥ 1 + 〈λ + δ, cxm+1〉 − sxm by Lemma 3.1 since βx
�m−1 is compact

= 〈λ + δ, cxm+1〉 − (sxm − 1)

= 〈λ + δ, cx+1
m 〉 − sx+1

m

for the desired inequality.
In case IV.A, we compute

〈λ + δ, P x+1
m 〉 = 〈λ + δ, P x

m−1〉 = 〈λ + δ, κx
m−1 + cxm−1 + P x

m〉
≥ 〈λ + δ, cxm−1 + P x

m〉 − sxm−1 by Lemma 3.1

≥ 〈λ + δ, cxm−1〉 − sxm−1 by inductive hypothesis

= 〈λ + δ, cx+1
m 〉 − sx+1

m

for the desired inequality.
In case IV.B, we compute

〈λ + δ, P x+1
m 〉 = 〈λ + δ, P x

m〉
≥ 〈λ + δ, cxm〉 − sxm by inductive hypothesis

≥ 〈λ + δ, cxm − βx
n−1〉 − (sxm − 1)

by Lemma 3.1 since βx
n−1 is compact

= 〈λ + δ, cx+1
m 〉 − sx+1

m

for the desired inequality.
In case V.A.1, we compute

〈λ + δ, P x+1
m 〉 = 〈λ + δ, P x

m−2〉 = 〈λ + δ, κx
m−2 + cxm−2 + κx

m−1 + P x
m〉

≥ 〈λ + δ, cxm−2 + P x
m〉 − sxm−2 by Lemma 3.1

≥ 〈λ + δ, cxm−2〉 − sxm−2 by inductive hypothesis

= 〈λ + δ, cx+1
m 〉 − sx+1

m
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for the desired inequality.
In case V.A.2, we compute

〈λ + δ, P x+1
m 〉 = 〈λ + δ, P x

m−1〉 = 〈λ + δ, κx
m−1 + cxm−1 + P x

m〉
≥ 〈λ + δ, cxm−1 + P x

m〉 − sxm−1 by Lemma 3.1

≥ 〈λ + δ, cxm−1〉 − sxm−1 by inductive hypothesis

≥ 〈λ + δ, cxm−1 − βx
n−3〉 − (sxm−1 − 1)

by Lemma 3.1 sinceβx
n−3 is compact

= 〈λ + δ, cx+1
m 〉 − sx+1

m

for the desired inequality.
In case V.B, we compute

〈λ + δ, P x+1
m 〉 = 〈λ + δ, P x

m−1〉 = 〈λ + δ, κx
m−1 + cxm−1 + P x

m〉
≥ 〈λ + δ, cxm−1 + P x

m〉 − sxm−1 by Lemma 3.1

≥ 〈λ + δ, cxm−1〉 − sxm−1 by inductive hypothesis

= 〈λ + δ, cx+1
m 〉 − sx+1

m

for the desired inequality.
In case V.C, we compute

〈λ + δ, P x+1
m 〉 = 〈λ + δ, P x

m〉
≥ 〈λ + δ, cxm〉 − sxm

≥ 〈λ + δ, cxm − βn−2 − βn−3〉 − (sxm − 2)

by Lemma 3.1 since βx
n−2 and βx

n−3 are compact

= 〈λ + δ, cx+1
m 〉 − sx+1

m

for the desired inequality.
This completes the proof of Lemma 5.1 which in turn completes the proof

of Theorem 4.7.

5.3. Proof of Theorem 4.9

In this theorem, we assume (AS0)–(AS2) as well as

(AS4) 〈λ + δ(�), α〉 ≥ 0 for all α ∈ �(�)

We start by forming �max from ALL of the compact simple roots, regardless
of their inner product with λ. Also, �+(�max) is to be inherited from �+(�).
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Let β be a noncompact simple root. For any α ∈ �+(�), we know 〈α, β〉 ≤ 0.
Therefore, since �+(�) ⊆ �+(�max), we have

(5.8) 〈δ(�), β〉 ≥ 〈δ(�max), β〉.
The weakly fair assumption then implies

〈λ + δ, β〉 = 〈λ + δ(�), β〉 + 〈δ(�), β〉
≥ 〈δ(�), β〉 by (AS4)

≥ 〈δ(�max), β〉 by (5.8).(5.9)

Since δ(�max) depends solely on the structure of the Vogan diagram, (5.10)
allows us to compute an explicit lower bound on 〈λ + δ, β〉 in terms of the
structure constants si . In particular, we have the following lemma.

Lemma 5.2. Under the assumptions outlined above, if the Vogan diagram
has a noncompact tail then

(5.10)

〈λ + δ, β�i
〉 ≥ −1

2
(si−1 + si) for 1 ≤ i ≤ m, and

〈λ + δ, βn〉 ≥



−1

2
sm for a Bn or Dn diagram

−sm for a Cn diagram

〈λ + δ, βn−1〉 ≥ −1

2
sm for a Dn diagram

If the Vogan diagram has a compact tail, then

(5.11)

〈λ + δ, β�i
〉 ≥ −1

2
(si−1 + si) for 1 ≤ i ≤ m − 1, and

〈λ + δ, β�m
〉 ≥




−1

2
sm−1 −

(
sm + 1

2

)
for a Bn diagram

−1

2
sm−1 − (sm + 1) for a Cn or Dn diagram

Remark 1. The estimates above come about from δ(�max). Certainly more
specific knowledge about � could lead to better estimates than those presented
in the lemma.

Remark 2. The exceptional cases of Theorem 4.7 are excluded by (AS4)
as a result of Lemma 5.2.
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Recall that Pm = β�m
+ cm + E, where

E =



cm + 2βn for Bn

cm + βn for Cn

cm + βn−1 + βn for Dn

.

As an immediate consequence of Lemmas 3.1 and 5.2, we have

Lemma 5.3. Suppose� isK-dominant andA�(λ) is weakly fair. If theVogan
diagram has a noncompact tail then

(5.12)
〈λ + δ, ci−1 + 2β�i

+ ci〉 ≥ 0 for 1 ≤ i ≤ m, and

〈λ + δ, E〉 ≥ 0.

If the Vogan diagram has a compact tail, then

(5.13)

〈λ + δ, ci−1 + 2β�i
+ ci〉 ≥ 0 for 1 ≤ i ≤ m − 1,

〈λ + δ, cm−1 + 2β�m
+ cm〉 ≥

{ −(sm + 1) for Bn,

−(sm + 2) for Cn or Dn

and

〈λ + δ, E〉 ≥
{
sm + 1 for Bn,

sm + 2 for Cn or Dn

Before starting the proof of Theorem 4.9, we present some situations in
which the hypotheses of either Theorem 4.6 or 4.7 are satisfied so that we
obtain the conclusion of Theorem 4.9.

Proposition 5.4. Suppose � is K-dominant and A�(λ) is weakly fair. If

β�m−1 /∈ �(�)

then 〈λ + δ, Pm〉 ≥ 〈λ + δ, cm〉 − sm so that Theorem 4.7 holds.

Proof. The weakly fair assumption implies that 〈λ+δ, β�m
〉 ≥ 〈δ(�), β�m

〉.
Sinceβ�m−1 /∈ �(�), we get no contribution to 〈δ(�), β�m

〉 from any simple roots
βj of�+(�)with j ≤ �m. Therefore we may take sm−1 = 0 in (5.10) and (5.11).
Consequently, for a diagram with a noncompact tail,

〈λ + δ, Pm〉 = 〈λ + δ, β�m
+ cm + E〉

≥ 〈λ + δ, cm〉 − 1

2
sm by Lemmas 5.2, 5.3

≥ 〈λ + δ, cm〉 − sm.
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For a diagram with a compact tail,

〈λ + δ, Pm〉 = 〈λ + δ, β�m
+ cm + E〉

≥ 〈λ + δ, cm〉 by Lemmas 5.2, 5.3

≥ 〈λ + δ, cm〉 − sm.

This proves the proposition.

Due to Proposition 5.4, we may also assume
(AS5)

β�m−1 ∈ �(�) so that β�m−1 is compact and has 〈λ + δ, β�m−1〉 = 1.

The weakly fair assumption offers no improvement on Corollary 4.8 in
the case of a compact tail diagram. In a noncompact tail diagram, we get the
following result.

Proposition 5.5. Suppose � is K-dominant, A�(λ) is weakly fair, and the
Vogan diagram has a noncompact tail. If

(5.14) 〈λ + δ, β�m
〉 ≥ −sm

then

(5.15) 〈λ + δ, Pm〉 ≥ 〈λ + δ, cm〉 − sm

and Theorem 4.7 applies. In particular, if sm ≥ sm−1 then (5.14) holds.

Proof. Since Pm = β�m
+cm+E, (5.12) and (5.14) combine to give (5.15).

When sm ≥ sm−1, Lemma 5.2 implies

〈λ + δ, β�m
〉 ≥ −1

2
(sm−1 + sm) ≥ −sm.

This proves the proposition.

As a result of Proposition 5.5, Corollary 4.8 and integrality, we may also
assume

(AS6) 〈λ + δ, β�m
〉 ≤ −sm − 1 ≤ −1.

Proposition 5.6. If � is K-dominant and A�(λ) is weakly fair, then

(5.16) 〈λ + δ, Pm〉 ≥ −1.

Moreover, equality holds (5.16) only in the following cases:
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Table 4.

Diagram Noncompact tail Compact tail

Bn 〈λ + δ, cm〉 = sm 〈λ + δ, cm〉 = sm
〈λ + δ, κm〉 = −(

sm + 1
2

) 〈λ + δ, κ〉 = −2(sm + 1)
〈λ + δ, βn〉 = − 1

2 〈λ + δ, βn〉 = 1
2〈λ + δ, β�m

〉 = −2sm 〈λ + δ, β�m
〉 = −2(sm + 1)

Cn 〈λ + δ, cm〉 = sm
〈λ + δ, κm〉 = −(sm + 1)
〈λ + δ, β�m

+ βn〉 = −(2sm + 1)

Dn 〈λ + δ, cm〉 = sm 〈λ + δ, cm〉 = sm
〈λ + δ, κma

〉 = 〈λ + δ, κmb
〉 = −sm 〈λ + δ, κ〉 = −(2sm + 3)

〈λ + δ, βn−1〉 = 〈λ + δ, βn〉 = −1 〈λ + δ, βn−1〉 = 〈λ + δ, βn〉 = 1
〈λ + δ, β�m

〉 = −2sm + 1 〈λ + δ, β�m
〉 = −(2sm + 3)

Proof. We start the proof of Proposition 5.6 by considering diagrams of
type Bn. First suppose that βn is noncompact. If βn−1 ∈ �(�), then βn−1 is
compact, 〈λ + δ, βn−1〉 = 1, and 〈λ + δ, κ〉 ≥ 0 by Lemma 3.1. This implies
that 〈λ+ δ, βn〉 ≥ − 1

2 . If βn−1 �∈ �(�), then the weakly fair assumption forces
〈λ + δ, βn〉 ≥ 0. Therefore, in either case, we have 〈λ + δ, βn〉 ≥ − 1

2 . Now
compute

〈λ + δ, Pm〉 = 〈λ + δ, β�m
+ 2cm + 2βn〉

= 〈λ + δ, κm + cm + βn〉
≥ −(

sm + 1
2

) + sm + 〈λ + δ, βn〉 by Lemma 3.1

= 〈λ + δ, βn〉 − 1
2

≥ −1

with equality if and only if 〈λ+δ, βn〉 = − 1
2 , 〈λ+δ, cm〉 = sm and 〈λ+δ, κm〉 =

−(
sm + 1

2

)
.

Next consider the case where βn is compact. We then compute

〈λ + δ, Pm〉 = 〈λ + δ, β�m
+ 2cm + 2βn〉

= 〈λ + δ,
1

2
(κ − β�m−1) + cm + βn〉 by (AS5)

≥ 1

2
[−2(sm + 1) − 1] + sm + 1

2
by Lemmas 3.1 and 5.2

= −1

with equality if and only if 〈λ+δ, cm〉 = sm, 〈λ+δ, βn〉 = 1
2 , and 〈λ+δ, κ〉 =

−2(sm + 1).
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We continue by considering diagrams of type Cn with βn noncompact. We
then have

〈λ + δ, Pm〉 = 〈λ + δ, κm + cm〉
≥ −(sm + 1) + sm by Lemma 3.1

= −1

with equality if and only if 〈λ + δ, cm〉 = sm and 〈λ + δ, κm〉 = −(sm + 1).
Next we consider diagrams of type Dn. First suppose the tail is noncompact.

If 〈λ + δ, βn〉 ≥ 0, then Lemma 3.1 implies

(5.17) 〈λ + δ, Pm〉 = 〈λ + δ, κma
+ cm〉 + 〈λ + δ, βn〉 ≥ 〈λ + δ, βn〉 ≥ 0.

If 〈λ + δ, βn〉 ≤ −1. Then Lemma 5.2 implies sm ≥ 2, so that we can
compute

〈λ + δ, Pm〉 = 〈λ + δ, κmb
− βn〉 + 〈λ + δ, (cm − βn−2)〉 + 〈λ + δ, κ〉

≥ (−sm + 1) + (sm − 1) − 1 by Lemma 3.1

= −1

with equality if and only if 〈λ+δ, κma
〉 = 〈λ+δ, κmb

〉 = −sm, 〈λ+δ, cm〉 = sm
and 〈λ + δ, κ〉 = −1 so that 〈λ + δ, βn−1〉 = 〈λ + δ, βn〉 = −1.

Next suppose that the tail is compact. If 〈λ+ δ, β�m
〉 ≤ −2sm − 4, then we

have

〈λ + δ, Pm〉 = 〈λ + δ, κ〉 − 〈λ + δ, β�m−1 + β�m
〉

≥ −(2sm + 3) − 1 + 2sm + 4 by Lemma 3.1, (AS5)

= 0

If 〈λ + δ, β�m
〉 ≥ −2sm − 3 then we compute

〈λ + δ, Pm〉 = 〈λ + δ, β�m
+ 2cm + βn−1 + βn〉

≥ −2sm − 3 + 2sm + 2

= −1

with equality if and only if 〈λ + δ, β�m
〉 = −2sm − 3, 〈λ + δ, cm〉 = sm and

〈λ+ δ, βn−1〉 = 〈λ+ δ, βn〉 = 1. This completes the proof of Proposition 5.6.

As an immediate consequence of Proposition 5.6 and integrality, we have

Corollary 5.7. Except in the cases of equality in Proposition 5.6, Theorem
4.6 applies so that we have the conclusion of Theorem 4.9.
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Proof of Theorem 4.9. By Corollary 5.7, we are only left to consider
Vogan diagrams as in Table 4. First suppose that α = β�i

is the noncompact
simple root chosen by the Knapp process. Consider the roots γ ∈ C listed in
Table 2; we need to show 〈λ + δ, sαγ 〉 ≥ 0 for these roots.

Lemma 3.2 handles the γ A
j . Next consider the roots γj ∈ C. Here |β�i

|2 =
|γj |2 so that sαγj = γj − β�i

. For i < j ≤ m, we compute

〈λ + δ, γj − β�i
〉

= 〈λ + δ, γ A
j−1 − β�i

〉

+
m∑

x=j

〈λ + δ, cx−1 + 2β�x
+ cx〉 + 〈λ + δ, E〉

≥
m∑

x=j

〈λ + δ, cx−1 + 2β�x
+ cx〉 + 〈λ + δ, E〉 by Lemma 3.2

≥ 0 by Lemma 5.3.

For j = i, we have γi = β�i−1 + β�i
+ Pi . If β�i−1 is compact then

〈λ + δ, β�i−1〉 ≥ 1 by Lemma 3.1. If β�i−1 is noncompact then

〈λ + δ, β�i−1〉 = 〈λ + δ, κi−1 − β�i
〉 ≥ 〈λ + δ,−β�i

〉 ≥ 1

by Lemma 3.1 and (P2). Combining this with Proposition 5.6 and Lemma 3.3,
we have

〈λ + δ, γi − β�i
〉 = 〈λ + δ, β�i−1 + Pi〉 ≥ 1 + 〈λ + δ, Pi〉 ≥ 0,

for the desired result for γi .
For 1 ≤ j < i, we consider γj = γ A

j +Pi . Lemma 3.2 and Proposition 5.6
combine to give
(5.18)
〈λ+ δ, γj − β�i

〉 = 〈λ+ δ, γ A
j − β�i

〉 + 〈λ+ δ, Pi〉 ≥ 0 + 〈λ+ δ, Pm〉 ≥ −1.

If we can show that the above inequality is strict, then integrality will provide
the result for γj . So, assume (5.19) is an equality so that 〈λ+ δ, γ A

j−1 − β�i
〉=0

and 〈λ+ δ, Pi〉 = 〈λ+ δ, Pm〉 = −1. From Lemmas 3.2, 3.3, and Proposition
5.6, this in turn implies

(1) 〈λ + δ, cx〉 = sx for j ≤ x ≤ m,

(2) 〈λ + δ, κx〉 = −sx for j ≤ x ≤ m − 1,

(3) the remaining conditions in Table 4, and

(4) 〈λ + δ, β�j
〉 = 〈λ + δ, β�i

〉.
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We show conditions (1)–(3), along with the fact that A�(λ) is weakly fair,
contradict (4). To do so, we prove the following claim.

Claim 5.8. If (1)–(3) hold, and A�(λ) is weakly fair, then

〈λ + δ, β�x−1 − β�x
〉 ≤ −2 for j + 1 ≤ x ≤ m.

Proof of Claim. The proof proceeds by downward induction. First note
that for j + 1 ≤ x ≤ m, conditions (1) and (2) imply

(5.19) 〈λ + δ, β�x−1 − β�x
〉 = −2sx−1 − 2〈λ + δ, β�x

〉.
For the base step, x = m, first suppose βn is noncompact. Then Lemma 5.2

shows that −2sm−1 ≤ 4〈λ + δ, β�m
〉 + 2sm so that (5.19) becomes

(5.20) 〈λ + δ, β�m−1 − β�m
〉 ≤ 2〈λ + δ, β�m

〉 + 2sm.

In the Bn case, Proposition 5.6 implies 〈λ + δ, β�m
〉 = −2sm. Moreover,

Lemma 5.2 and 〈λ + δ, βn〉 = − 1
2 , show that sm ≥ 1. Therefore, from (5.20)

we deduce the base step.
In the Cn case, 〈λ+δ, β�m

〉 = −〈λ+δ, βn〉−2sm−1. Moreover, Lemma 5.2
implies −2〈λ+ δ, βn〉 ≤ 2sm. Therefore, from (5.21) we deduce the base step.

In the Dn case, Proposition 5.6 implies 〈λ+δ, β�m
〉 = −2sm+1. Moreover,

Lemma 5.2 and 〈λ + δ, βn〉 = −1, show that sm ≥ 2. Therefore, from (5.20)
we deduce the base step.

Now suppose that βn is compact. In the Bn case, Proposition 5.6 implies
〈λ + δ, β�m

〉 = −2(sm + 1). Moreover, Lemma 5.2 implies −2sm−1 ≤ 4〈λ +
δ, β�m

〉 + 4sm + 2. Therefore, from (5.19) we deduce the base step.
In the Dn case, Proposition 5.6 implies 〈λ + δ, β�m

〉 = −(2sm + 3).
Moreover, Lemma 5.2 implies −2sm−1 ≤ 4〈λ+ δ, β�m

〉+ 4sm + 4. Therefore,
from (5.19) we deduce the base step.

Now suppose that the claim holds for x = k + 1. Then we compute

〈λ + δ, β�k−1 − β�k
〉 = −2sk−1 − 2β�k

≤ 2〈λ + δ, β�k
〉 + 2sk by Lemma 5.2

= 〈λ + δ, β�k
〉 − 〈λ + δ, β�k+1〉 by (1) and (2)

≤ −2 by inductive hypothesis.

This completes the proof of the claim.

The claim contradicts (4) so we may conclude that (5.18) is an inequality.
Therefore we have the desired result for γj when 1 ≤ j < i.
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Continuing through Table 2, now consider γ = γ S = γ A
m + cm + T where

T = βn in Bn or Cn, and T = βn−1 +βn in Dn. In each case, sα(γ S) = γ S −α.
Therefore

(5.21)
〈λ + δ, sα(γ

S)〉 = 〈λ + δ, γ A
m − α〉 + 〈λ + δ, cm + T 〉

≥ sm + 〈λ + δ, T 〉
by Lemmas 3.1 and 3.2. If the diagram has a noncompact tail, then (5.21) and
Lemma 5.2 show 〈λ + δ, sα(γ

S)〉 ≥ 0; if the diagram has a compact tail, then
(5.21) and Lemma 3.1 show 〈λ + δ, sα(γ

S)〉 > 0.
To finish the argument in the case that α = β�i

, we need to check the Bn

root γ S+ and the Cn root γ ′
i . In the Bn case, similiar to γ S , we find

〈λ + δ, sα(γ
S+)〉 ≥ sm + 〈λ + δ, βn〉,

so that in the noncompact tail case, Lemma 5.2 implies the result and in the
compact tail case, Lemma 3.1 implies the result. For Cn, we compute

〈λ + δ, sα(γ
′
i )〉 = 〈λ + δ, γ ′

i − 2β�i
〉 = 〈λ + δ, Pi − β�i

〉 ≥ −1 + 1 = 0

by Proposition 5.6 and (P2).
Now suppose α = βn, so that the Vogan diagram has a noncompact tail. We

show that 〈λ + δ, Pm〉 ≥ 0 so that Theorem 4.6 gives the result. To do so, we
compute

〈λ + δ, Pm〉 = 〈λ + δ, β�m
+ cm + E〉

≥ 〈λ + δ, β�m
+ cm〉 by Lemma 5.3

≥ 〈λ + δ, β�m
〉 + sm by Lemma 3.1

≥



sm + 2〈λ + δ, βn〉 for Bn diagrams

sm + 1
2 〈λ + δ, βn〉 for Cn diagrams

sm + 〈λ + δ, βn〉 for Dn diagrams

by (P1)

≥




sm + 2
(− 1

2 sm
)

for Bn diagrams

sm + 1
2 (−sm) for Cn diagrams

sm + − 1
2 sm for Dn diagrams

by Lemma 5.2

≥ 0.

This completes the proof of Theorem 4.9.
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