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A COMPACTIFICATION OF THE SPACE OF
TWISTED CUBICS

I. VAINSENCHER and F. XAVIER∗

Abstract

We give an elementary, explicit smooth compactification of a parameter space for the family of
twisted cubics. The construction also applies to the family of subschemes defined by determinantal
nets of quadrics, e.g., cubic ruled surfaces in P4, Segre varieties in P5. It is suitable for applications
of Bott’s formula to a few enumerative problems.

1. Introduction

A twisted cubic curve (twc) is the image in projective 3-space of the map

[t, u] �→ [t3, t2u, tu2, u3],

for a suitable choice of homogeneous coordinates. According to Harris [7],
“This is everybody’s first example of a concrete variety that is not a hypersur-
face, linear space, or finite set of points”.

Our aim is to give a simple, explicit smooth compactification of a para-
meter space for the family of twisted cubics. “Simple” means no need of GIT.
“Explicit” is intended to be suitable for applications of Bott’s formula (as in
Ellingsrud and Strømme [3], Meurer [8]) to a few enumerative problems.

Piene and Schlessinger [9] have shown that the Hilbert scheme component
H of twisted cubics is a smooth projective variety of dimension twelve. Later,
Ellingsrud, Piene and Strømme [1] proved that the subvariety D of the Grass-
mann variety G(3, 10) of nets of quadrics of determinantal type (i.e., spanned
by the 2 × 2 minors of a 2 × 3 matrix of linear forms) is a smooth variety.
H is the blowup of D along the subvariety of nets with a fixed component.
Ellingsrud and Strømme [2] have also shown that D is a geometric quotient
of the set of semistable 2× 3 matrix of linear forms. This description enabled
them to compute the Chow rings of D and H. A major motivation was to give a
mathematical treatment to the physicists prediction for the number of twisted
cubics contained in certain Calabi-Yau manifolds (cf. [3]).
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We offer an alternative approach that leads ultimately to compactification
of the set of all twcs that miss a fixed point o ∈ P3. The main idea is best
explained in the picture below.

C

lo

If the twisted cubic C misses the point o, then there is a unique line l � o that
is bisecant (possibly tangent) to C. Now the configuration l ∪C is a complete
intersection of a pencil of quadrics.

We simply revert the construction.
For each line l ⊂ P3, take the Grassmann variety G(2, 7) of pencils of quad-

rics containing l. This defines a Grassmann bundle X over the Grassmannian
of lines. There is a Zariski open subset of X that parametrizes a family of twcs.
This family of twcs does not extend to a flat family over X. The main result is
the construction of a sequence of three blowups

X′′′ −→ X′′ −→ X′ −→ X

along smooth, explicit centers that yields a flat family of twcs over X′′′.
The first blowup fixes the problem of assigning a well defined net of

quadrics to any pencil of quadrics as above. Precisely, we get a morphism
X′ → G(3, 10) that extends the rational map X · · · → G(3, 10) given by the
net of quadrics through the residual twc determined by the pencil.

The remaining two blowups are designed to resolve the indeterminacy of
the rational map X′ · · · → G(10, 20) defined by the system of cubics through
a possibly degenerate twc. This is done by studying a suitable saturation (§3)
of the subsheaf of the free sheaf of cubic forms that is the image of the natural
map (cf. (18)) given by multiplying by linear forms all quadrics in a net.

The construction also applies with obvious minor changes to Pn, for any
n ≥ 2. Precisely, we get a similar description for a smooth compactification of
the family of subschemes of Pn defined by nets of quadrics of determinantal
type.

As an amusing application, we may retrieve the number 15 of triangles in
P2 meeting 6 general lines and Schubert’s 80,160 twisted cubics in P3 meeting
12 general lines. We also find 648,151,945 (resp. 7,265,560,058,820) rational
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ruled cubic surfaces in P4 (resp. Segre varieties in P5) meeting 18 (resp. 24)
general lines. We note that a variation of a script of P. Meurer [8] adapted by
A. Meireles takes a few seconds in a PC to produce these last numbers, whereas
the computation of Gromov-Witten invariants implemented by J. Kock, using
Kresch’s FARSTA [6], took about 3 days for n = 4 and was too big even to
get started for n = 5. It also reproduces the number (cf. [3]) of twisted cubics
in P4 contained in a general quintic.

2. Notation and preliminaries

Let F denote the space of linear forms in the variables x = x1, x2, x3, x4.
Let G(2,F ) be the Grassmann variety of lines in P3, with tautological

sequence

(1) 0 −→ L −→ F −→ F −→ 0

where rank L = 2. The fiber Ll for l ∈ G(2,F ) is the vector space of linear
forms that vanish on the line l.

Set
Q := Ker(S2F −→ S2F ).

The fiber Ql for l ∈ G(2,F ) is the vector space of quadratic forms that vanish
on the line l. We clearly have rank Q = 7.

We write

(2) X = G(2,Q) −→ G(2,F )

for the Grassmann bundle of pencils of quadrics containining a varying line
l ∈ G(2,F ). Each element x ∈ X may be thought of as a pair (π, l) such that
π represents a pencil of quadrics through the distinguished line l. The latter is
the image of x in G(2,F ).

Denote by

(3) R >→ QX

the rank two tautological subbundle of QX.
We omit the easy proofs of the following.

Lemma 2.1. (i) The orbit of the point x0 = (π0, l0) ∈ X given by the pencil
π0 = 〈x2

1 , x1x2〉with distinguished line l0 = 〈x1, x2〉 is the unique closed orbit
of X under the natural action of GL(F ).

(ii) Let P(L ) be the projective bundle over G(2,F ) that parametrizes the
pairs (h, l) such that h is a plane containing the line l. Let

ι : G(2,F )× P(L ) −→ X
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be defined by assigning to each (λ, (h, l)) the pencil of quadrics belonging to
Xl = G(2,Ql) with fixed component h and varying part the pencil of planes
with axis λ. Let B denote the image of ι. Then we have the following.

1. ι is an equivariant embedding;

2. B is normally flat over G(2,F ).

We may think of a point of B as a pair (λ, (h, l)) cf. the picture below.
We also introduce now another relevant subvariety Y1 ⊂ X. It is the locus

of pencils with a fixed plane and moving pencil of planes with axis equal to
the distinguished line.
(4)

B :=

 hl

l

∞9

Y1 :=

 h

l = l

∞7

Remark. Roughly speaking, the rest of this work is designed to fill in the
technicalities needed to complete these pictures in order to produce all honest
(flat) degenerations of a twc.

Lemma 2.2. We have a natural embedding of P̌3× G(2,F ) in X defined
by multiplying by a varying plane the pencil of planes through a distinguished
line. Denote by Y1 the image. Then the scheme-theoretic intersection Y1 ∩ B
is isomorphic to the incidence subvariety (l ⊂ h) of P̌3× G(2,F ).

3. Saturation

Let A be an integral domain, P an A-module and M ⊆P a submodule. We
define the saturation of M in P by

sM = {m ∈P | ∃ a ∈ A, a �= 0, am ∈M }.
Thus sM is just the inverse image under the quotient map P →P/M of the
torsion submodule of P/M . The following facts are easy to check.

1. ssM = sM .

2. For any multiplicative system S ⊂ A we have S−1(sM ) = s(S−1M ).

3. For submodules M ,M ′ ⊆ P , if Mf = M ′
f for some nonzero f ∈ A

then sM = sM ′.
4. If M ⊆P = An is a locally split submodule then sM =M .

One may define the saturation of a sheaf of modules over an integral scheme
in view of 2 above.
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We register in the following lemma the main steps used at each blowup in
order to produce the saturation of certain subsheaves of SmF . It is inspired by
Raynaud’s strategy of flattening by blowing up [10].

Lemma 3.1. Let U be an integral affine variety with coordinate ring A and
let

M =
[
Ir ∗ ∗ ∗
0 f1 . . . fs

]

be a triangular (r+1)×nmatrix with entries inA, where Ir denotes an identity
block of size r . Let M ⊆ An be the submodule spanned by the rows of M .
Assume the ideal J of (r+1)-minors is non zero. Let ρ : U · · · → G(r+1,Cn)

be the rational map defined by M . Let U′ → U be the blowup of the scheme
of zeros V = Z (J ) and let V′ denote the exceptional divisor. Then we have
the following.

1. The map ρ extends to a morphism ρ ′ : U′ → G(r + 1,Cn).

2. Suppose V is a complete intersection of codimension t in U and J =
〈f1, . . . , ft 〉 for some t ≤ s. Then U′ is the closed subscheme of U×Pt−1

defined by fixj = fjxi , 1 ≤ i, j ≤ t , where the xi denote homogeneous
coordinates for Pt−1.

3. Let U′0 = U′ ∩ (U× Ct−1) ⊂ U× Pt−1 be the affine open subset given
by x0 = 1 and put V′0 = V′ ∩ U′0. Then there are regular functions
y2, . . . , ys on U′0 such that fi = yif1 for 2 ≤ i ≤ s and the coordinate
ring of V′0 is the polynomial ring (A/J )[y2, . . . , yt ].

4. The restriction of ρ ′ to the open subset V′0 ∼= V×Ct−1 of the exceptional
divisor is given by

ρ ′(z, a) =Mz + 〈er+1 + a2er+2 + · · · + ater+t

+ yt+1(a)er+t+1 + · · · + ys(a)er+s〉
where a = (a2, . . . , at ) ∈ Ct−1 and Mz denotes the span of the first r
rows of M at the closed point z ∈ V, whereas the ei are the standard
unit vectors in Cn.

5. Put B := O(U′0). The saturation of the image of M ⊗B in Bn is a split,
free submodule with basis given by the first r rows of M together with
the “new generator”,

er+1 + y2er+2 + . . .+ ysen

obtained by dividing the last row of M by f1, the local equation of the
exceptional divisor.
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4. The associated net

Our first task will be to resolve the indeterminacies of the rational map

X · · · −→ G(3, S2F )

that assigns to a general pencil of quadrics through a line l the net of quadrics
that cut the residual twisted cubic. For simplicity, we explain the procedure
restricted to the fiber X0 of X over the fixed line l0 = 〈x1, x2〉. The trick that
has made the calculations go through is the following trivial observation. Let

π = 〈f11x1 + f12x2, f21x1 + f22x2〉
be a general pencil of quadrics containing the line l0 := x1 = x2 = 0. Here the
fij denote linear forms. Each point on the intersection of the two quadrics that
lies off that line must annihilate the determinant f11f22 − f12f21. Also recall
that the residual twisted cubic is cut out by a determinantal net. This leads us
to look at the 2× 2 minors of the matrix(

f11 f21 −x2

f12 f22 x1

)
.

Thus, consider the rational map,

ν : X · · · −−→ G(3, S2F )

π �−−−−−→ π + 〈f11f22 − f12f21〉.
A routine check shows that ν is indeed well defined, i.e., the assigned net is
independent of the choice of generators of the pencil. Moreover, the locus
where ν is a morphism contains the complement of the locus of pencils with a
fixed component. In fact, ν is also defined at some points representing pencils
the base locus of which contain more than one line, essentially because each
element of X carries a distinguished line.

5. Resolving the indeterminacies of ν

We show next that B (cf. 2.1) is the locus of indeterminacy of the rational
map ν.

Proposition 5.1. Let X′ be the blowup of X along B. Let E′ be the excep-
tional divisor. Then we have the following.

1. the rational map ν lifts to a morphism ν ′ : X′ −→ G(3, S2F );
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2. the fiber of E′ over (λ, (h, l)) ∈ B is the projective space of the quotient
vector space Qλ/(h ·Lλ);

3. the restriction of ν ′ to E′ is given by the rule

(q, (λ, (h, l))) �→ 〈q〉 + (h ·Lλ)

where q ∈ P(Qλ/(h ·Lλ)).

Proof. Normal flatness of B over G(2,F ) ensures that the formation of the
blowup commutes with base change. Thus we may restrict the verification to
a fiber X0, say over the distinguished line l0 = 〈x1, x2〉. Let Ẋ0 be the standard
neighborhood of 〈x2

1 , x1x2〉 in X0 with coordinate functions

a1, a2, a3, a4, a5, b1, b2, b3, b4, b5

so that the two quadrics{
q1 = x2

1 + a1x1x3 + a2x1x4 + a3x
2
2 + a4x2x3 + a5x2x4,

q2 = x1x2 + b1x1x3 + b2x1x4 + b3x
2
2 + b4x2x3 + b5x2x4

give a local trivialization for the tautological rank two subbundle (3). Put

f11 = x1 + a1x3 + a2x4,

f21 = x2 + b1x3 + b2x4,

f12 = a3x2 + a4x3 + a5x4,

f22 = b3x2 + b4x3 + b5x4.

We have qi = ∑
fij xj . This enables us to represent the rational map ν by a

3×10 matrix. Indeed, the subspace spanned by q1, q2 and q3 = f11f22−f21f12

can be written as the row space of the 3 × 10 matrix obtained by collecting
coefficients of the quadratic monomials. The ordered basis we choose is formed
by the seven monomials appearing in q1, q2, in that order, together with x2

3 ,
x3x4, x2

4 . We find

(5) M =


1 0 a1 a2 a3 a4 a5 0 0 0

0 1 b1 b2 b3 b4 b5 0 0 0

0 b3 b4 b5 −a3 α1 α2 α3 α4 α5


where we have set for short

α1 = a1b3 − a3b1 − a4, α2 = a2b3 − a3b2 − a5, α3 = a1b4 − a4b1,

α4 = a2b4 − a4b2 + a1b5 − a5b1, α5 = a2b5 − a5b2.
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Adding to the third row−b3 times the second row in the above matrix, we see
that the ideal of 3× 3 minors of M is spanned by

(6) b4 − b3b1, b5 − b3b2, a3 + b2
3, a4 − a1b3, a5 − a2b3.

This is the ideal in Ẋ0 of the subscheme V where ν is not defined. The subgroup
G0 of Aut(P3) fixing l0 acts on X0. Since the map ν is G0-invariant, so is V.
Since G0 is irreducible, it follows that each irreducible component of V is
also invariant. Indeed, let V1 ⊆ V be an irreducible component. We have
V1 ⊆ G0 ·V1; since the latter is irreducible, the inclusion is in fact an equality
as asserted. Therefore any irreducible component must contain the unique
closed orbit and must show up in the present neighborhood. Hence V is in fact
smooth and irreducible.

Solving the relations (6) for b4, b5, a3, a4, a5 and plugging into q1, q2, we
find that the pencil degenerates to a pencil of quadrics of the form{

q1 = (x1 + b3x2)(x1 − b3x2 + a2x4 + a1x3),

q2 = (x1 + b3x2)(x2 + b1x3 + b2x4).

Notice the appearance of a fixed component, namely the plane given by x1 +
b3x2. It contains the distinguished line l0. Thus we see that our pencil of
quadrics is in fact given now by that fixed plane times the pencil of planes with
axis equal to the line

λ = Z
〈
x1 − b3x2 + a2x4 + a1x3, x2 + b1x3 + b2x4

〉
.

Recalling the definition 2.1 of B, this shows that, set-theoretically, V and B
agree. Since V is smooth, it follows that V = B. By general principles (cf. 3.1),
we have that the blowup X′ is the closure in X×G(3, S2F ) of the graph of ν.

It remains to describe the behaviour of ν ′ on the exceptional divisor. This
will be done in the sequel.

Proposition 5.2. Notation as above, for q ∈ P(Qλ

/
(h ·Lλ)) we have the

following.

(i) If the line λ is transversal to the plane h then the net of quadrics 〈q〉 +
(h ·Lλ) defines a degenerate twc of the form λ∪ κ , where κ denotes the
conic Z 〈h, q〉.
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l

k

h

l

(ii) If λ ⊂ h then there are two possibilities.

(1) The net of quadrics 〈q〉+(h ·Lλ) still defines a degenerate twc, equal
to the union of a non-planar degree two structure on λ with another
line in the plane h. It is projectively equivalent to a net of the list

〈x2
1 , x1x3, x1x3 + x2x4〉, 〈x2

1 , x1x2, x1x3 + x2
2 〉,

〈x2
1 , x1x2, x2x3〉, 〈x2

1 , x1x2, x
2
2 〉.

(2) The net of quadrics acquires a fixed component and is projectively
equivalent to 〈x2

1 , x1x2, x1x3〉. This occurs along a subvariety Y′2 ⊂ E′
isomorphic to the variety of flags

Y′2 ∼= {(p, l, λ, h) ∈ P3 × G(2,F )×2 × P̌3 | p ∈ λ ⊂ h ⊃ l }.(7)

Y′2 =


l

l

h
p
�


Proof. For (i) we may take the line λ = Z 〈x3, x4〉 and the plane h :=

x2 = 0. Now q = ax3 + bx4 �∈ 〈x2〉 since q �∈ x2〈x3, x4〉. Hence the quadric
Z (q) cuts the plane h in a conic κ . It follows easily that Z 〈q, x2x3, x2x4〉 is
the union of κ and λ.

For (ii), we start with the line λ = Z 〈x1, x2〉 and the plane h := x1 = 0.
Let q = ax1 + bx2 be a representative of a nonzero class in Ql0

/
x1〈x1, x2〉.

We may assume that the linear form a is in 〈x3, x4〉 and b is in 〈x2, x3, x4〉.
Check the cases. Suppose a = 0. If b is (resp. is not) a multiple of x2 we
get the last (resp. third) of the list. If a �= 0 we may take a = x3. Now b

can’t be zero lest we get a flag as in (2). If x4 appears in b, we may take
b = x4 and retrieve the first net of the list. Presently the net is of the form
〈x2

1 , x1x2, x1x3 + x2(αx2 + βx3)〉. If β = 0 we get the second of the list. If
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β �= 0 = α, we get the third of the list (changing x2 → βx2 + x1). Finally, if
αβ �= 0 the net is equivalent to the second of the list.

Lemma 5.3. Suppose in (2) above that the plane be given by a linear form
h, the line λ by an additional equation h′ and the point p by these previous
two together with h′′. Map the flag 〈h〉 ⊂ 〈h, h′〉 ⊂ 〈h, h′, h′′〉 to the pair(〈h2, hh′〉, 〈h2, hh′, hh′′〉)
in the fiber of E′ over l. Then this map is an embedding of the flag variety onto
Y′2.

Notice that Y′2 is of codimension six. Denoting by Y2 the subvariety of B
where λ ⊂ h holds, we see that Y′2 sits over Y2 as the P1 subbundle of E′|Y2

defined by P((h ·F )/(h ·Lλ)).

6. Tangent maps and normal bundles

We describe in this section the normal bundles of the embeddings

B ⊂ X ⊃ Y1

P(L )× G(2,F ) G(2,Q) P̌3× G(2,F ).

We consider B,X,Y1 as schemes over G(2,F ) (cf. §2 for notation). Care must
be taken with B as there are two maps pl, pλ : B → G(2,F ). We take pl as
the structure map B → G(2,F ); it factors through P(L ).

In view of the formula for the relative tangent bundle of a Grassmann bundle,

T X/G(2,F ) = Hom(R,Q/R),

we must compute the restrictions of the tautological rank two subbundle (3)
over B and over Y1. We have

T B/G(2,F ) = Hom(OL (−1),L /OL (−1))
⊕

Hom(L ,F/L ),

R|B = OL (−1)
⊗

p∗λL ,

R|Y1 = OF (−1)
⊗

L .

Proposition 6.1. Notation as above, we have the formulae for the normal
bundles,

(8) NY1/X ∼=
(
OF (−1)

⊗ 2∧ L
)̌⊗

S3F
(2)
/(

OF (−1)
⊗

S2F
(2)
)
,
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where SmF (2) stands for the vector bundle / G(2,F ) with fiber over l equal
to the subspace SmF (l2) of SmF of forms of degree m contained in the square
of the homogeneous ideal of l.
(9)

NB/X ∼=
(
p*
λ

2∧ Ľ
⊗

p∗l (OL (2)
⊗ 2∧ L )

)⊗
p∗λQ/(OL (−1)⊗L ).

Before starting the proof, we need a quick review of multilinear algebra.
Given vector bundles E,F , recall the standard isomorphism Ě ⊗ F ∼=

Hom(E, F )given by ě⊗f �→ (e �→ ě(e)f ). In terms of (local) basis (ei) ⊂ E,
with dual basis (ěi) ⊂ Ě and basis (fj ) ⊂ F , (ϕi,j ) ⊂ Hom(E, F ) such that
ϕij (ei) = fj and ϕij (ek) = 0, i �= k, the isomorphism maps ěi ⊗ fj to ϕij .

We also have for rank E = m, the isomorphism

m−1∧ E ∼= Hom(E,
m∧ E)

v2 ∧ · · · ∧ vm �→ (v1 �→ v1 ∧ · · · ∧ vm).

In particular, for rank E = 2 we get

(10)
E ∼= Hom(E,

2∧ E) ∼= Ě⊗ 2∧ E

e′ �→ (e �→ e′ ∧ e).

In terms of a pair of local dual basis e1, e2 and ě1, ě2, we have

(11)

e1 �→
{
e1 �→ 0

e2 �→ e1 ∧ e2

}
�→ ě2 ⊗ e1 ∧ e2,

e2 �→
{
e1 �→ −e1 ∧ e2

e2 �→ 0

}
�→ −ě1 ⊗ e1 ∧ e2,

whence a1e1 + a2e2 �→ (a1ě2 − a2ě1)⊗ e1 ∧ e2.

We may now proceed to the proof of the proposition.

6.2. NB/X. The relative tangent map

T B/G(2,F ) >→ T G(2,Ql)/G(2,F )|B

at a point (l, h, λ) ∈ P(L )× G(2,F ) = B is given by

(12)
Hom(〈h〉, l/〈h〉)⊕ Hom(λ,F/λ) −→ Hom(h · λ,Ql

/
h · λ)

(θ1, θ2) �→ θ ′
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where
θ ′(h · h′) := θ1(h)λ+ θ2(h

′)h+ h · λ.

The partial derivative corresponding to the first factor may be written in the
form,

(13)
l/〈h〉 −→ Hom(λ,Ql/h · λ)

h̄′ �→ (h′′ �→ h′h′′ + h · λ).
We compose the above map with the isomorphisms

(14) Hom(λ,Ql/(h · λ)) ∼= (λ)̌⊗ (
Ql/(h · λ)

) ∼= 2∧ λ̌⊗ λ⊗ (
Ql/(h · λ)

)
.

Now notice that the space λ ⊗ l ⊗ F maps onto 〈h〉̌⊗ 2∧ l ⊗ Qλ/(h · λ).
Consequently, we get a natural surjection

T G(2,Ql)/G(2,F )(l,h,λ) ∼= 〈h〉̌⊗ 2∧ λ̌⊗ λ⊗ (
Ql/(h · λ)

)
↓↓

〈h〉−2⊗ 2∧ l ⊗Qλ/(h · λ).

Indeed, first replace the factor l by ľ⊗ 2∧ l. Then use the surjections

ľ →→ 〈h〉̌ and λ⊗F →→ Qλ.

In terms of a pair of dual basis {x1, x2} ⊂ l, {x̌1, x̌2} ⊂ ľ the map is given by
the rule (11),

(15)

λ⊗ l ⊗F ∼= λ⊗ ľ⊗ 2∧ l ⊗F →→ 〈h〉̌⊗ 2∧ l ⊗ (
Qλ/(h · λ)

)
∪|︷ ︸︸ ︷

a ⊗ x1 ⊗ b �−−−−−→ x̌2|〈h〉 ⊗ x1 ∧ x2 ⊗ (ab),

a ⊗ x2 ⊗ b �−−−−−→ −x̌1|〈h〉 ⊗ x1 ∧ x2 ⊗ (ab),

the bar now indicating class mod h · λ. To see that the map above factors
through the natural surjection

λ⊗ l ⊗F →→ λ⊗ (
Ql

/
(h · λ))

we must show that

x̌2|〈h〉 ⊗ (ax2) = −x̌1|〈h〉 ⊗ (ax1)
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holds in 〈h〉̌ ⊗ (
Qλ/(h · λ)

)
. This is equivalent to the condition

x̌2(h)(ax2) = −x̌1(h)(ax1)

which is in turn a trivial consequence of the identity (multiplying by a ∈ λ)

h = x̌1(h)x1 + x̌2(h)x2.

Next we check that the image of (13) goes to zero in
2∧ λ̌ ⊗ 〈h〉̌⊗ 2∧ l ⊗(

Qλ/(h · λ)
)
. Pick x ∈ l and a1, a2 ∈ λ. Now x + 〈h〉 is sent to the map in

Hom(
2∧ λ, λ⊗ (

Ql

/
(h · λ))) defined by

(16) a1 ∧ a2 �→ a2 ⊗ (a1x)− a1 ⊗ (a2x).

To show (16) goes to zero, we use the rule (15). For this, write x = c1x1+c2x2.
Then we see that a2 ⊗ x ⊗ a1 goes to (c1x̌2 − c2x̌1)|h ⊗ (a1a2). Therefore
a2 ⊗ x ⊗ a1 − a1 ⊗ x ⊗ a2 goes to zero as desired.

The image of the partial derivative,

Hom(λ,F/λ)

−→ Hom(h · λ,Ql

/
(h · λ)) ∼= 2∧ (λ⊗ 〈h〉)̌⊗ 〈h〉 ⊗ λ⊗ (

Ql

/
(h · λ))

goes to zero in
2∧ λ̌⊗ 〈h〉−2⊗ 2∧ l ⊗ (

Qλ/(h · λ)
)

as well.
Indeed, letting ϕ ∈ Hom(λ,F/λ) and a1, a2 ∈ λ, set αi = ϕ(ai)mod λ.

Thenϕ is mapped to the homomorphism 〈h〉2⊗ 2∧ λ −→ 〈h〉⊗λ⊗(Ql

/
(h·λ))

given by
h2 ⊗ a1 ∧ a2 �→ h⊗ a1 ⊗ hα2 − h⊗ a2 ⊗ hα1.

We check that a1⊗h⊗α2 ∈ λ⊗ l⊗F goes to zero in 〈h〉̌⊗ 2∧ l⊗(
Qλ/(h ·λ)

)
.

Employing (15), we see that

a1⊗(x̌1(h)x1 + x̌2(h)x2)︸ ︷︷ ︸
h

⊗α2 goes to (x̌1(h)x̌2(h)−x̌2(h)x̌1(h))(a1α2) = 0.

Summarizing, we have shown the formula (9). The proof of (8) is similar and
will be omitted.

6.3 (End of proof of 5.1). Let us show that the the restriction of ν ′ to
the fibers of E′ → B are as described in 5.1. We must show that the normal
directions to B, say at (λ, (h, l)) correspond to elements q ∈ P(Qλ

/
(h ·Lλ))
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and moreover, the assigned net is as prescribed there. Note that P(Qλ

/
(h ·

Lλ)) is naturally isomorphic to the projectivization of the corresponding fiber
in (9). The idea is to calculate suitable one parameter families of pencils. Take
(λ, (h, l)) in the open orbit of B. We may assume λ = 〈x3, x4〉, h = x1,
l = 〈x1, x2〉. Write q = x3α + x4β, with α, β ∈ F . Form the one-parameter
family by considering the matrix,[

x1 β −α

tx2 x3 x4

]
, t ∈ C.

We get a one-parameter family of pencils,

πt = 〈x1x3 − tx2β, x1x4 + tx2α〉.
Note that each quadric in πt does contain the distinguished line. One checks
that for general t we have πt �∈ B. Indeed, if πt ∈ B for all t , we must have

x1x3 − tx2β = ac, x1x4 + tx2α = bc

for some polynomials a, b, c in the variables x, t . We may write c = x1 + t c̄

and similarly a = x3 + t ā, b = x4 + t b̄. We get −acx4 + bcx3 = tx2q.
Canceling t , we obtain c(−āx4 + b̄x3) = x2q. Setting t = 0 we have that x1

divides q. This is contrary to the choice of q.
We have that ν maps πt to the net πt +〈q〉whenever πt �∈ B. Letting t → 0

we see that the normal direction defined by πt is the image of q in G(3, S2F ).
Since the fibers of E′ and P(Qλ/(h · Lλ)) are projective spaces of the same
dimension, the desired equality follows over the open orbit at first, thence
everywhere. This completes the proof of 5.1

Corollary 6.4. There are precisely two closed orbits in X′. One is repres-
ented by the point

(17) o′1 = (〈x2
1 , x1x2〉, 〈x2

1 , x1x2, x1x3〉) ∈ G(2,Ql)× G(3, S2F ).

The other is represented by

o′2 = (〈x2
1 , x1x2〉, 〈x2

1 , x1x2, x
2
2 〉) ∈ G(2,Ql)× G(3, S2F ).

Proof. We may restrict the search to the fiber X′0 (acted on by the stabilizer
of l0, of course). We may also start by setting λ = l0 = 〈x1, x2〉, h = x1. The
general element q ∈ P(Qλ/(h ·Lλ)) may be written in the form

q = c1x1x3 + c2x1x4 + c3x
2
2 + c4x2x3 + c5x2x4, [c1, . . . , c5] ∈ P4.
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If c3 �= 0 we may act with x3 �→ tx3, x4 �→ tx4 and get o′2 in the orbit’s
closure. If c4 �= 0 or c5 �= 0 we change coordinates, xi �→ xi + x2 (i = 3 or 4)
and reduce to the previous case. Finaly, if q = c1x1x3 + c2x1x4 we may take
a coordinate change (always fixing x1 and 〈x1, x2〉) such that q = x1x3. This
produces o′1. A simple argument shows that the two orbits are closed.

Remark 6.5. The orbit o′2 is irrelevant in the sequel. Indeed, the net of
quadrics appearing in the second component of o′2 represents a degenerate
twc. The multiplication map studied below is of maximal rank at o′2 and the
rational map from X′ to Hilb is regular there. For this reason, the succeeding
blowup centers will be away from this orbit.

7. The multiplication map

It turns out that the projectivized normal bundle of Y′2 (see (7)) in X′ at a general
point parametrizes the linear system of plane cubics passing through the point
of intersection of the two lines and singular at the distinguished point. Look
at the picture below.

h

ll

This will be shown by considering the natural multiplication map,

(18) A ⊗F
µ−→ S3F ,

where A denotes the pullback of the rank three tautological bundle of
G(3, S2F ) via ν ′.

The generic rank of µ is ten. It drops rank to nine along a subscheme Y′
containing Y′2 as one of its two components (see (23)). Blowing up Y′2 in X′
brings us closer to the desired flat family of twcs. One further blowup is still
necessary, essentially due to the locus where λ = l holds (whence the point of
intersection is no longer determined).

Actually, in order to ensure that the abovementioned point in the intersection
λ ∩ l becomes everywhere well defined, a different blowup strategy will be
pursued below.

The other component of Y′ is a subvariety Y′1 ⊂ X′. Its fiber Y′1 l
over a

distinguished line l ∈ G(2,F ) is isomorphic to the incidence variety

Y′1 l
∼= {

(p, h) ∈ P3 × P̌3 | p ∈ h ∩ l ⊂ P3
}
.
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l

h

p
�

Clearly, Y′1 is of codimension seven in X′. It will be shown below that Y′1 l

is isomorphic to P̌3 blownup along the pencil P(Ll) of planes containing the
distinguished line. Thus, Y′1 is the strict transform of Y1 (see (4)) in X′.

8. Local calculations

The construction of the flat family of twcs involves the calculation of Fitting
ideals of suitable modifications of the sheaf coker (µ) (cf. 18). For this we
need to compute a local matrix representation for the multiplication map.

We pick appropriate coordinate charts for the fibers X0 of X (as in the proof
of 5.1) and X′0 of X′ over the line l0 ∈ G(2,F ) given by x1 = x2 = 0.

8.1. Local chart for X′0
Recalling (6), it follows that the blowup of Ẋ0 along Ḃ0 = B ∩ Ẋ0 is covered
by five affine pieces, one for each generator of the ideal of the blowup center
Ḃ0. Since flatness is an open condition, it suffices to restrict to an affine chart
Ẋ′0 containing the point o′1 which represents a closed orbit (cf. 17). Take the
local equation of the exceptional ideal to be given by

(19) ε′ = b4 − b3b1.

This choice is guided by the blueprint (3.1). Observe that in the matrix repres-
entation for ν (after suitable row and column operations), the entry ε′ appears
in the column corresponding to the monomial x1x3. Dividing the third row of
that matrix by ε′, we see that it will correspond to a quadric of the form x1x3+
terms vanishing at the origin of the coordinate neighborhood, cf. (21) below.
The coordinate functions may be chosen as

a1, a2, b1, b2, b3, b4, c2, c3, c4, c5.

where the ci are the ratios to ε′ of the remaining four generators of the ideal of
Ḃ0. Precisely, the map Ẋ′0 → Ẋ0 is given by the inclusion of affine coordinate
rings

C[Ẋ0] = C[a1, . . . , b5] ↪→ C[Ẋ′0] = C[a1, a2, b1, . . . , c5]
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defined by

(20)
a3 = −b2

3 − c3ε
′,

a5 = a2b3 − c5ε
′,

a4 = a1b3 − c4ε
′,

b5 = b3b2 + c2ε
′.

Presently a local basis for A is formed by the three quadrics

(21)



q1 = x2
1 + a1x1x3 + a2x1x4 − (b2

3 + c3ε1)x
2
2 + (a1b3 − c4ε1)x2x3

+ (a2b3 − c5ε1)x2x4,

q2 = x1x2 + b1x1x3 + b2x1x4 + b3x
2
2 + (b1b3 + ε1)x2x3 + (b3b2

+ c2ε1)x2x4,

q3 = x1x3 + c2x1x4 + c3x
2
2 + (c4 − b3 + c3b1)x2x3

+ (c5 − c2b3 + c3b2)x2x4 + (b1c4 + a1)x
2
3

+ (b1c5 + a1c2 + b2c4 + a2)x4x3 + (a2c2 + b2c5)x
2
4

where q1, q2 yield a local basis for the rank two tautological subbundle R >→
Q (cf. 2) pulled back to X′0. A local representation of the multiplication map
µ may now be computed as a 12× 20 matrix in the form

(22)

 I9 *

0 R

0 0


where I9 denotes an identity block of size 9 and R is a row matrix that spans
the Fitting ideal J of 10 × 10 minors of µ. We find that J is equal to the
sum of the two ideals

J0 = 〈a1 + 2b3b1 − ε′, a2 + 2b3b2 − c2ε
′, c3, c4 − 2b3, c5 − 2c2b3〉

and ε′ · 〈b1, b2〉, with ε′ = b4 − b3b1 as in (19). Put

(23)
J1 =J0 + 〈b1, b2〉,
J2 =J0 + 〈ε′〉.

Hence, J =J1∩J2 holds. So the locus where µ drops rank is the union of
the two smooth pieces Y′1,Y′2 given locally by the respective ideals J1, J2.
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8.1.1. Description of Y′1
Here are, freshly picked from the generators of J1, the seven relations that
define Y′1 locally,

(24) a1 = b4, b1 = 0, b2 = 0, a2 = b4c2, c3 = 0, c4 = 2b3, c5 = 2c2b3.

Substituting in (21), it can be seen that the net of quadrics acquires a fixed
component, namely the plane given by

(25) x1 + b3x2 + b4x3 + b4c2x4.

Note that, in general, this plane does not contain the distinguished line. The
moving part of the net, namely the net of planes

〈x1 − b3x2, x2, x3 + c2x4〉,
defines the point

p = [0 : 0 : −c2 : 1] ∈ P3.

It is the point of intersection of the fixed plane with the distinguished line.
Moreover, looking at the coefficients of the equation (25) that defines the
plane, we recognize Y′1,l as the dual space P̌3 blown up along the pencil of
planes through the distinguished line l0 := x1 = x2 = 0. Equivalently, Y′1,l
is the closure of the graph of the rational map P̌3 · · · → l0 ∼= P1 produced
by intersecting a moving plane with the distinguished line. The intersection
of Y′1,l with the exceptional divisor E′l is equal to the exceptional divisor of

the blowup Y′1,l → P̌3. It corresponds to all choices of a plane through the
distinguished line, together with a marked point on the line.

We summarize the above discussion as follows.

Lemma 8.1. Let Y′1 ⊂ P(F )× P̌3 consist of all (p, l, h) such that p is a point
in the intersection of the line l with the plane h. Then Y′1 maps isomorphically
onto the strict transform of Y1 in X′ ⊂ X × G(3, S2F ).

8.1.2. Description of Y′2
This is just the flag variety (5.3) introduced earlier. Indeed, solving the equa-
tions defined by the generators of J2, we find

a1 = −2b1b3, a2 = −2b2b3, b4 = b1b3, c3 = 0, c4 = 2b3, c5 = 2c2b3.

Plugging these relations in (21) we get the net of quadrics with fixed plane
x1+b3x2 and moving part 〈x1−b3(b2x4+b1x3), x2+b1x3+b2x4, x3+c2x4〉
fitting the prescription 5.3. We note that Y′2 is contained in the exceptional
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divisor E′, as the local equation (19) of the latter is contained in the ideal of the
former. The line λ is given by the first two linear forms. We see that λ coincides
with the distinguished line 〈x1, x2〉 if and only if b1 = b2 = 0 holds. These
are the local equations for Y′1 ∩ Y′2 in Y′2. We may summarize this as follows.

Lemma 8.2. The intersection of Y′2 and Y′1, viewed inside Y′2, is equal to the
codimension two subvariety of Y′2 where the two lines l, λ coincide. Moreover,
the strict transform Y′′2 in the blowup X′′ of X′ along Y′1 is isomorphic to the
closure of the graph of the rational map defined by (l, λ) �→ l ∩ λ. In other
words,
(26)
Y′′2 = {(p, o, l, λ, h) ∈ (P3)×2×(G(2, 4))×2× P̌3 | p ∈ λ ⊂ h ⊃ l, o ∈ l∩λ}.

l h

p
� l


Remark 8.3. As a subset of Y′1, the intersection with Y′2 is just the codi-

mension one subvariety where the fixed plane swallows the distinguished line
– all in keeping a marked point as a reminder of an intersection point.

Though a result of Hironaka ([5], p. 41) ensures a “commutativity” of
blowups, we have chosen to blowup X′ along Y′1 first and then blowup along
the strict transform Y′′2 of Y′2 due to a nice geometrical reason.

Indeed, Y′′2 carries a locally split subbundle of S3F of cubic forms in the
varying plane h that vanish at the point o and are singular at the point p.

In fact, Y′′2 embeds in a punctual relative Hilbert scheme parametrizing zero
dimensional subschemes of degree four of the family of planes in P3 through a
distinguished line. A point (p, o, l, λ, h) in Y′′2 produces the subscheme p2+o
of the plane h. We mean by this the zero dimensional subscheme of degree
four defined by squaring the ideal of p in h and intersecting with the ideal of
the point o. When p = o holds, we still get a well defined limiting subscheme
isomorphic to 〈y2, xy, x3〉. Here we have taken h as the x, y-plane, l = λ as
the axis y = 0 and the point o = p = (0, 0).

More precisely, let s be an affine coordinate in the line l. The equation of
λ may be written as y = t (x − s). The choice of p on λ will be provided by
intersecting λ with x = u. Thus, s, t, u are local coordinates for (Y′′2)l,h. After
homogenizing, we find (e.g., using maple) the equality for s �= u,

〈x−uz, y−t (x−sz)〉2∩〈x−sz, y〉 = [−utsz2+t (u+s)xz−uyz+xy−tx2,

st2(s − 2u)z2 + 2ut2xz+ 2t (s − u)yz− t2x2 + y2, u2yz2−2uxyz+ x2y,



240 i. vainsencher and f. xavier

su2z3 − u(u+ 2s)xz2 + (2u+ s)x2z− x3].

It can be checked that for all s, t, u the homogenous ideal in the right hand
side imposes 4 independent conditions on quartics (as well as already on cu-
bics). Since Hilb4

P2 embeds in the grassmannian of codimension 4 subspaces
of S4〈x, y, z〉, it follows that (Y′′2)l,h maps into that Hilb. In fact, one checks
that the map to that grassmannian is an embedding.

Assume this picture for the moment and let’s see how do the exceptional
divisor E′′ → Y′1 and the strict transform Y′′2 fit together. Now Y′′2 ∩ E′′ is the
locus where λ = l holds. It sits over Y′2 ∩ E′ = Y′2 ∩ Y′1 as the P1-bundle
defined by varying the point denoted by o on the line λ.

The fiber of the projectivized normal bundle E′′′ of Y′′2 ⊂ X′′ at a point
given by (p, o, l, λ, h) is the linear system of cubics in the plane h containing
the subscheme p2 + o described above. This corresponds to the picture at the
beginning of §7. Details are given in the next sections.

8.2. Blowing up Y′1 ⊂ X′

Let X′′ → X′ be the blowup of Y′1 ⊂ X′. There are two interesting charts
for this blowup, namely, those given by choosing as local equation for the
exceptional divisor either b1 or b2 among the seven generators given in (24).
We now let ε′′ = b1 be the chosen one. (The calculations for b2 are similar and
will be omitted.) The blowup map is given by the relations,

(27)
a1 = (d5 − 3b3)b1 + b4,

a2 = (d6 − b3(2d7 + c2))b1 + c2b4,

b2 = d7b1,

c3 = d2b1,

c4 = 2b3 + d3b1,

c5 = 2c2b3 + d4b1

where b1, b4, b3, c2, d2, . . . , d7 are local coordinates.
Plug the above relations into the local equations for Y′2 (cf. 8.1.2). We find,

b4 − b1b3 + d5b1, c2(b4 − b3b1)+ d6b1, b4 − b3b1, d2b1, d3b1, d4b1

for the ideal of the total transform. The strict transform is given by the saturation
with respect to b1, the local equation of the exceptional divisor. Hence Y′′2 is
locally given by the ideal,

(28) 〈b4 − b3b1, d2, d3, d4, d5, d6〉.
We compute next the saturation of the image sheaf of the multiplication

map µ pulled back to X′′. Let M ′ be the submodule spanned by rows of the
matrix M ′ obtained from (22) by pullback via (27). We are required to find the
row matrices R′ with entries in the coordinate ring of the present chart, such
that b1R

′ lies in M ′.
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Now the tenth row of M ′ is of the form b1R0 (i.e., all entries in that row
are divisible by b1). Hence sM ′ contains R0. The first nonzero entry of R0 is
d2; it appears in the 11th. column. Hence sM ′ =M ′ + 〈R0〉 holds since they
agree upon inverting d2. This also shows that we get a local presentation of
sM ′ given by replacing the row b1R0 in M ′ by R0. The Fitting ideal of sM ′
defined by the 10× 10 minors of the presentation is spanned by the entries of
R0. This ideal is precisely (28). It defines the last blowup center Y′′2 .

Solving (28) for b4, d2, . . . , d6 and substituting in (21) pulled back to the
present coordinate chart, we find that the net of quadrics parametrized by Y′′2
is of the form, (x1+ b3x2) times the net of planes 〈x1− b1b3(x3+ d7x4), x2+
b1(x3 + d7x4), x3 + x4c2〈. As in (8.1.2), the line λ is given by the first two
generators of the latter net. We see that λ intersects the distinguished line
l0 = 〈x1, x2〉 at the point o = [0 : 0 : −d7 : 1]. This point is well defined
even when the lines coincide. Clearly λ = l0 if and only if b1 = 0. This is of
course in agreement with (26): Y′′2 is the closure of the graph of the rational
map Y′2 · · ·→ P3 defined by λ ∩ l0. The varying linear part of the net defines
the point p = [−b3b1(c2 − d7) : b1(c2 − d7) : −c2 : 1].

8.3. Blowing up Y′′2 ⊂ X′′

Let X′′′ → X′′ be the blowup of Y′′2 ⊂ X′′. The discussion above shows that
the saturation of the pullback of the image of µ is a rank 10, locally split
subsheaf of S3F . Hence X′′′ maps to G(10, S3F ) and dominates the Hilb of
twcs embedded in that grassmannian.

In the neighborhood where

ε′′′ = d3

is a local generator for the (last) exceptional divisor E′′′ → Y′′2 , the blowup is
given by the relations

b4 = b3b1 + e2ε
′′′, d2 = e3ε

′′′, d4 = e4ε
′′′, d5 = e5ε

′′′, d6 = e6ε
′′′.

For the sake of completeness we also list the strict transforms of the previ-
ous two exceptional divisors. They are given by ε̃′ = e2 and ε̃′′ = b1. This
shows that our compactification X′′′ is built from a suitable open subset of the
Grassmann bundle X by adding three normal crossing divisors.

We also observe that the tenth cubic, i.e., the one corresponding to the last
nonzero row of the local matrix presentation, is given by,

e3x
3
2 + (1+ 2e3b1)x3x

2
2 + (2e3d7b1 + e4)x4x

2
2 + (e5 + 2b1 + e3b

2
1)x

2
3x2

+ (b2
1 + e2 + e5b1)x

3
3 + ((2d7 + 2e4)b1 + e5c2 + e6 + 2e3d7b

2
1)x4x2x3

+ (d2
7e3b

2
1 + 2d7e4b1 + e6c2)x

2
4x2
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+ ((2d7 + e4)b
2
1 + (e6 + e5c2 + d7e5)b1 + d7e2 + 2c2e2)x4x

2
3

+ (d2
7e4b

2
1 + d7e6c2b1 + d7c

2
2e2)x

3
4

+ ((d7c2e5 + e6c2 + d7e6)b1 + 2d7c2e2 + c2
2e2 + (2d7e4 + d2

7 )b
2
1)x

2
4x3.

Restricting to E′′′, we find that it cuts the fixed plane x1 = −b3x2 in a cubic
passing through o = [0 : 0 : −d7 : 1] and singular at p = [−b3b1(c2 − d7) :
b1(c2 − d7) : −c2 : 1].

9. Enumerative applications

We explain how to find the number of twcs meeting 12 general lines. First,
the set of pencils of quadrics containing a distinguished line such that the
residual twisted cubic meet the line x3 = x4 = 0 form a divisor L ⊂ X. An
easy elimination shows that in the coordinate chart for X0, its local equation
is a3 = −b2

3. Its total transform in X′0 is given by c3 times the local equation
ε′ = b4 − b3b1 of E′. Hence the strict transform is given by c3 = 0. We see
from (27) that the total transform in X′′ is given by d2b1 whence the strict
transform is d2. Finally, a local equation of the strict transform in X′′′ is found
to be given by e3. It follows that the class of the strict transform L′′′ ⊂ X′′′ can
be written (omitting pullbacks) as

[L′′′] = [L]− [E′]− [E′′]− [E′′′].

In order to cut to size the∞2 bisecant lines, we restrict X′′′ over the Schubert
cycle Go ⊂ G(2, 4) of lines meeting a fixed point o. The class [L] in X is easily
computed as −2c1R + c1L . The class [Go] in G(2, 4) is c2L . The number
sought for is therefore given by∫

[L′′′]12c2L ,

and may be calculated explicitly using Bott’s formula as in [8]. The script
adaptaded by A. Meireles is available at the homepage [11]. It also does the
job of producing the higher dimensional examples cited at the introduction.

Finally, let us sketch a verification of the enumerative significance of the
above intersection theoretic computation. Let Ho denote the restriction of X′′′
over Go. Let p : Ho → H be the map to the Hilbert scheme component of
twcs. Let GLo ⊂ GL(F ) denote the stabilizer of the point o. Clearly p is
GLo-invariant. Let 7 ⊂ Ho be any irreducible divisor shrunk by p, i.e., such
that codim p(7) ≥ 2. We have that 7 is GLo-invariant and so is its image
p(7). Let I ⊂ H be the divisor of twcs incident to a fixed line away from o.
One checks that I contains none of the two closed GLo-orbits of H. Hence I
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contains nop(7). Thereforep−1I is irreducible. Hence it is equal to the closure
L′′′ of a suitable open subset of L (restricted over Go). Therefore, we may write∫

[L′′′]12c2L =
∫

[p−1I]12 =
∫

[I]12.

The latter is well known to be an enumeratively significant Gromov-Witten
invariant (cf. [4]).
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