CORRIGENDUM TO ON THE SIMPLICITY OF SOME CUNTZ-PIMSNER ALGEBRAS

PAUL S. MUHLY and BARUCH SOLEL

We are grateful to Dr. Jürgen Schweizer for pointing out to us that Theorem 1 in [1] is incorrect. It rests upon a faulty application in Lemma 8 of hypothesis (H5). Hypothesis (H5) asserts that $\Omega(1_A) \neq 1_A$ and we concluded at the end of the proof of Lemma 8 that $\tau_0(\Omega(1_A)) \neq 1$ for a particular faithful tracial state τ_0 . This inequality is a critical point of the proof. However, the following example, due to Dr. Schweizer, shows that this conclusion is faulty. Let *E* be the identity correspondence over $A = M_2(C)$, and let

$$\eta_1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \eta_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

The map

$$a \to \left(\begin{array}{c} \langle a, \eta_1 \rangle_A \\ \langle a, \eta_2 \rangle_A \end{array} \right)$$

embeds $E = A = M_2(C)$ into $C^2(M_2(C))$ as a direct summand, and

$$\Omega(a) = \langle \eta_1, a\eta_1 \rangle + \langle \eta_2, a\eta_2 \rangle = \begin{pmatrix} 0 & 0 \\ 0 & a_{11} + a_{22} \end{pmatrix}, \qquad a = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$$

Therefore,

$$\Omega(1_A) = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}.$$

On the other hand, $M_2(C)$ has only one tracial state, τ_0 , the normalized trace, and $\tau_0(\Omega(1_A)) = 1$. Note, too, that all the other hypotheses of Theorem 1 in [1] are satisfied, but that $\mathscr{O}(E) \simeq M_2(C) \rtimes_{id} \mathbb{Z} \simeq M_2(C) \otimes C(S^1)$ is not simple.

Received July 1, 1999; in revised form May 24, 2000.

We offer the following stronger hypothesis that bridges the gap in the proof of [1, Theorem 1] *and* which is still satisfied in all of the examples where Theorem 1 is applied.

HYPOTHESIS (H5*). Among all tracial states τ on A that are scaled by Ω , i.e., that satisfy the equation $\tau \circ \Omega = c\tau$, for some $c \in \mathbf{R}$, there is at least one with $c \neq 0, 1$.

Of course, if Ω scales τ , then $c = \tau(\Omega(1_A))$. Also, evidently, hypothesis (H5*) implies hypothesis (H5). Note that Lemma 6 of [1], which uses only hypotheses (H1)–(H4), shows that the set of faithful traces that are scaled by Ω is non-empty. Further, under hypothesis (H4), any trace that is scaled by Ω must be faithful. Thus, under hypothesis (H4), one can never have $c = \tau(\Omega(1_A)) = 0$.

It is hypothesis $(H5^*)$ that is used on page 63 at the end of the proof Lemma 8 and this is the only place hypothesis $(H5^*)$ is used anywhere in the proof of Theorem 1. Thus, the details that we present in [1] prove

THEOREM 0.1. If the C^{*}-algebra A and the correspondence E satisfy hypotheses (H1) - (H4) of [1] and hypothesis $(H5^*)$, then $\mathcal{O}(E)$ is simple.

Observe that if Ω satisfies the condition that $\Omega(1_A)$ is comparable with 1_A , but not equal to 1_A , then necessarily hypothesis (H5*) is satisfied under hypotheses (H1)–(H4). The reason, as we just noted, is that Lemma 6 implies that every trace that is scaled by Ω necessarily is faithful, under hypotheses (H1)–(H4), and every faithful trace satisfies the equation $\tau(\Omega(1_A)) \neq 1$ if $\Omega(1_A)$ is comparable with, but different from 1_A . In Corollary 2, the map Ω satisfies the condition $\Omega(1_A) \leq 1_A$, while in Corollary 14, $\Omega(1_A) = n1_A$, $n \geq 2$. Thus, these two corollaries remain valid with no change in hypotheses. It remains to prove Corollary 3.

There is no problem with the verifications in [1] that hypotheses (H1)–(H4) are satisfied. We show that there is a faithful trace τ_0 on A that is scaled by Ω with $\tau_0(\Omega(1_A)) \neq 1$. To this end, let M be the set of all tracial states on B that are Φ -invariant. One of the hypotheses of Corollary 3 is that M is non-empty. We define the completely positive map β on B by the formula $\beta(b) = \sum \Phi(u_i^*bu_i)$ where $\{u_i\}$ is the quasi-basis, $u_i = W^{-1}P\varepsilon_i$ used in [1]. (Recall that for $x \in B$, $Wx = (\Phi(u_1^*x), \Phi(u_2^*x), \dots, \Phi(u_n^*x))^t$.) Observe that for $b \in A$, $\beta(b) = \sum \langle u_i, bu_i \rangle = \sum \langle P\varepsilon_i, W\varphi(b)W^{-1}P\varepsilon_i \rangle = \Omega(b)$. For $\rho \in M$, write $\rho'(b) = (\rho(\beta(1_B)))^{-1}\rho(\beta(b))$.

 $b \in B$. (Observe that if we apply the argument in the first paragraph of the proof of [1, Lemma 6] to the restriction $\rho | A$ and note that $1_B = 1_A$, we find

that $\rho(\beta(1_R)) = \rho(\beta(1_A)) = \rho(\Omega(1_A)) \neq 0$. Thus ρ' is well defined.) Then ρ' is a Φ -invariant *state* on *B*. To show that ρ' is a trace, let $b, c \in B$. Then because ρ is a Φ -invariant trace, we have $\rho(\beta(bc)) = \sum \rho(\Phi(u_i^*bcu_i)) =$ $\rho(\sum u_i^* bcu_i) = \rho(\sum u_i u_i^* bc) = \rho((\operatorname{ind} \Phi)bc), \text{ where ind } \Phi = \sum u_i u_i^*.$ Likewise, we see that $\rho(\beta(cb)) = \rho((\operatorname{ind} \Phi)cb)$. Since ρ is a trace and (ind Φ) lies in the center of B, we see that $\rho \circ \beta$ is tracial. Therefore ρ' is a trace; i.e., $\rho' \in M$. By the Schauder fixed point theorem, there is a $\rho_0 \in M$ such that $\rho_0 = \rho'_0$, i.e., $\rho_0(b)\rho_0(\beta(1_B)) = \rho_0(\beta(b))$. If we set $\tau_0 = \rho_0|A$, then since $\Omega = \beta | A$, we see that Ω scales τ_0 . To verify that hypothesis (H5*) is satisfied, we need to show $\tau_0(\Omega(1_A)) \neq 0, 1$. To show $\tau_0(\Omega(1_A)) \neq 0$, it suffices to show that ρ_0 is faithful. Observe that since ρ_0 is Φ -invariant, we may write $\rho_0 = \tau_0 \circ \Phi$. Set $N_{\rho_0} = \{b \in B \mid \rho_0(b^*b) = 0\}$. Then N_{ρ_0} is a two-sided ideal in B which Φ maps into the two-sided ideal $N_{\tau_0} := \{a \in A \mid a \in A \}$ $\tau_0(a^*a) = 0$ in A. (Indeed, for $b \in N_{\rho_0}, \tau_0(\Phi(b)^*\Phi(b)) \le \tau_0(\Phi(b^*b)) =$ $\rho_0(b^*b) = 0$, by the Cauchy-Schwarz-Kadison inequality.) However, N_{τ_0} is Ω-invariant, since Ω scales τ_0 (see the proof of [1, Lemma 6]). By hypothesis (H4), $N_{\tau_0} = \{0\}$, and since Φ is faithful by [4, Proposition 2.1.5], we see that $N_{\rho_0} = \{0\}$, too. Thus ρ_0 is faithful. To see that $\tau_0(\Omega(1_A)) \neq 1$, observe that $\tau_0(\Omega(1_A)) = \sum \tau_0(\Phi(u_i^*u_i)) = \sum \rho_0(u_i^*u_i) = \sum \rho_0(u_iu_i^*) = \rho_0(\inf \Phi).$ By [4, Lemma 2.3.1], ind Φ is an element of the center of B that dominates 1. Further, since $A \neq B$, by hypothesis, ind $\Phi \neq 1$ by [4, Proposition 2.3.7]. Therefore, $\tau_0(\Omega(1_A)) = \rho_0(\text{ind } \Phi) \geqq 1$.

Finally, we note that Theorem 5 of [1], and the results related to it, are unaffected by the change from hypothesis (H5) to hypothesis (H5*).

For what appears to be the final word on the simplicity issue for $\mathcal{O}(E)$, please consult [2], [3].

REFERENCES

- 1. Muhly, P. and Solel, B., *On the simplicity of some Cuntz-Pimsner algebras*, Math. Scand. 83 (1998), 53–73.
- Schweizer, J., Crossed Products by C*-correspondences and Cuntz-Pimsner algebras, C*algebras (Münster, 1999), 203–226, Springer, Berlin, 2000.
- Schweizer, J., Dilations of C*-correspondences and the simplicity of Cuntz-Pimsner algebras, J. Funct. Anal. 180 (2001), 404–425.
- 4. Watatani, Y., Index for C*-subalgebras, Mem. Amer. Math. Soc. 83 (#424), 1990.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF IOWA IOWA CITY, IOWA 52242-1419 USA DEPARTMENT OF MATHEMATICS TECHNION 32000 HAIFA ISRAEL