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GENERAL n-DIMENSIONAL TAUBERIAN PROBLEMS
WITH APPLICATION TO THE LAPLACE- AND

STIELTJES TRANSFORMS

LENNART FRENNEMO

Abstract

A general theorem on the closure of translates in certain weighted spaces in Rn is proved and as
a consequence a general n-dimensional Tauberian theorem. This is applied to the n-dimensional
Laplace transform and to the one-dimensional Stieltjes- and Weierstrass transforms.

0. Introduction

Let K,φ and ψ be functions from Rn to R which belong to some specific
classes of functions which will be defined later in the text.

Suppose that

(0.1) K ∗ φ(x) ∼ K ∗ ψ(x), x → +∞.

Under certain restrictions on ψ and with a Tauberian condition on φ we will
show that

(0.2) φ(x) ∼ ψ(x), x → +∞.

Here
K ∗ φ(x) =

∫
K(x − u)φ(u)du,

where we let an unspecified region of integration be Rn throughout the text.
Byx = (x1, x2, . . . , xn) → +∞we mean thatxk → +∞, k = 1, 2, . . . , n,

and by (0.2) we mean that

φ(x) = ψ(x) + o(ψ(x)) when x → +∞,

with a corresponding interpretation for (0.1).
The class of kernels considered here will be chosen so that it includes a

wide variety of well-known transformation kernels. As specific examples we
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apply the general results to the n-dimensional Laplace transform and the one-
dimensional Stieltjes- and Weierstrass transforms.

Problems of this kind for the one dimensional Laplace transform has been
treated earlier by the author in [7].

The method used depends on an n-dimensional analogue of a theorem on
the closure of the span of translates of the transformation kernels in a cer-
tain weighted space. One-dimensional closure theorems of this kind was first
proved by Nyman [14] and Korenblum [11]. The methods used in this paper
are developments of ideas used by the author in ([5], [6], [7]).

1. Preliminaries

We will use the following notations beside the ones used in the introduction.
If

x = (x1, x2, . . . , xn) ∈ Rn, y = (y1, y2, . . . , yn) ∈ Rn

then
x ≤ y if xk ≤ yk for all k = 1, 2, . . . , n,

with a corresponding meaning for x < y.
We also let Rn+ be all x ∈ Rn such that x ≥ 0 = (0, 0, . . . , 0).
Furthermore, we let

x · y =
n∑

k=1

xkyk, |x| = √
x · x, x ⊗ y = (x1y1, x2y2, . . . , xnyn),

δx = (δx1, δx2, . . . , δxn) if δ is a real number,

‖x‖ =
n∑

k=1

max(0, xk), (which is a pseudonorm in Rn but a norm in Rn+),

exp x = (exp x1, exp x2, . . . , exp xn), 1 = (1, 1, . . . , 1).

If x > 0 then

ln x = (ln x1, ln x2, . . . , ln xn), x
y = exp(y · ln x),

x

y
=

(
x1

y1
,
x2

y2
, . . . ,

xn

yn

)
.

We use standard notations for the Fouriertransform, thus

K̂(x) =
∫

exp(−ix · t)K(t) dt.
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We also introduce weight-functions p defined in Rn such that

p(x) ≥ p(0) = 1

p(x + y) ≤ p(x)p(y)

p(rx) ≥ p(x) if r real and r ≥ 1

In this paper we use weight-functions p of the form

p(x) = (1 + |x|)µ exp(‖m ⊗ x‖), where µ ∈ R+ and m ∈ Rn+.

We call a function p from Rn to R non-decreasing if

p(x) ≤ p(y) when x ≤ y.

Definition 1.1. For any weight-function p we let L1(p) consist of all
measurable functions H such that

‖H‖1
p =

∫
|H(−x)|p(x)dx < ∞

We also let L∞(p) denote the space of all measurable functions φ such that

‖φ‖∞
p = ess sup

−∞<x<∞
|φ(x)|
p(x)

< ∞.

We see that L1(p) is a Banachspace under this norm with L∞(p) as its dual
space, which means that any bounded linear functional on L1(p) is of the form

K →
∫

K(−x)φ(x)dx

for some function φ ∈ L∞(p). (Cf. e.g. [16] p. 136).
For convenience we let C stand for positive constants not necessarily the

same each time.

2. Some general Tauberian Theorems

We first introduce the class of kernels considered.

Definition 2.1. By E(α, β,M) we denote all integrable functions K de-
fined in Rn such that:

10 K̂(t) �= 0 for all t ∈ Rn

20 The function g defined by g(t) = K̂(t)−1 can be analytically continued
in a region −α < Im t < β for some α, β > 0
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30 This function g satisfies an inequality

|g(t)| ≤ C exp(M(x))

for all t = x + iy such that −α < y < β and for some function M from
Rn to R+.

Theorem 2.2. Let p be a weight-function of the form

p(x) = (1 + |x|)µ exp(‖m ⊗ x‖), x ∈ Rn, for some µ in R+ and m in Rn+.

IfK ∈ L1(p)∩E(α, β,M)withα > m and ifM(x) = o
(∑n

k=1 exp
(
π

|xk |
αk

))
when |x| → ∞, then the span of translates of K is dense in L1(p).

Proof. We will prove that for any φ ∈ L∞(p) and any K which satisfies
the condition above then

(2.1) K ∗ φ(x) = 0 for all x ∈ Rn

implies that
φ(x) = 0 a.e. in Rn.

For any real ε > 0 such that α > m + 3ε
π
α and β − 2ε

π
α > 0, and for any

ω ∈ Rn consider the function

(2.2) Q(x) = 1

(2π)n

∫
exp(ix · u)h(u − ω)g(u) du

where
(2.3)

h(u) = exp

[
−A ·exp

(
π
u

α
+i

(π
2

−2ε
)

1
)

−A ·exp

(
−π

u

α
−i

(π
2

−2ε
)

1
)]

with an A ∈ Rn+ such that cos
(
π
2 − ε

)
A = 1.

In (2.2) we now make the substitution

u = t + is where − α + 2ε

π
α < s <

2ε

π
α,

and after a translation of the region of integration we obtain that

(2.4) Q(−x) = 1

(2π)n
exp(s · x)

∫
exp(−ix · t)h(t − ω + is)g(t + is) dt

If now s = (s1, s2, . . . , sn) is chosen so that

sk = −αk + 3ε

π
αk when xk > 0
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and
sk = +ε

αk

π
when xk ≤ 0

then we can see that there exists a positive number δ such that

(2.5) |Q(−x)p(x)| ≤ C exp(−δ|x|) for all x ∈ Rn.

Hence Q ∈ L1(p).
If

K ∗ φ = ψ

then clearly ψ ∈ L∞(p) and

(2.6) Q ∗ (K ∗ φ) = Q ∗ ψ.

The conditions above are enough to prove that

(2.7) Q ∗ (K ∗ φ) = (Q ∗ K) ∗ φ.

The method above to prove formulas (2.4) and (2.5) can also be used to prove
that if h is defined as in (2.3) then h = Ĥ for some function H ∈ L1(p). Now

(2.8) Q ∗ K(u) = H(u) exp(iω · u),
which follows from the fact that

Q̂(u) = h(u − ω)g(u)

and hence
(Q ∗ K)̂(u) = Q̂(u)K̂(u) = h(u − ω).

By use of (2.1), (2.7) and (2.8) we have that

(2.9)
∫

exp(−iω · u)H(−u)φ(u + x) du = 0 for all ω, x ∈ Rn

The uniqueness of the Fouriertransform now implies that

H(−u)φ(u + x) = 0 a.e. in u for any x ∈ Rn,

and since H is non-trivial, we have finally proved that

φ(u) = 0 a.e. in Rn.

It now follows from the Hahn-Banach theorem that the span of translates of
K is dense in L1(p). (Cf. [16] p. 114).
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Remark 2.3. In thesis 1950 Nyman [14] gave, in the one-dimensional
case, the necessary and sufficient conditions for the span of translates of a
kernel K ∈ L1(p) to be dense in L1(p), if p(x) = exp(αx) for x ≥ 0
and p(x) = exp(−βx) for x < 0. He proved that K̂(t) �= 0 in the closed
strip −α ≤ Im t ≤ β and K ∈ E(α, β,M) with M(x) = o

(
exp π |x|

α+β

)
when

x → ±∞, are the appropriate conditions.
Essentially the same result was proved by Korenblum [11] in 1958.
In this connection it may also be noted that a well-known result by Levinson

[12], also in the one-dimensional case, shows that if m > α then

H(x) = O
(
exp(−mx)

)
and Ĥ (x) = O

(
exp

(
− exp

(π
α
x
)))

, x → +∞

implies that H(x) = 0 a.e.

Theorem 2.4. Let K,φ and ψ be functions from Rn to R such that K
is non-negative and fulfills the conditions of Theorem 1 with p(x) = (1 +
|x|) exp(‖m⊗x‖). Furthermore, let ψ be positive and non-decreasing and let
φ(x) and ψ(x) be bounded when ‖x‖ is bounded.

If now

(2.10) K ∗ φ(x) ∼ K ∗ ψ(x), x → +∞
and also

(2.11) K ∗ φ(x) = O(K ∗ ψ(x)) when ‖x‖ → +∞
and if for any real δ > 0 there exist an X in R such that

(2.12) ψ(x + y) ≤ (1 + δ) exp(m · y)ψ(x) when ‖x‖ ≥ X, y ≥ 0.

and if

(2.13) lim
h→0+ lim inf‖x‖→∞ inf

x≤y≤x+h

(
φ(y) − φ(x)

ψ(x)

)
= 0

then

(2.14) φ(x) ∼ ψ(x), x → +∞.

Proof. As a first step we will prove that

|φ(x)| ≤ C(1 + ψ(x)) for all x ∈ Rn.

In proving this we use that

(2.15) ψ(x + u) ≤ C exp(‖m ⊗ u‖)(1 + ψ(x)) for any u, x ∈ Rn.
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This follows since ψ is non-decreasing and hence

ψ(x +u) ≤ ψ(x + y) if y = (‖u1‖, ‖u2‖, . . . , ‖un‖) for any x, u ∈ Rn

and then by (2.12)

ψ(x + u) ≤ C exp(‖m ⊗ u‖)ψ(x) for any u ∈ Rn if ‖x‖ is large enough.

Since ψ(x) is bounded when ‖x‖ is bounded, we easily get (2.15).
We now start using (2.13) and the fact that φ(x) is bounded when ‖x‖ is

bounded to see that

(2.16) φ(y)−φ(x) ≥ −C(1+ψ(x)), x ≤ y ≤ x+2 1 for all x ∈ Rn.

If x ≤ y ≤ x + 1 then

K ∗φ(y+1)−K ∗φ(x) =
∫

K(−u)(φ(u+y+1)−φ(u+x)) du = I1 +I2

where I1 is the integral taken over all S = {u ∈ Rn : −1 ≤ u ≤ 0} and I2 is
the integral taken over the rest of Rn.

By (2.15) and (2.16) we see that

I2 ≥ −C(1 + ψ(x))

and hence by (2.11) and (2.15) we have that

(2.17) I1 ≤ K ∗ φ(y + 1) − K ∗ φ(x) + C(1 + ψ(x)) ≤ C(1 + ψ(x))

if ‖x‖ is large enough.
When u ∈ S we write

φ(u + y + 1) − φ(u + x)

= φ(u + y + 1) − φ(y) + φ(x) − φ(u + x) + φ(y) − φ(x)

≥ −C(1 + ψ(x)) + φ(y) − φ(x)

and see that

I1 ≥ (−C(1 + ψ(x)) + φ(y) − φ(x))

∫
S

K(−u) du.

Since φ(x) is bounded if ‖x‖ is bounded we have from (2.17) that

φ(y) − φ(x) ≤ C(1 + ψ(x)) for all x, y ∈ Rn such that x ≤ y ≤ x + 1.
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We combine this inequality with (2.16) and see that

(2.18) |φ(u + x) − φ(x)| ≤ C(1 + ψ(x)), 0 ≤ u ≤ 1 for any x ∈ Rn.

Hence for any u ≥ 0 and any u ≤ 0 we have by (2.15) that

|φ(u+x)−φ(x)| ≤ C(1+|u|) exp(‖m⊗u‖)(1+ψ(x)) ≤ Cp(u)(1+ψ(x)).

For any other value of u we let

x0 = x, x1 = x + (u1, 0, 0, . . .),

x2 = x1 + (0, u2, 0, . . .), x3 = x2 + (0, 0, u3, 0, . . .), . . .

and in this case we see after some calculations using (2.18) and (2.15) that

|φ(u + x) − φ(x)| =
∣∣∣∣

n∑
q=1

(φ(xq) − φ(xq−1))

∣∣∣∣

≤ C

n∑
q=1

(1 + |uq |) exp(‖mquq‖)(1 + ψ(xq−1)) ≤ Cp(u)(1 + ψ(x))

Hence

(2.19) |φ(u + x) − φ(x)| ≤ Cp(u)(1 + ψ(x)) for all u and x in Rn.

Now since K ∈ L1(p)

∣∣∣∣K ∗ φ(x) − φ(x)

∫
K(−u) du

∣∣∣∣ =
∣∣∣∣
∫

K(−u)(φ(u + x) − φ(x)) du

∣∣∣∣
≤ C(1 + ψ(x))

∫
K(−u)p(u) du ≤ C(1 + ψ(x)).

Finally we use (2.11) and the fact that φ(x) is bounded when ‖x‖ is bounded
to see that

(2.20) |φ(x)| ≤ C(1 + ψ(x)) for all x ∈ Rn.

Hence the first step of the proof is completed.
For any function H ∈ L1(p) and for any ε > 0 we now can, using The-

orem 2.2, find a finite linear combination Kε of translates of K ,

Kε(x) =
m∑
k=1

akK(x − λk),
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such that
‖Kε − H‖1

p < ε.

We write

H ∗ φ = H ∗ ψ + (H − Kε) ∗ (φ − ψ) + Kε ∗ (φ − ψ).

By (2.10) and (2.12) we see that

Kε ∗ (φ − ψ) = o(1)Kε ∗ ψ(x) = o(ψ(x)), x → +∞.

By (2.20) we have that

(H − Kε) ∗ (φ − ψ)(x) = O(1)(|H − Kε| ∗ (1 + ψ(x)), x → +∞,

and hence by (2.15) we have that

(H − Kε) ∗ (φ − ψ)(x) = O(1)
∫

|H(−u) − Kε(−u)|(1 + ψ(u + x)) du

= O(1)(1 + ψ(x))

∫
|H(−u) − Kε(−u)|p(u) du

= O(1)(1 + ψ(x))‖H − Kε‖1
p, x → +∞.

Since ε is arbitrary, it follows that

(2.21) H ∗ φ(x) = H ∗ ψ(x) + o(ψ(x)), x → +∞.

For any positive real number h we now let H be the characteristic function on
the set Sh = {u ∈ Rn : −h 1 ≤ u ≤ 0} multiplied by h−n. Then by (2.21)

h−n

∫
Sh

φ(x − u) du = h−n

∫
Sh

ψ(x − u) du + o(ψ(x)), x → +∞.

We divide this expression with ψ(x) and see that

φ(x)

ψ(x)
= h−n

∫
Sh

φ(x)

ψ(x)
du

= h−n

∫
Sh

φ(x)−φ(x−u)

ψ(x)
du + h−n

∫
sh

φ(x−u)

ψ(x)
du

= h−n

∫
Sh

φ(x)−φ(x−u)

ψ(x)
du + h−n

∫
Sh

ψ(x−u)

ψ(x)
du + o(1), x → ∞.
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By use of (2.12) and (2.13) we see that if h is small enough then to any real
ε > 0 there exists an x1 ∈ Rn such that

φ(x)

ψ(x)
< 1 + ε if x ≥ x1.

If on the other hand, H is the characteristic function on Dh = {u ∈ Rn : 0 ≤
u ≤ h 1} multiplied by h−n we can in an analogous way prove that there exists
an x2 ∈ Rn so that

φ(x)

ψ(x)
> 1 − ε if x ≥ x2.

Hence
φ(x) ∼ ψ(x), x → +∞,

and we have proved Theorem 2.4.

3. Results for the n-dimensional Laplace transform

We suppose that α and β are real functions of bounded variation defined in
Rn+. We also suppose that

α(t) = β(t) = 0 if any tk = 0, k = 1, 2, . . . , n.

This means that α and β belong to an n-dimensional analogue of class V0 in
[1].

We use the following notations for the corresponding Laplace transforms:

F(s) =
∫
Rn+

exp(−s · t) dα(t), s > 0,(3.1)

G(s) =
∫
Rn+

exp(−s · t) dβ(t), s > 0,(3.2)

where we suppose that the integrals are boundedly convergent for any s > 0
(cf. [1]).

Theorem 3.1. Let β be positive and non-decreasing and suppose that

(3.3) F (s) ∼ G(s), s → 0+,

and that

(3.4) F (s) = O(G(s)) when min
k=1,2,...,n

sk → 0 + .
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If for any real number δ > 0 there exist an m ∈ Rn+ and a positive real number
T such that

(3.5) β(r ⊗ t) ≤ (1 + δ)rmβ(t), r ≥ 1, ‖t‖ ≥ T

and if

(3.6) lim
λ→1+ lim inf‖x‖→∞ inf

x≤t≤λx

(
α(t) − α(x)

β(x)

)
= 0

then

(3.7) α(t) ∼ β(t), t → ∞.

Proof. We make a partial integration in (3.1) and obtain that

F(s) = s1
∫
Rn+

exp(−s · t)α(t) dt, s > 0,

where the integral is absolutely convergent (cf. [1]). We do the same in (3.2)
and get a corresponding result for G(s).

We now make the substitutions

s = exp(−x) and t = exp u

and let
φ(x) = α(exp x) and ψ(x) = β(exp x).

In this way (3.3) is transformed into (2.10), that is

K ∗ φ(x) ∼ K ∗ ψ(x), x → +∞,

where
K(x) = exp(−1 · exp(−x) − 1 · x)

and

K̂(t) =
n∏

k=1

5(1 + itk), t = (t1, t2, . . . , tn).

HenceK fulfills the conditions required in Theorem 2.4. ThatK ∈ E(α, β,M)

for any α > 0 and properly chosen β andM follows from Stirlings formula (cf.
e.g. [6] p. 231). It is also easy to see that the other conditions of Theorem2.4
are fulfilled since (2.11), (2.12) and (2.13) are consequences of (3.4), (3.5) and
(3.6) respectively. Now the conclusion (3.7) follows from (2.14) and hence
Theorem 3.1 is a consequence of Theorem 2.4.
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We also have the following corollary to Theorem 3.1:

Corollary 3.2. Let m ∈ Rn+ and let A be a positive real number. Suppose
that

(3.8) F (s) ∼ As−m, s → 0+
and that

(3.9) F (s) = O(s−m) when min
k=1,2,...,n

sk → 0 + .

Furthermore, suppose that

(3.10) lim
λ→1+ lim inf‖x‖→∞ inf

x≤t≤λx

(
α(t) − α(x)

xm

)
= 0,

then

(3.11) α(t) ∼ Atm∏m
k=1 5(1 + mk)

, t → ∞.

Proof. In Theorem 3.1 we let

β(t) = Atm∏n
k=1 5(1 + mk)

, if t > 0,

and
β(t) = 0 if any tk = 0, k = 1, 2, . . . , n.

In this case,
G(s) = As−m, s > 0,

and the corollary follows from this.

Remark 3.3. From this corollary it follows that Theorem 3.1 is ann-dimen-
sional generalisation of the classical Hardy-Littlewood-Karamata theorem for
the Laplace transform (cf. [8], [10], [13]). If n = 1 condition (3.4) is in-
cluded in (3.3) and hence the classical one-dimensional results are included in
Theorem 3.1.

The two-dimensional case of this corollary was first treated by Delange
[4] in the special case when m = 0. He then used Tauberian conditions strong
enough to imply bounded convergence of the Laplace transform. More recently
the multidimensional case of Corollary 3.2 has been treated among others by
Celidze ([2], [3]), Stadtmüller and Trautner [17] and Omey and Willekens
[15]. They also use stronger conditions than ours which imply both bounded
convergence and condition (3.9).
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In Theorem 3.1 we could equally well let α and β be measures on Rn+. We
just have to replace α(t) and β(t) in (3.5), (3.6) and (3.7) with

∫
0≤s≤t

dα(s)

and
∫

0≤s≤t
dβ(s) respectively. (Cf. e.g. [5] p. 48).

4. Consequences for the one-dimensional Stieltjes- and Weierstrass
transforms

Suppose that α and β are real-valued functions of bounded variation defined
in R+ with α(0) = β(0) = 0. For the Stieltjes transform we give the following
example as a consequence of Theorem 2.4.

Theorem 4.1. Suppose that β is positive and non-decreasing and that

(4.1) F (s) =
∫ ∞

0

dα(t)

s + t
∼ G(s) =

∫ ∞

0

dβ(t)

s + t
, s → ∞

and also that for any real number δ there exist a real number m, 0 ≤ m < 1,
and a real number T such that

(4.2) β(rt) ≤ (1 + δ)rmβ(t), r ≥ 1, t ≥ T .

Furthermore, suppose that

(4.3) lim
λ→1+ lim inf

x→∞ inf
x≤t≤λx

(
α(t) − α(x)

β(x)

)
= 0,

then

(4.4) α(t) ∼ β(t), t → ∞.

Proof. After a partial integration in (4.1), we have that

F(s) =
∫ ∞

0

α(t) dt

(s + t)2

and with a corresponding result for G(s).
We now make the substitutions

s = exp x and t = exp y

and thus transform the problem into Theorem (2.4) with

K(x) =
(

exp
(x

2

)
+ exp

(
−x

2

))−2
, φ(x) = α(exp x) and ψ(x) = β(exp x).

In this case

sF (s) = K ∗ φ(x) and K̂(x) = 2πx(exp(πx) − exp(−πx))−1.
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We omit the details of the proof.
Since∫ ∞

0

tα

(s + t)2
dt = 5(1 − α)5(1 + α)

s1−α
, −1 < α < 1, (cf. e.g. [18], p. 184),

we have the following corollary if we let

β(t) = A
t1−γ

5(γ )5(2 − γ )
, 0 < γ ≤ 1,

in Theorem 4.1.

Corollary 4.2. If 0 < γ ≤ 1 and if for any positive number A

F(s) ∼ As−γ , s → ∞
and if also

lim
λ→1+ lim inf

x→∞ inf
x≤t≤λx

(
α(t) − α(x)

x1−γ

)
= 0,

then
α(t) ∼ A

t1−γ

5(γ )5(2 − γ )
, t → ∞.

This is a classical Tauberian theorem for the Stieltjes transform in a general
version.

We finally give an example for the Weierstrass transform. The Weierstrass
transform is the convolution transform

f (x) =
∫

K(x − t)φ(t)dt

where
K(x) = (4π)−1/2 exp

(
− x2

4

)
, (cf. [9] p. 174),

and we just give the following corollary to Theorem 2.4.

Corollary 4.3. Suppose that for any positive number A and positive
natural number n

f (x) ∼ Axn, x → +∞,

and that φ(x) is bounded when x is bounded above. If also

lim
h→0+ lim inf

x→+∞ inf
x≤y≤x+h

(
φ(y) − φ(x)

xn

)
= 0
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then
φ(x) ∼ Axn, x → +∞.

Proof. Suppose that

Hn(x) = (−1)n exp(x2)Dn exp(−x2), n = 0, 1, 2, . . .

are the Hermite polynomials.
We use the one-dimensional analogue of Theorem 2.4 with the Weierstrass

kernel K and with
ψ(x) = Hn

(x
2

)
.

The result now follows from the fact that

Hn

(x
2

)
∼ xn, x → +∞,

and that ∫
K(x − t)Hn

( t
2

)
dt = xn, (cf. [9] p. 178).

The other conditions of Theorem 2.4 are clearly fulfilled.
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