
MATH. SCAND. 91 (2002), 247–268

RANDOM EUCLIDEAN SECTIONS OF SOME
CLASSICAL BANACH SPACES

Y. GORDON∗, O. GUÉDON, M. MEYER, A. PAJOR

Abstract

Using probabilistic arguments, we give precise estimates of the Banach-Mazur distance of sub-
spaces of the classical �nq spaces and of Schatten classes of operators Sn

q for q ≥ 2 to the Euclidean
space. We also estimate volume ratios of random subspaces of a normed space with respect to
subspaces of quotients of �q . Finally, the preceeding methods are applied to give estimates of
Gelfand numbers of some linear operators.

1. Introduction

In this work we present a new method which may be employed in a variety of
problems in convex analysis, such as:

(I) Giving tight asymptotic estimates on the existence of spherical sections
of dimension k, for all 1 ≤ k ≤ n, in n-dimensional convex bodies. We
study this problem for the classical �nq spaces for 2 ≤ q ≤ ∞ and the mn-
dimensional vector space Mm×n(R) of all m × n-matrices (m ≥ n) with real
entries equipped with a rotation invariant norm (associated with a 1-symmetric
norm on the singular values of

√
M∗M).

(II) Investigating the volume ratio of a centrally symmetric convex body
K in Rn with respect to the body of largest volume contained in K which is
obtained by applying a linear map on the unit ball of a subspace of a quotient
of �q .

(III) Computing upper bounds by random methods for the k-th Gelfand
number of an operator T between two Banach spaces. These results improve
previous estimates because they are in some cases tight and they also hold with
positive probability.

The first topic (I) is related to the recent studies of Milman and Schechtman
([18] [19]) and [10], [14]. We investigate here the “large” Euclidean sections of
centrally symmetric convex bodies in Rn, or equivalently, the Banach-Mazur
distances of subspaces with “big dimensions” k of an n-dimensional normed

∗Y. Gordon was supported by the Fund for the Promotion of Research in the Technion and the
V.P.R. grant.

Received October 30, 1999.



248 y. gordon, o. guédon, m. meyer, a. pajor

space to the Euclidean spaces �k2 . We give first a general result about sub-
spaces of a normed space which possesses a system of vectors satisfying a
(C, s)-estimate (see the definition below), and apply these results to give sharp
estimates of the distance to �k2 of k-dimensional subspace of �nq , for q ≥ 2. We
treat then the same problem for subspaces of some normed spaces of operators
from Rm to Rn, and in particular the Schatten classes, Sn

q for q ≥ 2.
In part (II), we present a method to obtain a lower bound for the volume ratio

of a random k-dimensional subspace F of a given space X with respect to the
class SQ(�q), q ≥ 2, consisting of all k-dimensional subspaces of quotients
of �q . This gives an estimate from below of the distance of a random subspace
F of X to the class SQ(�q), and in particular to Hilbert space.

In the final section we apply the previous methods to obtain upper bounds
for the Gelfand numbers of operators from �nq and Sn

q (q ≥ 2) to a space Y .
Denote by e1, . . . , en the canonical basis of Rn. The spaces �nq for 1 ≤ q ≤

∞ are defined as Rn equipped with the norm | · |q : for x = x1e1 + · · · + xnen,

|x|q =
( n∑

i=1

|xi |q
)1/q

when q �= ∞ and |x|∞ = max
1≤i≤n

|xi |.

Let E be an n-dimensional normed space. We say that a family u1, . . . , uN of
vectors of E, with N ≤ n, satisfies a (C, s)-estimate for C > 0 and s > 0, if
for all (ti)Ni=1 ∈ RN and all m = 1, . . . , N , one has

(1)
C

m1/s

( m∑
i=1

(t�i )
2

)1/2

≤
∥∥∥∥

N∑
i=1

tiui

∥∥∥∥ ≤
( N∑

i=1

t2
i

)1/2

,

where (t�i )
N
i=1 denotes the decreasing rearrangement of the sequence (|ti |)Ni=1.

By a result of Bourgain and Szarek [2], there exists a constant C > 0 such that
for any n, any n-dimensional normed space contains a sequence u1, . . . , uN ,
with N ≥ n

2 , satisfying a (C, 2)-estimate. We shall be interested here with
s ≥ 2. It is easy to see that for q ≥ 2, the canonical basis of �nq satisfies
a (1, s)-estimate, with 1

s
= 1

2 − 1
q

. It may be also observed that if s ′ > 0

satisfies 1
s ′ = 1

s
− 1

ln(n) , and if (u1, . . . , uN) satisfies a (C, s)-estimate, then
it satisfies also a (C/e, s ′)-estimate; so one can restrict the study to the case
when s ≤ ln(n). It is important to notice that s (and so q) may depend on
the dimension of the space. In particular, the canonical basis of �n∞ satisfies
a (C, s)-estimate with 1

s
= 1

2 − 1
ln(n) and the case of �n∞ is described up to a

constant by taking q = ln n. Finally, we denote by d(E, F ) the Banach-Mazur
distance between two normed spaces E and F :

d(E, F ) = inf
{‖T ‖‖T −1‖, T : E → F isomorphism onto

}
.
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For two positive sequences {an} and {bn} we say that an ∼ bn if an
bn

→ 1.
Let us recall the following estimates for the norm of Gaussian operators:

if E is a Banach space and (vj )
N
j=1 ∈ E, we define a Gaussian operator Gω :

�k2 → E by

Gω =
k∑

i=1

N∑
j=1

gij (ω)ei ⊗ vj : �k2 → E,

where, for 1 ≤ i ≤ k and 1 ≤ j ≤ N, gij are i.i.d. N (0, 1) real Gaussian
variables. Let g1, . . . , gN be i.i.d. N (0, 1) real Gaussian variables and ak =
�
(∑k

i=1 g
2
i

)1/2
then we have the following inequalities [8]:

(2) �

∥∥∥∥
N∑

j=1

gjvj

∥∥∥∥− ak sup∑
1≤j≤N t2

j =1

∥∥∥∥
N∑

j=1

tj vj

∥∥∥∥ ≤ � inf|x|2=1
‖Gω(x)‖

and

(3) � sup
|x|2=1

‖Gω(x)‖ ≤ �

∥∥∥∥
N∑

j=1

gjvj

∥∥∥∥+ ak sup∑
1≤j≤N t2

j =1

∥∥∥∥
N∑

j=1

tj vj

∥∥∥∥.
One has ak = √

2
&( k+1

2 )
&( k

2 )
≤ √

k and ak ∼ √
k.

From now on, (gi) and (gij ) will denote i.i.d. N (0, 1) real Gaussian vari-
ables.

2. Euclidean sections of Banach spaces

The main result of this section is

Theorem 2.1. Let E be an n-dimensional normed space, and for n ≥ N ≥
n/2, let (ui)Ni=1 ∈ E satisfy a (C, s)-estimate for s > 2 and C > 0. Define
q > 2 by 1

q
= 1

2 − 1
s
. Then for some universal positive constants c1, c2 and

d1, d2, d3, for all integers k, 1 ≤ k ≤ N , there exists a k-dimensional subspace
Fk of E such that

(i) If k ≤ 1
4

(
�

∥∥∥∥
N∑

j=1

gjuj

∥∥∥∥
)2

, then d(F k, �k2) ≤ 3.

(ii) If 1
4

(
�

∥∥∥∥
N∑

j=1

gjuj

∥∥∥∥
)2

≤ k ≤ c1C
2qe−qn, then d(F k, �k2) ≤ d1

√
k

C
√
qn1/q

.

(iii) If c1C
2qe−qn ≤ k ≤ c2n, then d(F k, �k2) ≤ d2k

1/2−1/q

C
√

ln(1 + n/k)
.
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(iv) If c2n ≤ k ≤ N , then d(F k, �k2) ≤ d3

C
k1/s .

The space Fk, 1 ≤ k ≤ N , can be chosen randomly with positive probability
as subspace of the linear span of (ui)Ni=1.

Proof. Remark that when 1
2 − 1

s
≤ 1

ln(n) , the family (ui)
N
i=1 satisfies a

(C/e, s ′)-estimate where 1
s ′ = 1

2 − 1
ln(n) . Up to replace C by C/e, we can

assume that q ≤ ln(n).
Let U = span{u1, . . . , uN }; we define a Gaussian operator Gω : �k2 → U

by

Gω =
k∑

i=1

N∑
j=1

gij (ω)ei ⊗ uj .

Observe that supt2
1 +···+t2

N=1

∥∥∑N
j=1 tjuj

∥∥ ≤ 1. Applying (2) and (3), we get

� inf|x|2=1
‖Gω(x)‖ ≥ �

∥∥∥∥
N∑

j=1

gjuj

∥∥∥∥− ak sup
t2
1 +···+t2

N=1

∥∥∥∥
N∑

j=1

tjuj

∥∥∥∥

� sup
|x|2=1

‖Gω(x)‖ ≤ �

∥∥∥∥
N∑

j=1

gjuj

∥∥∥∥+ ak sup
t2
1 +···+t2

N=1

∥∥∥∥
N∑

j=1

tjuj

∥∥∥∥.
To find a set ) of positive probability such that for all ω ∈ ), Gω : �k2 → U

is one to one, it is enough to have � inf |x|2=1 ‖Gω(x)‖ > 0. We distinguish
between the different values of k, 1 ≤ k ≤ N :

1. If k ≤ 1
4

(
�
∥∥∑N

j=1 gjuj
∥∥)2

, then

� sup|x|2=1 ‖Gω(x)‖
� inf |x|2=1 ‖Gω(x)‖ ≤

(
1+ ak

�
∥∥∑N

j=1 gjuj
∥∥
)/(

1− ak

�
∥∥∑N

j=1 gjuj
∥∥
)

≤ 3.

So, there exists a set of positive probability ) such that for all ω0 ∈ ),
dim(Im Gω0) = k and

sup|x|2=1 ‖Gω0(x)‖
inf |x|2=1 ‖Gω0(x)‖

≤ 3.

See [9] for a precise estimate of the measure of this set. Let Fk = Im Gω0 ;
then dim Fk = k, d(F k, �k2) ≤ 3 and case (i) is proved (it is the classical
Dvoretzky’s theorem).

2. In the other cases, one has k ≥ (
�
∥∥∑N

j=1 gjuj
∥∥)2

/4 so that

� sup
|x|2=1

‖Gω(x)‖ ≤ 3
√
k.
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For 1 ≤ m ≤ N , in order to get a better lower bound for � inf |x|2=1 ‖Gω(x)‖,
we define a new norm ‖y‖(m) on U by

‖y‖(m) =
∥∥∥∥

N∑
j=1

yjuj

∥∥∥∥
(m)

= C

m1/s

( m∑
i=1

(y�i )
2

)1/2

.

It is clear from the definition of a (C, s) estimate (see (1)) that ‖Gω(x)‖ ≥
‖Gω(x)‖(m). We get thus by inequality (2) applied to Gω : �k2 → (U, ‖ · ‖(m))

� inf|x|2=1
‖Gω(x)‖ ≥ � inf|x|2=1

‖Gω(x)‖(m)

≥ �

∥∥∥∥
N∑

j=1

gjuj

∥∥∥∥
(m)

− ak sup
t2
1 +···+t2

N=1

∥∥∥∥
N∑

j=1

tjuj

∥∥∥∥
(m)

≥ 1

m1/s

(
C�

( m∑
i=1

(g�i )
2

)1/2

− √
k

)

≥ m1/q

(
Cc0

√
ln
(

1 + N

m

)
−
√

k

m

)
,

where the last inequality is a classical estimate of �
(∑m

i=1(g
�
i )

2
)1/2

(see for
instance [7]) with c0 > 0 a universal constant.

If k ≤ c1C
2qe−qn, we choose m = [Ne−q] + 1 so that ne−q/2 ≤ m ≤

3Ne−q (since N ≥ n/2 and q ≤ ln(n)). We get

� sup|x|2=1 ‖Gω(x)‖
� inf |x|2=1 ‖Gω(x)‖ ≤ 3

√
k

Cm1/qc0
(√

ln(1 + eq/3) − √
c1

√
2q
)

≤ 3
√
k

Cm1/qc0
(√

q − ln 3 − √
2qc1

)
≤ d1

√
k

C
√
q n1/q

,

whenever c1 is small enough. We conclude like in 1.
If c1C

2qe−qn ≤ k ≤ c2n for c2 small enough, we choose m = k. We have
then

� sup|x|2=1 ‖Gω(x)‖
� inf |x|2=1 ‖Gω(x)‖ ≤ d2k

1/s

C
√

ln(1 + n/k)

and as before, we get (iii).
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If c2n ≤ k ≤ N , then by the definition of the (C, s)-estimate, one has
d(U, �N2 ) ≤ N1/s/C; thus every k-dimensional subspace Fk of U satisfies

d(F k, �k2) ≤ N1/s

C
≤ n1/s

C
≤ 1

C

(
k

c2

)1/s

.

Remarks. 1. It is easy to see that for a family {u1, . . . , uN } satisfying a
(C, s)-estimate, one has

�

∥∥∥∥
N∑

j=1

gjuj

∥∥∥∥ ≥ cC
√
q n1/q .

Indeed, by (1), for all m ∈ {1, . . . , N}, we have

�

∥∥∥∥
N∑

j=1

gjuj

∥∥∥∥ ≥ C

m1/s
�

( m∑
i=1

(g�i )
2

)1/2

≥ c′Cm1/q

√
ln

(
1 + N

m

)
,

and we choose m = [Ne−q] + 1 (recall that N ≥ n/2).
2. Observe that, up to an absolute constant, the estimates given in (ii)

and (iii) coincide if k = [c1C
2qe−qn], and these in (iii) and (iv) when k =

[c2n]. Moreover, if we replace in (i) and (ii) the expression 1
2 �
∥∥∑N

j=1 gjuj
∥∥

by cC
√
qn1/q , then they also hold and these estimates coincide for k =

[c2C2qn2/q].

As a corollary, we get precise estimates in the case of E = �nq .

Corollary 2.2. For some universal constants ci, di > 0, 1 ≤ i ≤ 3, for
all n ≥ 1, and all integers k = 1, . . . , n, there exists a k-dimensional subspace
Fk of �nq with q ≥ 2, such that

(i) If k ≤ c1qn
2/q , then d(F k, �k2) ≤ 3.

(ii) If c1qn
2/q ≤ k ≤ c2qe

−qn, then d(F k, �k2) ≤ d1

√
k√

qn1/q
.

(iii) If c2qe
−qn ≤ k ≤ c3n, then d(F k, �k2) ≤ d2k

1/2−1/q

√
ln(1 + n/k)

.

(iv) If c3n ≤ k ≤ n, then d(F k, �k2) ≤ d3k
1/2−1/q .

Moreover, the space Fk can be chosen randomly with high probability in �nq .
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Proof. Let (e1, . . . , en) be the canonical basis of �nq ; then for all t1, . . . , tn
and for all m = 1, . . . , n,

( n∑
i=1

|ti |q
)1/q

=
∣∣∣∣

n∑
i=1

tiei

∣∣∣∣
q

≥
∣∣∣∣

m∑
i=1

t�i ei

∣∣∣∣
q

=
( m∑

i=1

(t�i )
q

)1/q

≥ 1

m
1
2 − 1

q

( m∑
i=1

(t�i )
2

)1/2

,

using Hölder’s inequality. Since q ≥ 2, (e1, . . . , en) satisfies a (1, s)-estimate,
with 1

s
= 1

2 − 1
q

. It is clear from the preceeding remark that

α1
√
q n1/q ≤ �

∣∣∣∣
n∑

j=1

gjej

∣∣∣∣
q

≤ α2
√
q n1/q,

where α1 > 0 and α2 > 0 are universal constants. Then we apply Theorem 2.1
to get random subspaces in the whole space �nq .

Remarks. 1. As it is proved in [3], the result of Corollary 2.2 is optimal
up to absolute constant. We include here a short proof of this optimality: Let
T : �k2 → �nq be a linear operator such that for all x ∈ �k2,

|x|2 ≤ |T x|q ≤ d|x|2.
Let G be a Gaussian random vector in Rk with i.i.d. N (0, 1) entries, then

�

( n∑
i=1

∣∣〈G, T �(ei)〉
∣∣q)1/q

= �|T (G)|q ≥ �|G|2 = ak.

Since 〈G, T �(ei)〉 is a N
(
0,
∣∣T �(ei)

∣∣2
2

)
random variable, we get by Hölder

inequality,

�

( n∑
i=1

∣∣〈G, T �(ei)〉
∣∣q)1/q

≤
( n∑

i=1

�
∣∣〈G, T �(ei)〉

∣∣q)1/q

≤ n1/qγ (q) sup
1≤i≤n

∣∣T �(ei)
∣∣
2,

where γ (q) is theLq norm of a N (0, 1)-variable. Since |T �(ei)|2 ≤ ‖T �‖|ei |q ′

≤ d with 1/q + 1/q ′ = 1, we get a universal constant c > 0 such that,
√
k ≤ cdn1/q√q.
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2. A constructive proof of a single subspace of �nq satisfying the desired
conclusion is given in [12].

3. In fact by [16], the inequality d(F k, �k2) ≤ k1/2−1/q is true for any k-
dimensional subspace of �nq .

3. The case of Schatten classes

We shall say that a norm τ on Rn is 1-symmetric if for all (x1, . . . , xn) and for
every permutation σ on {1, . . . , n}, one has

τ(x1, . . . , xn) = τ(|xσ(1)|, . . . , |xσ(n)|).
If τ is such a norm, it is well known that for m ≥ n ≥ 1, one defines a norm
‖ · ‖τ on the mn-dimensional vector space Mm×n(R) of all m × n-matrices
with real entries by setting

‖M‖τ = τ(s1(M), . . . , sn(M)) for all M ∈ Mm×n(R)

where the si(M), 1 ≤ i ≤ n, are the eigenvalues of
√
M∗M . If for some q ≥ 1

τ(x) = |x|q, we get the so called Schatten class Sq(m × n) with the norm
‖T ‖q = |(si(T ))ni=1|q .

Since τ is a 1-symmetric norm, it is clear that we can renormalize τ so that
for all x ∈ Rn,

(4)
1

dτ
|x|2 ≤ τ(x) ≤ |x|2,

where dτ is the Banach-Mazur distance between (Rn, τ ) and �n2.

Theorem 3.1. Let τ be a 1-symmetric norm on Rn, ‖ · ‖τ be the norm on
Mm×n(R) associated with τ and dτ = d((Rn, τ ), �n2) such that (4) is satisfied.
Denote by G a Gaussian random matrix of Mm×n(R) with i.i.d. N (0, 1)
entries. Then for every integer k, 1 ≤ k ≤ nm, there exists a k-dimensional
subspace Fk of (Mm×n(R), ‖ · ‖τ ) such that

(i) If k ≤ (�‖G‖τ )2/4, then d(F k, �k2) ≤ 3.

(ii) If (�‖G‖τ )2/4 ≤ k ≤ nm, then d(F k, �k2) ≤ 1 + 12 dτ

√
k

nm
.

Proof. By (4), one has for all T ∈ Mm×n(R)

(5)
1

dτ
‖T ‖2 ≤ ‖T ‖τ = τ(s1(T ), . . . , sn(T )) ≤ ‖T ‖2

where ‖T ‖2 = (
tr(T �T )

)1/2
denotes the Hilbert-Schmidt norm. For 1 ≤ p ≤

m and 1 ≤ q ≤ n, let Epq be the canonical basis of Mm×n(R) (with entries
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(Epq)ij = δipδqj ). Let Gω : �k2 → (Mm×n(R), ‖ · ‖τ ) be the Gaussian operator
defined by

Gω =
k∑

l=1

∑
1≤p≤m

1≤q≤n

glpq(ω) el ⊗ Epq

where e1, . . . , ek is the canonical basis of �k2 and the glpq , 1 ≤ l ≤ k, 1 ≤ p ≤
m, 1 ≤ q ≤ n, are i.i.d. N (0, 1) Gaussian variables. By inequalities (2) and
(3), we have

� sup
|x|2=1

‖Gω(x)‖τ ≤ �‖G‖τ + ak sup
{ ‖T ‖τ ; T ∈ Mm×n(R), ‖T ‖2 = 1

}
and

� inf|x|2=1
‖Gω(x)‖τ ≥ �‖G‖τ − ak sup

{ ‖T ‖τ ; T ∈ Mm×n(R), ‖T ‖2 = 1
}

where G is a Gaussian random matrix of Mm×n(R) with i.i.d. N (0, 1) entries.
It is clear that sup{‖T ‖τ ; T ∈ Mm×n(R), ‖T ‖2 = 1} = 1. We distinguish

between three cases.
1. If �‖G‖τ ≥ 2

√
k, since

√
k ≥ ak, we have

� sup|x|2=1 ‖Gω(x)‖τ
� inf |x|2=1 ‖Gω(x)‖τ ≤ 1 + ak/� ‖G‖τ

1 − ak/� ‖G‖τ ≤ 3.

2. If �‖G‖τ ≤ 2
√
k ≤ √

nm/2, then by condition (5) and inequality (2)
with Gω : �k2 → (Mm×n(R), ‖ · ‖2), we get

� inf|x|2=1
‖Gω(x)‖τ ≥ 1

dτ
� inf|x|2=1

‖Gω(x)‖2

≥ 1

dτ
(�‖G‖2 − ak).

Since �‖G‖2 = anm ≥
√
nm

2
and ak ≤ √

k ≤ √
nm/4, we get

� inf|x|2=1
‖Gω(x)‖τ ≥ 1

dτ

(√
nm

2
− ak

)
≥

√
nm

4dτ
.

We get thus
� sup|x|2=1 ‖Gω(x)‖τ
� inf |x|2=1 ‖Gω(x)‖τ ≤ 12dτ

√
k√

nm
.
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3. If
√
k ≥ √

nm/4, it follows from (5) that for all subspaces Fk of
(Mm×n(R), τ ) with dim Fk = k, one has d(F k, �k2) ≤ dτ .

As a consequence of the preceeding theorem, we get:

Corollary 3.2. Let q ≥ 2 and let Sq(m×n) be the Schatten class. Assume
that for some fixed r > 1, one has m = rn. Then for some universal constant
c > 0, and for every integer k, 1 ≤ k ≤ nm, there exists a k-dimensional
subspace Fk of Sq(m × n) such that

d(F k, �k2) ≤ 1 + c√
r
n−1/q

√
k

n
.

Remark. In [5] example 3.3 (i), this result is proved in the case r = 1 and
k ∼ cn

1+ 2
q with the estimate d(F k, �k2) ≤ 2.

Before proving this corollary, we need to compute �‖G‖q for a Gaussian
matrix, G = (gij )m(n)×n, where the gij are i.i.d. N (0, 1) Gaussian variables,
andm(n)/n → r (≥ 1) asn → ∞. To this end we need the following theorem.

Theorem 3.3. Let G be a n×m(n) Gaussian matrix as above. Then almost
surely the empirical distribution function

Ln = #
{
λ ∈ eigenvalues

(
GG∗
n

) ; λ ≤ x
}

n

converges weakly to the probability law 5r given by:

d5r(x)

dx
= 1

2πx

√
(x − a)(b − x) 1I[a,b](x)

where a = (
√
r − 1)2, b = (

√
r + 1)2.

This is known as the free analog of the Poisson-distribution with free para-
meter r ≥ 1 [13], [15], [20], [21]. The distribution 5r was first studied by
Marchenko and Pastur [20], and the almost sure convergence version stated in
Theorem 3.3 is due to Wachter [21].

Lemma 3.4. Let λ∗
1 ≥ λ∗

2 ≥ . . . ≥ λ∗
n denote the decreasing rearrangement

of the eigenvalues of the random matrix
√
GG∗.

Let σ ∈ [
√
a,

√
b],

ρ = ρ(σ) = 1

2π

∫ b

σ 2

√
(x − a)(b − x)

x
dx,
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and

I (σ, q) =
(

1

2π

∫ b

σ 2
xq/2

√
(x − a)(b − x)

x
dx

)1/q

.

Then we have asymptotically

(6)

( nρ∑
i=1

λ∗
i
q

)1/q

∼ n1/2+1/qI (σ, q) a.s.

and in particular, for all 0 < q < ∞,

(7) �‖G‖q = �

( n∑
i=1

λ∗
i
q

)1/q

∼ n1/2+1/qI
(√

r − 1, q
)
.

Proof. Geman [6] proved that a.s.

λ∗
1√
n

→ √
b (= √

r + 1)

and
�

(
λ∗

1√
n

)q

→ bq/2

for all q > 0 follows as well from the computation there.
Setting µ = √

λ, we get by Theorem 3.3

#
{
µ ∈ eigenvalues

(√
GG∗
n

)
;µ ≤ σ

}
n

−→ 1

2π

∫ σ 2

a

√
(x − a)(b − x)

x
dx

and the convergence is a.s. as n → ∞. Then by the above, if µ1, . . . , µn

denote the eigenvalues of the matrix
√

GG∗
n

, one has nρ ∼ #{i;µi ≥ σ }. We
have then, for all 0 < q < ∞ a.s.

(
1

n

nρ∑
i=1

µ∗
i
q

)1/q

=
(∫ ∞

σ 2
xq/2dLn(x)

)1/q

and by Geman’s result above, a.s. there exists n0(ω) such that Ln(ω) is sup-
ported on [a − 1, b + 1] for all n ≥ n0(ω). Therefore the last integral is a.s.
asymptotically equivalent to(∫ b+1

σ 2
xq/2 d5r(x)

)1/q

,
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and since xq/2 is a continuous bounded function on [σ 2, b+1], the last integral
is equal to

(∫ b+1

σ 2
xq/2 d5r(x)

)1/q

=
(

1

2π

∫ b

σ 2
xq/2

√
(x − a)(b − x)

x
dx

)1/q

.

In order to prove equation (7) it suffices to prove that �
( ‖G‖q
n1/2+1/q

)1+ε

is bounded

for some ε > 0. This follows easily from the concentration property of ‖G‖q
around its mean [9], or using

�

( ‖G‖q
n1/2+1/q

)1+ε

≤ �

(
n1/qλ∗

1

n1/2+1/q

)1+ε

= �

(
λ∗

1√
n

)1+ε

which is known to be bounded by Geman’s result above.

Remarks. 1. When q = 2 and r = 1, we obtain the well known result

�‖G‖2 = �

( n∑
i=1

λ∗
i

2

)1/2

= �

( ∑
1≤i,j≤n

g2
ij

)1/2

=
√

2&
(
n2+1

2

)
&
(
n2

2

) ∼ n

and I (0, 2) = 1.
If we take q = 1, r = 1 we have for the 1-nuclear norm of the Gaussian

n × n matrix G

�‖G‖1 = �

( n∑
i=1

λ∗
i

)
∼ n3/2I (0, 1) = n3/2

2π

∫ 4

0

√
4 − x dx = 8n3/2

3π
.

2. In fact, one has for all q ≥ 2 and all n ≥ 1,
√
r

2
n

1
q
+ 1

2 ≤ �‖G‖q ≤ n
1
q
+ 1

2 (
√
r + 1).

Indeed for τ(x) = (∑n
i=1 |xi |q

)1/q
one has dτ = n

1
2 − 1

q , and we get

n
1
q
− 1

2 �‖G‖2 ≤ �‖G‖q ≤ n1/q �‖G‖∞.

Since �‖G‖2 = anm ≥ √
nm/2 and �‖G‖∞ ≤ an + am ≤ √

n + √
m, this

gives the result.
3. Haagerup and Thorbjornsen [15] have studied the more general case of

Gaussian matrices with operator entries. They obtain an upper bound for �(λ∗
1)

and a lower bound for �(λ∗
n).
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Proof of Corollary 3.2. For q ≥ ln(n), the norm on Sq(m × n) is
equivalent up to universal constant to the norm on S∞(m × n); so we reduce
to the case when 2 ≤ q ≤ ln(n). We have τ(x) = (∑n

i=1 |xi |q
)1/q

so that

dτ = n
1
2 − 1

q . The result follows now from Remark 2 after Lemma 3.4 and
Theorem 3.1, because the estimates (i) and (ii) of this theorem coincide up to
a constant when k = (�‖G‖q)2/4.

Remark. As for �nq , we can prove the optimality of Corollary 3.2.

Let < : �k2 → Sq(m × n) be a linear operator such that for all x ∈ �k2,

|x|2 ≤ ‖<x‖q ≤ d |x|2.

If Ti = <(ei) and G = (g1, . . . , gk) is a Gaussian vector, we have

ak = �|G|2 ≤ ‖T (G)‖q ≤ n1/q�‖T (G)‖∞ = n1/q�

∥∥∥∥
k∑

i=1

giTi

∥∥∥∥∞
.

But ∥∥∥∥
k∑

i=1

giTi

∥∥∥∥∞
= sup

|x|2=1
sup

|y|2=1

k∑
i=1

gi〈Tix, y〉.

Let h1, . . . , hn, h
′
1, . . . , h

′
m be n + m i.i.d. N (0, 1) real Gaussian variables

and define for x ∈ Rn and y ∈ Rm the two Gaussian processes:

Xx,y =
k∑

i=1

gi〈Tix, y〉 and Yx,y = √
2 d

( m∑
i=1

hixi +
n∑

i=1

h′
iyi

)
.

By definition of Ti , one has

∥∥∥∥
k∑

i=1

αiTi

∥∥∥∥∞
=
∥∥∥∥<(

k∑
i=1

αiei)

∥∥∥∥∞
≤ d

( k∑
i=1

α2
i

)1/2

.

If |x|2 = 1 and |y|2 = 1, one has

( k∑
i=1

∣∣〈Tix, y〉∣∣2)1/2

= sup
|α|2≤1

k∑
i=1

αi〈Tix, y〉 ≤ sup
|α|2≤1

∥∥∥∥
k∑

i=1

αiTi

∥∥∥∥∞
≤ d,
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and thus

�|Xx,y − Xx ′,y ′ |2 =
k∑

i=1

(∣∣〈Tix, y − y ′〉 + 〈x − x ′, T �
i y

′〉∣∣)2

≤ 2
k∑

i=1

(∣∣〈Tix, y − y ′〉∣∣2+ ∣∣〈x − x ′, T �
i y

′〉∣∣2)
≤ 2d2

(|y − y ′|22 + |x − x ′|22
) = �|Yx,y − Yx ′,y ′ |2.

Then by Fernique’s lemma [4], we obtain

� sup
|x|2=1

sup
|y|2=1

Xx,y ≤ � sup
|x|2=1

sup
|y|2=1

Yx,y

and since � sup|x|2=1 sup|y|2=1 Yx,y = √
2 d(an + am), we get a universal con-

stant c > 0 such that
√
k ≤ cd

(√
r + 1

)
n1/2+1/q .

If Fk ⊂ Sq(m × n) of dimension k satisfies d(F k, �k2) ≤ c√
r
n−1/q

√
k′
n

then

k ≤ ck′, which proves the optimality of Corollary 3.2.

4. Volume ratios with respect to quotients of subspaces of Lq

In this section we introduce volume ratios of random k-dimensional subspaces
F of an n-dimensional normed space X with respect to the class of all k-
dimensional subspaces of quotients of �q , 2 ≤ q ≤ ∞. Among other things,
these volume ratios yield in the case q = 2, a lower bound for the distance
d(F, �k2) for random subspaces F of X.

Let us consider the following concept of volume ratios introduced in [11],
[12]. Given an n-dimensional normed space X = (Rn, ‖ · ‖) with unit ball BX,
and a Banach space Z with unit ball BZ, we define the volume ratios

vr(X,Z) := inf

{(
vol(BX)

vol(T (BZ))

)1/n

; T (BZ) ⊂ BX

}
,

vr(X, S(Z)) := inf

{(
vol(BX)

vol(T (BF ))

)1/n

;F ⊂ Z, dim F = n, T (BF ) ⊂ BX

}
,

vr(X, Sp) := vr(X, S(�p)),

and
vr(X, SQ(�p)) := inf

Q quotient of �p
vr(X, S(Q)).
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As in [12] the n-th volume number of an operator T : X → Y is defined by

vn(T )

= sup

{(
vol(T (BE))

vol(BF )

)1/n

;E ⊂ X, T (E) ⊂ F ⊂ Y, dim E = dim F = n

}

We shall also need the definition of the p-nuclear norm of an operator
T : X → Y between two finite dimensional Banach spaces, which is defined
by

νp(T ) = inf
{ ‖AN‖‖σN‖‖BN‖; T = BNσNAN, N ≥ 1

}
where AN : X → �N∞, σN : �N∞ → �Np is a diagonal operator, and BN : �Np →
Y .

Theorem 4.1. Let X = (Rn, ‖ · ‖) be an n-dimensional normed space,
{bi, b∗

i }ni=1 be a biorthogonal basis forX and J = ∑n
j=1 e

�
j ⊗bj : Rn → X. For

all u ∈ On, let uk : Rk → Rn be the linear operator defined by uk(ej ) = u(ej )

for all 1 ≤ j ≤ k and let Au = J ◦ uk : �k2 → X.
Then for some universal constant c > 0 and for all 2 ≤ q ≤ ∞, the

k-dimensional random subspace Fu = Au(�
k
2) ⊂ X satisfies

�u vr(Fu, SQ(�q)) ≥ c
√
k(√

q +
√
k

n1/q

)
max
1≤i≤n

‖b∗
i ‖ �

∥∥∥∥
n∑

i=1

gi bi

∥∥∥∥
where �u denotes the expectation with respect to the Haar measure on On.

Proof. For u ∈ On, define Bu : X → �k2 by Bu = u�k ◦ J−1 where
u�k : Rn → Rk is the adjoint of uk. Clearly BuAu = id�k2 .

Claim. Let q ′ be the conjugate of q, i.e. 1
q

+ 1
q ′ = 1, then

(8) �uνq ′(Bu : X → �k2) ≤ c
√
n

(√
q +

√
k

n1/q

)
max

1≤j≤n
‖b∗

j ‖.

To show this, we write Bu = u∗
k |�n

q′→�k2
IJ−1 where I = ∑n

i=1 ei ⊗ ei : �n∞ →
�nq ′ is the identity map, and J−1 = ∑n

i=1 b
∗
i ⊗ ei : X → �n∞. Then clearly

νq ′
(
Bu|X→�k2

) ≤ ‖J−1‖‖I‖∥∥u∗
k |�n

q′→�k2

∥∥ = max
1≤i≤n

‖b∗
i ‖ n1/q ′∥∥u∗

k |�n
q′→�k2

∥∥.
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Let G = ∑
ij gij ei ⊗ ej denote the Gaussian operator which maps �nq ′ into

�k2; we have by [1]

�u

∥∥u∗
k |�n

q′→�k2

∥∥ ≤ c0√
n

�
∥∥G : �nq ′ → �k2

∥∥
≤ c1√

n

(
cn1/q√q + √

k
)

hence
�uνq ′

(
Bu|X→�k2

) ≤ c0 n
1/2
(
c
√
q + n−1/q

√
k
)

max
1≤i≤n

‖b∗
i ‖

and () is proved.
For T : �k2 → X, define rad(T ) := ∫ 1

0

∥∥∑k
i=1 ri(t)T (ei)

∥∥
X
dt where (ri)ki=1

are independent Rademacher variables. Now we use a method from [1]. By
the Marcus-Pisier inequality [17], we get

√
n �u rad(Au : �k2 → X) = √

n �u

∫ 1

0

∥∥∥∥
k∑

j=1

rj (t)Au(ej )

∥∥∥∥ dt
≤ c �

∫ 1

0

∥∥∥∥
k∑

j=1

n∑
i=1

rj (t)gij bi

∥∥∥∥ dt

≤ c
√
k �

∥∥∥∥
n∑

i=1

gibi

∥∥∥∥.
By [3] one has

�u

√
k vk(Au) ≤ c1�u rad(Au) ≤ c

√
k√
n

�

∥∥∥∥
n∑

i=1

gibi

∥∥∥∥.
By [12] Lemma 1.3, we have for 2 ≤ q ≤ ∞ and k = 1, 2, . . ., and any
operator T from a Banach space Z to �2

√
k vk(T )

νq ′(T )
≤ c0 sup

F⊂Z, dim(F )=k

vr(F, SQ(�q)).

Applying this to Bu|Fu→�k2
we get

√
k vk

(
Bu|Fu

) ≤ c0νq ′(Bu) vr(Fu, SQ(�q)).
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Since BuAu = id�k2 , we have 1 = vk(BuAu) = vk(Au)vk(Bu|Fu
). Hence we

obtain
1 ≤ c0vk(Au)

νq ′(Bu)√
k

vr(Fu, SQ(�q))

and taking the 3-rd root we get by Hölder’s inequality

1 ≤ c0�uvk(Au) �u

(
νq ′(Bu)√

k

)
�u vr(Fu, SQ(�q))

≤ c√
n

�

∥∥∥∥
n∑

i=1

gibi

∥∥∥∥ c
√
n√
k

(√
q +

√
k

n1/q

)
max

i
‖b∗

i ‖ �u vr(Fu, SQ(�q)).

This concludes the proof.

Remarks. 1. It was proved in [12] that

vr(X, SQ(�p)) ≤ vr(X, S(�p))

≤ co
√
p + p′ vr(X, SQ(�p))

with 1
p

+ 1
p′ = 1.

2. We obtain for 2 ≤ p ≤ ln n and X = �np,

�u vr(Fu, �2) ≥ c
√
k√

p n1/p
,

and
�u vr(Fu, SQ(�q)) ≥ c

√
k

√
p n1/p max

(√
q,

√
k

n1/q

) ,
Now when p ≥ q ≥ 2 and k similar to qn2/q , we have

�u vr(Fu, SQ(�q)) ≥ n1/q−1/p

√
p

.

This estimate is sharp because for all k-dimensional subspaces Fk of Rn, if Fk
p

denotes Fk endowed with the norm of �np, one has

vr(F k
p , SQ(�q)) ≤ d(F k

p , F
k
q ) ≤ d(�np, �

n
q) = n1/q−1/p.

3. For 2 ≤ p ≤ ln n and X = Sp(m × n) where m = rn, r ≥ 1, it follows
from Theorem 4.1 that

�u vr(Fu, �2) ≥ c
√
k√

r n1/2+1/p
,
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and

�u vr(Fu, SQ(�q)) ≥ c
√
k

√
r n1/p+1/2 max

(√
q,

√
k

n1/q

) .
Indeed, by Lemma 3.4, one has

�

∥∥∥∥∑
i,j

gijEij

∥∥∥∥
p

≤ cn1/p+1/2√r.

4. In particular Theorem 4.1 gives, in average, an optimal lower bound for
the Banach Mazur distance between random k-dimensional subspaces of X to
�k2 (see parts 2 and 3 above).

5. Application to Gelfand numbers

The k-th Gelfand number of a linear operator T : X → Y is defined to be

ck(T ) = inf
{ ‖T |L‖;L ⊂ X, codim L = k − 1

}
.

In this section, we will study particularly the Gelfand numbers (ck) for large
values of k, in terms of the dimension of X.

Theorem 5.1. Let X be an n-dimensional normed space with a basis
{xi}ni=1 satisfying a (C, s)-estimate for s > 2 and C > 0. Let q be defined by
1
s

= 1
2 − 1

q
. Let T : X → Y and denote T (xi) = yi for all i = 1, . . . , n. Then

for some universal constants c1, c2, d1, d2 > 0, for all integers k, we have

(i) if n − k ≤ 1
4

(
�
∥∥∑n

j=1 gjxj
∥∥)2

,

ck+1(T ) ≤
�

∥∥∥∥
n∑

j=1

gjyj

∥∥∥∥
Y

+ an−k sup
t2
1 +···+t2

n=1

∥∥∥∥
n∑

j=1

tj yj

∥∥∥∥
Y

1

2
�

∥∥∥∥
n∑

j=1

gjxj

∥∥∥∥
X

,

(ii) if 1
4

(
�
∥∥∑n

j=1 gjxj
∥∥)2 ≤ n − k ≤ c1C

2qe−qn,

ck+1(T ) ≤
�

∥∥∥∥
n∑

j=1

gjyj

∥∥∥∥
Y

+ an−k sup
t2
1 +···+t2

n=1

∥∥∥∥
n∑

j=1

tj yj

∥∥∥∥
Y

d1C
√
q n1/q

,
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(iii) if c1C
2qe−qn ≤ n − k ≤ c2n,

ck+1(T ) ≤
�

∥∥∥∥
n∑

j=1

gjyj

∥∥∥∥
Y

+ an−k sup
t2
1 +···+t2

n=1

∥∥∥∥
n∑

j=1

tj yj

∥∥∥∥
Y

d2C(n − k)1/q
√

ln
(
1 + n

n−k

) .

The following theorem will treat the case of spaces of operators. For the
notation, see section 3. In particular G denotes a random Gaussian matrix of
Mm×n(R) with i.i.d. N (0, 1) entries.

Theorem 5.2. Let τ be a 1-symmetric norm on Rn, ‖ · ‖τ the norm on
Mm×n(R) associated with τ and dτ = d((Rn, τ ), �n2) such that (4) is satisfied.
Let Eij denote the canonical basis of Mm×n(R), T an operator from Mm×n(R)
to Y , and for i = 1, . . . , n, j = 1, . . . m, let T (Eij ) = yij . The following
estimates hold:

(i) if nm − k ≤ 1
4

(
�‖G‖τ

)2
, then

ck+1(T ) ≤
�

∥∥∥∥
n∑

i=1

m∑
j=1

gijyij

∥∥∥∥
Y

+ anm−k sup
|t |2=1

∥∥∥∥
n∑

i=1

m∑
j=1

tij yij

∥∥∥∥
Y

1

2
�‖G‖τ

,

(ii) if 1
4

(
�‖G‖τ

)2 ≤ nm − k ≤ nm/16, then

ck+1(T ) ≤ 4dτ√
nm

(
�

∥∥∥∥
n∑

i=1

m∑
j=1

gijyij

∥∥∥∥
Y

+ anm−k sup
|t |2=1

∥∥∥∥
n∑

i=1

m∑
j=1

tij yij

∥∥∥∥
Y

)
.

Proofs. The beginning of the proof is the same for both theorems. We
denote by (xi)

M
i=1 the basis of X and by yi = T xi , for 1 ≤ i ≤ M , and M = n

(for theorem 5.1), and M = nm (for theorem 5.2).
If (gij ), i, j = 1, . . . ,M is a sequence of N (0, 1) i.i.d. Gaussian variable

then Lω = span
{∑M

j=1 gij (ω)xj
}M−k

i=1 is a random subspace of X of dimension
M − k almost everywhere. Hence, a.e.,

ck+1(T ) ≤ ‖T |Lω
‖ ≤ sup

t2
1 +···+t2

M−k=1




∥∥∥∥
M−k∑
i=1

M∑
j=1

gij (ω)tiyj

∥∥∥∥
Y∥∥∥∥

M−k∑
i=1

M∑
j=1

gij (ω)tixj

∥∥∥∥
X


 ,
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and by integration, we obtain

ck+1(T ) ≤
� sup

t2
1 +···+t2

M−k=1

∥∥∥∥
M−k∑
i=1

M∑
j=1

gij (ω)tiyj

∥∥∥∥
Y

� inf
t2
1 +···+t2

M−k=1

∥∥∥∥
M−k∑
i=1

M∑
j=1

gij (ω)tixj

∥∥∥∥
X

.

By (3), we have the classical upper bound for the numerator:

� sup
|t |2=1

∥∥∥∥∑
i,j

gij (ω)tiyj

∥∥∥∥
Y

≤ �

∥∥∥∥
M∑
j=1

gjyj

∥∥∥∥+ aM−k sup
t2
1 +···+t2

M=1

∥∥∥∥
M∑
j=1

tj yj

∥∥∥∥.
We need now a lower bound of � inf |t |2=1 ‖Gω(t)‖, where Gω : �M−k

2 → X is
the Gaussian operator

Gω =
M−k∑
i=1

M∑
j=1

gij (ω)ei ⊗ xj .

End of proof of Theorem 5.1. Here n = M = dim X and the family
(x1, . . . , xn) satisfies a (C, s)-estimate. Using the arguments of the proof of
Theorem 2.1, there exist universal constants c1, c2, d1, d2 > 0 such that

– if n − k ≤ (
�
∥∥∑n

j=1 gjxj
∥∥)2

/4, we are in the case of Dvoretzky’s the-
orem, then

� inf|t |2=1
‖Gω(t)‖ ≥ 1

2
�

∥∥∥∥
n∑

j=1

gjxj

∥∥∥∥,
– if

(
�
∥∥∑n

j=1 gjxj
∥∥)2

/4 ≤ n − k ≤ c1C
2qe−qn, then

� inf|t |2=1
‖Gω(t)‖ ≥ d1C

√
q n1/q .

– if c1C
2qe−qn ≤ n − k ≤ c2n, then

� inf|t |2=1
‖Gω(t)‖ ≥ d2C(n − k)1/q

√
ln

(
1 + n

n − k

)
.

This proves Theorem 5.1.

End of proof of Theorem 5.2. In the case of operator spaces, we take
M = nm and we work with the canonical basis of Mm×n(R). Using the
arguments of the proof of Theorem 3.1 (cases 1 and 2), we have
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– if nm − k ≤ (
�‖G‖τ

)2
/4,

� inf|t |2=1
‖Gω(t)‖ ≥ 1

2
�‖G‖τ ,

– if
(
�‖G‖τ

)2
/4 ≤ nm − k ≤ nm/16,

� inf|t |2=1
‖Gω(t)‖ ≥

√
nm

4dτ

and this proves Theorem 5.2.
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