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DISCRETENESS OF SUBGROUPS OF SL(2, C)

CONTAINING ELLIPTIC ELEMENTS

PEKKA TUKIA and XIANTAO WANG

Abstract

The following result is the main result of the paper. Let G ⊂ SL(2, C) be non-elementary. If G

contains an elliptic element of order at least 3, then G is discrete if and only if each non-elementary
subgroup generated by two elliptic elements of G is discrete.

1. Introduction

One of the consequences of Jørgensen’s inequality [7] is that a non-elementary
subgroup of SL(2, C) is discrete if every two-generator subgroup is discrete
(Jørgensen [7], [8]); if G ⊂ SL(2, R), the discreteness follows as soon as
every cyclic subgroup is discrete (Jørgensen [8]). These results were extended
by Wang and Yang who showed that G is discrete if every subgroup generated
by two loxodromic elements is discrete [11]; if G contains parabolic elements,
then G is discrete as soon as every subgroup generated by two parabolic ele-
ments is discrete [12]. The main result of this paper is Theorem 3.1 showing
that G is discrete as soon as every non-elementary subgroup generated by two
elliptic elements is discrete; here we must assume that G contains an elliptic
element of order at least 3. We will also show (Theorem 4.1) that if every
subgroup generated by an elliptic and a loxodromic element is discrete, then
G is discrete, provided that there are elliptic elements of order at least 3. See
the references [1], [2], [3], [5], [6], [9], [10] for further discussions of these
theorems.

Finally, we complement these results for groups containing parabolic ele-
ments. We will prove that if G is non-elementary and contains parabolic ele-
ments, then G is discrete if every non-elementary subgroup generated by a
parabolic and a loxodromic element is discrete (Theorem 5.1). The missing
result would be that if non-elementary G contains parabolic and elliptic ele-
ments, then G is discrete if every subgroup generated by a parabolic and an
elliptic element is discrete but this question is left open.
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The reason for the assumption that there are elliptic elements of order at
least 3 is that two elliptic elements f and g of order 2 always generate an
elementary group G. This follows for algebraic reasons since the cyclic group
generated by fg is of index 1 or 2 in G.
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2. Notations and preliminary results

We denote by H 3 = {(x, y, z) ∈ R3 : z > 0} the hyperbolic 3-space and the
hyperbolic space with boundary is H̄ 3 = H 3 ∪ C. If f ∈ SL(2, C), we regard
f as a Möbius transformation of C and denote by f̃ the Poincaré extension of
f to H̄ 3 and write

fix(f ) = {x ∈ C = C ∪ {∞} : f (x) = x},
ord(f ) = the order of f when f is regarded as a Möbius transformation,

Af = {z ∈ H̄ 3 : f̃ (z) = z};
the notation Af is used only if f is elliptic and Af is the the axis of f .

The letter G always denotes a subgroup of SL(2, C) unless otherwise stated.
The group G is called elementary if there is z0 ∈ H̄ 3 such that the orbit

Gz0 = {f̃ (z0) : f ∈ G}
is finite. In fact (cf. [1, p. 84]), if G is elementary, then either there is a common
fixed point in H 3 of the elements of G (if G is elliptic) or a one- or two-point
orbit in C and this is the fixed point set of parabolic or loxodromic elements in
the group. We call G is non-elementary if G is not elementary.

The following characterization of non-elementariness of a group generated
by two elliptic elements is crucial for us. It follows easily from the facts that
an elementary group has either a fixpoint in H̄ 3 or there is a two-point orbit,
cf. [1, p. 84]. We state this in

Lemma 2.1. Two elliptic elements f, g ∈ SL(2, C), whose orders are not
both equal to 2, generate a non-elementary group if and only if their Poincaré
extensions to H̄ 3 have no common fixed points.

The same conclusion is true if f is elliptic of order at least 3 and g is
loxodromic.
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Lemma 2.2. Let G be non-elementary. If g ∈ G is elliptic, then there are
infinitely many elements gi of G such that each gi is conjugate to g in G and
no two g̃i’s have common fixpoints (i.e. their axes are disjoint).

Proof. Suppose g ∈ G is elliptic. Since G is non-elementary, G contains
a loxodromic element f (see [1, Theorem 5.1.3]) such that

fix(f ) ∩ fix(g) = φ.

Thus Ag is disjoint from fix(f ) and hence f k(Af ) tend toward the attracting
fixpoint of f as k → ∞. It easily follows that there is a sequence k1 < k2 . . .

of integers such that the sets

f ki (Ag) = Af ki gf −ki

are pairwise disjoint. This proves the lemma.

Lemmas 2.1 and 2.2 have the

Corollary 2.3. Let G be non-elementary. Then G contains a non-elemen-
tary subgroup generated by two elliptic elements if and only if G contains an
elliptic element of order at least 3.

3. A discreteness criterion of subgroups of SL(2, C) with elliptic
elements

In this section, we will prove the following main result of this paper.

Theorem 3.1. Let G be non-elementary. If G contain an elliptic element of
order at least 3, then G is discrete if and only if each non-elementary subgroup
generated by two elliptic elements of G is discrete.

Remark. Two elliptic elements of order 2 always generate an elementary
discrete group, cf. the Introduction. This is the reason for the assumption that
there are elliptic elements of order at least 3.

We start with

Lemma 3.2. Let G be non-elementary. If G contains elliptic elements and
each non.elementary subgroup generated by two elliptic elements of G is dis-
crete, then G contains no purely elliptic sequence {fn} such that fn → I as
n → ∞. Here I is the identity element.

Proof. Suppose G contains a purely elliptic sequence {fn} such that fn →
I as n → ∞. We can obtain by passing to a subsequence (denoted in the same
manner) that fix(fn) tends in the Hausdorff metric toward a one- or two-point
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set Y . Since G is non-elementary, there is a loxodromic element h ∈ G (cf.
[1, Theorem 5.1.3]) such that

fix(h) ∩ Y = φ.

Thus, since fix(fn) → Y , there are a neighborhood V of the attracting fixpoint
of h and a neighborhood W of the repelling fixpoint of h such that for large n

Afn
∩ V = φ and Afn

∩ W = φ.

The latter of these formulae implies that there are p and n0 such that hp(Afn
) ⊂

V if n > n0. We fix such p and n0. Now, hp(Afn
) is the axis of hpfnh

−p. Hence
the axes of fn and gn = hpfnh

−p do not intersect and hence 〈fn, gn〉 is non-
elementary by Lemma 2.1. However, both fn → I and gn → I and hence the
commutator [fn, gn] → I and so Jørgensen’s inequality

| tr2(fn) − 4| + | tr[fn, gn] − 2| ≥ 1

is violated for large n. This contradiction proves the lemma.

Proof of Theorem 3.1. Suppose that the non-elementary G contains an
elliptic element of order at least 3 and that every non-elementary subgroup
generated by two elliptic elements of G is discrete but G is not discrete. Then
G contains a sequence {fn} such that fn → I as n → ∞ and where each
fn �= I . We can assume that fix(fn) tends in the Hausdorff metric toward a
one- or two-point set Y . We can find an elliptic element g ∈ G of order at least
3 whose fixpoint set is disjoint from Y , cf. Lemma 2.2. Thus we can assume
that fix(fn), fix(g) and fix(fngf

−1
n ) are disjoint for large n.

Let hn = fngf
−1
n and set Gn = 〈g, hn〉. If Gn is non-elementary, then Gn

is discrete by the assumptions of the theorem and hence Jørgensen’s inequality

| tr2(gh−1
n ) − 4| + | tr[gh−1

n , hn] − 2| ≥ 1

is true. However, hn → g and hence the left hand side of the above inequality
tends to 0. This is a contradiction and so Gn is elementary for large n. This is
possible only if the axes of g and hn intersect (Lemma 2.1) and since they do
not have common fixpoints in C, they must have a common fixpoint pn in H 3.

It follows that h−1
n g also has the fixpoint pn ∈ H 3 and hence {h−1

n g} is a
purely elliptic sequence tending to I and this is impossible by Lemma 3.2.
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4. The elliptic-loxodromic case

As an application of theorem 3.1, we will prove a theorem which is midway
between our theorem and the theorem of Wang and Yang in [11] where it
was shown that if G is non-elementary and every non-elementary subgroup
generated by two loxodromic elements is discrete, then G is discrete.

Theorem 4.1. Let G be non-elementary. If G contains an elliptic element of
order at least 3, then G is discrete if and only if each non-elementary subgroup
〈f, g〉 of G is discrete where f is elliptic and g is loxodromic.

Theorem 4.1 follows from theorem 3.1 and the following lemma.

Lemma 4.2. Let G be non-elementary such that G contains an elliptic
element of order at least 3. Suppose that every non-elementary subgroup of G

generated by one elliptic and one loxodromic element of G is discrete. Then
every non-elementary subgroup of G generated by two elliptic elements is
discrete.

Proof. Let f1 and g1 be elliptic elements of G such that H = 〈f1, g1〉
is non-elementary. We show that H is discrete. If f1g1 is loxodromic, then
H = 〈f1, f1g1〉 is discrete by assumption. If f1g1 is non-loxodromic, then
the proof of case (3) of Lemma 3 of [11] shows that H is conjugate to a non-
elementary subgroup of SL(2, R), cf. also Lemma 5.23 of Gehring and Martin
[4].

Thus we can assume that H ⊂ SL(2, R). However, a non-discrete and
non-elementary subgroup of SL(2, R) contains a sequence {hn} of hyperbolic
elements such that hn → I as n → ∞, cf. [3, Corollary p. 199]. Pass first to
a subsequence so that the sets fix(hn) have the Hausdorff limit X which is a
one- or two-point set. Since H is non-elementary, at least one of the elliptic
elements f1 or g1 is of order at least 3, say ord(f1) ≥ 3. Again, like in the proof
of Lemma 3.2, the non-elementariness of H implies that we can conjugate f1

in H to obtain f ∈ H so that fix(f ) is disjoint from X. Thus we can assume
that for large n

fix(f ) ∩ fix(hn) = φ.

It follows (Lemma 2.1) that Hn = 〈f, hn〉 is a non-elementary subgroup of
H for large n. Hence Hn is discrete as a subgroup of H . However, this is a
contradiction since now Jørgensen’s inequality

| tr2(hn) − 4| + | tr[hn, f ] − 2| ≥ 1

is violated for large n since hn → I as n → ∞.
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5. The parabolic-loxodromic case

We complement our results and prove

Theorem 5.1. Let G be a non-elementary group containing parabolic ele-
ments. Then G is discrete if and only if every non-elementary subgroup gen-
erated by a parabolic and a loxodromic element of G is discrete.

Proof. Suppose that G is not discrete although every subgroup generated
by a parabolic and a loxodromic element is discrete. We derive a contradiction
as follow. Thus there is an infinite sequence fi of G, fi �= I , such that fi → I

as i → ∞. Pass to a subsequence so that fix(fi) have the Hausdorff limit
X which is a one- or two-point set. Since G is non-elementary and contains
parabolic elements, we can find a parabolic element g whose fixpoint is not a
point of X. Thus, for large i, the fixpoint sets of g and fi are disjoint. Using this
fact, a simple calculation shows that for large i there is ni such that hi = fig

ni

is loxodromic. Since fi and g do not have common fixpoints, neither have hi

and g and so Hi = 〈g, hi〉 = 〈g, fi〉 is non-elementary and hence discrete by
assumption. However, for large i,

| tr2(fi) − 4| + | tr[fi, gj ] − 2| < 1

and so Hi would have to be elementary by Jørgensen’s inequality. This con-
tradiction proves the theorem.
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