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ON THE STRUCTURE OF PEDERSEN-POON
TWISTOR SPACES

NOBUHIRO HONDA

Abstract

We study algebro-geometric properties of certain twistor spaces over nCP2 with two dimensional
torus actions, whose existence was proved by Pedersen and Poon [16]. We show that they have
a pencil whose general members are non-singular toric surface, and completely determine the
structure of the reducible members of the pencil, which are also toric surfaces. In the course of our
proof, we describe behaviors of the above pencil under equivariant smoothing. Relation between
the weighted dual graphs of the toric surfaces in the pencil and similar invariant of the above torus
action on nCP2 is also determined.

Introduction

An oriented four-dimensional Riemannian manifold (M, g) is said to be self-
dual iff the anti-self-dual part of the Weyl curvature of g is identically zero.
The four sphere with the standard metric and the complex projective plane with
the Fubini-Study metric are basic examples of compact self-dual manifolds.

Until the late of 1980’s, only a few examples were known of compact self-
dual manifolds. In 1989 Donaldson and Friedman [3] gave a general method
for constructing self-dual metrics on the connected sum of compact self-dual
manifolds. Their method relies on the twistor theory and deformation theory
of compact complex spaces with only simple normal crossing singularities: let
(M1, g1) and (M2, g2) be compact self-dual manifolds and, Z1 and Z2 their
associated twistor spaces respectively, which are three-dimensional compact
complex manifolds foliated by non-singular rational curves parameterized by
the four-manifolds Mi . Let 	Zi

(i = 1, 2) be the tangent sheaf of Zi . Then
one of their result ([3, Theorem 6.1]) is: if H 2(Z1,	Z1) = H 2(Z2,	Z2) = 0,
then certain singular compact complex space Z′ which is constructed from Z1

and Z2 (and with only simple normal crossing singularities), can be deformed
into a non-singular threefold which is a twistor space over M1#M2. That is,
there exists a self-dual metric on M1#M2 (= the connected sum of M1 and
M2). As a corollary, they proved that for any positive integer n there exist self-

Received October 8, 1999.



176 nobuhiro honda

dual metrics on nCP2, where nCP2 denotes the connected sum of n complex
projective planes.

Later, Pedersen and Poon [16] developed an equivariant version of the above
result of Donaldson and Friedman: let (M1, g1) and (M2, g2) be compact self-
dual manifolds as above, andG a compact Lie group acting on both of (M1, g1)

and (M2, g2) isometrically. Assume that there exist G-fixed points pi ∈ Mi

(i = 1, 2) and an orientation reversing linear isometry between Tp1M1 and
Tp2M2 which is G-equivariant with respect to the isotropic representations at
pi . ThenM1#M2 has a naturalG-action. Under these circumstances, Pedersen
and Poon [16, Theorem 4.4] proved that if H 2(Z1,	Z1) = H 2(Z2,	Z2) = 0,
then M1#M2 has a self-dual metric with an isometric G-action.

Applying this result inductively for CP2’s with the standard T 2 := S1×S1-
action, they proved (cf. [16, Theorem 7.1]), with the aid of a result of Orlik and
Raymond [14], that for anyn ≥ 0 and any effectiveT 2-actionα : T 2×nCP2 →
nCP2, there exists a self-dual metric (i.e. a twistor space) on nCP2 with respect
to which α is an isometric action. We call the corresponding twistor space over
nCP2 Pedersen-Poon twistor spaces associated to α (cf. §1.3 for the precise
definition). We note that effective T 2-actions on nCP2 are classified by certain
combinatorial data [14], [10]. By construction, Pedersen-Poon twistor spaces
Z associated to α has a holomorphic T 2-action such that the twistor fibration
π : Z → nCP2 becomes a T 2-equivariant map. The purpose of the present
paper is to study algebro-geometric properties of these twistor spaces in detail.

To state our result, we recall the following facts: any twistor space Z as-
sociated to a compact simply connected self-dual four-manifold (M, g) has a
unique holomorphic line bundle F which is characterized by the property that
F⊗2 � −KZ (=the anti-canonical bundle of Z). When a Lie group G acts on
(M, g) isometrically, then G acts holomorphically not only on Z but also on
the line bundle F . Let H 0(Z, F )G denote the linear subspace of H 0(Z, F )

generated by all G-fixed sections, and |F |G ⊆ |F | the linear subsystem whose
corresponding linear subspace is H 0(Z, F )G. Then our main result is the fol-
lowing:

Main Theorem. Let α : T 2 × nCP2 → nCP2 be any effective T 2-action
and Z any Pedersen-Poon twistor space associated to α. Then all of (i)–(iv)
below hold.

(i) |F |T 2
is one-dimensional as a linear system, and general members of

|F |T 2
are biholomorphic to an irreducible non-singular toric surface S.

(ii) The number of reducible members of |F |T 2
is n+ 2, each of which are

of the form Di + σ(Di) (1 ≤ i ≤ n+ 2), where every Di (1 ≤ i ≤ n+ 2) is
irreducible non-singular toric surface and σ is the real structure of Z.

(iii) The base locus of the pencil |F |T 2
coincides with the (unique) torus
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invariant anticanonical curve of S in (i).
(iv) The toric surfaces S and Di (1 ≤ i ≤ n+2) in (i) and (ii) are uniquely

determined by the original action α on nCP2.

Recall that non-singular toric surfaces are completely described by their
weighted dual graphs [13, p. 44]. On the other hand, as shown in [14], effective
T 2-actions on nCP2 are also classified by similar (weighted dual) graphs. We
also determine the relationship between the weighted dual graph of S (andDi)
in the above theorem and that of α.

This paper consists of five sections. Section 1 summaries known results
about the classification of T 2-actions on nCP2 (§2.1) and the theory of toric
surface (§2.2), and gives a precise definition of Pedersen-Poon twistor spaces
(§2.3). Also given are some lemmas needed in the subsequent sections. Section
2 proves that (ii) and (iii) of Main Theorem follow from (i). Section 3 provides
the first step to prove (i) of Main Theorem. Certain singular space Z′ and two
families P1 and P2 of divisors onZ′ are constructed. These play an important
role in our proof of (i). Section 4 proves (i) of Main Theorem. Equivariant
deformations of Z′ are studied and it is proved that any element in P1 and P2

does not disappear under any T 2-equivariant deformation of Z′. As a result,
we complete our proof of (i). Section 5 determines relationship between the
weighted dual graphs of the toric surfaces appeared as members of the pencil
|F |T 2

and those of T 2-actions on nCP2. This in particular implies (iv) of Main
Theorem.

Recently, A. Fujiki [5] has proved a conjecture of D. Joyce [10, 3.3.4]
which states that compact simply connected self-dual manifolds which admits
an effective T 2-action must be conformally equivalent to Joyce’s example [10].
He also described the structure of corresponding twistor space. In particular,
Pedersen-Poon twistor spaces are nothing but the twistor spaces associated to
the self-dual metrics of Joyce. As a result, our investigations here turned out
to be equivalent to studying degenerations of the metrics of Joyce.

The author would like to thank A. Fujiki for many helpful conversations. He
also would like to thank H. Pedersen and Y. S. Poon for kind encouragements.

1. Preliminaries

1.1. Torus actions on nCP2

In this subsection we first summarize results of Orlik and Raymond [14] and
Joyce [10] about classification of torus actions on nCP2.

Let α : T 2 × nCP2 → nCP2 be any effective action, N the space of orbits
and π : M → N the orbit map. Then N is a closed 2-disk. Let ∂N (� S1) be
the boundary of N and N◦ := N \ ∂N the interior of N . Then the following
(a)–(c) hold:
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(a)π−1(N◦) is isomorphic toN◦×T 2 T 2-equivariantly, where T 2 action on
N◦ × T 2 is given by the product of the trivial action (on N◦) and the standard
one (on itself),

(b) there exist distinguished k := n + 2 points p1, p2, . . . , pk of ∂N such
that π−1(pi) is a point for every 1 ≤ i ≤ k. By renumbering we assume that
p1, . . . , pk are arranged in the cyclic order of the negative (i.e., clockwise)
direction,

(c) set Ai := π−1([pi, pi+1]) (⊆ nCP2), 1 ≤ i ≤ k, where [pi, pi+1]
denotes the connected interval in ∂N with boundary {pi, pi+1}, and subscripts
are counted modulo k. Then eachAi is a T 2-invariant sphere on nCP2 and there
exists a unique one-dimensional subgroup Gi of T 2 such that Gi acts trivially
on Ai . (Gi is isomorphic to the circle.)

Once we fix a basis of H1(T
2, Z) � Z2, Gi is represented by a pair of

coprime integer; that is, Gi = {(s, t) ∈ T 2 = U(1)× U(1) | smi tni = 1}. Of
course, (mi, ni) is determined only up to sign.

Proposition 1.1 ([14], [10]). Let α : T 2 × nCP2 → nCP2 be any effective
action andA1, A2, . . . , Ak ⊆ nCP2 (k = n+2) the set of T 2-invariant spheres
as above, and Gi ⊆ T 2 (1 ≤ i ≤ k) the stabilizer subgroup of Ai as above.
Then there exists a basis of H1(T

2, Z) such that Gi is represented by (mi, ni)

in the following form:
(i) (mk, nk) = (1, 0), (m1, n1) = (0, 1),
(ii) mi ≥ 1 for any i ≥ 2, and
(iii) mini+1 −mi+1ni = −1 for any 1 ≤ j ≤ k − 1.
Conversely, any set of coprime integers {(mi, ni) | 1 ≤ i ≤ k} satisfying (i)–

(iii) determines an effectiveT 2-action onnCP2 such that its stabilizer subgroups
{Gi} can be represented by {(mi, ni)}.

A1

A2

A3

A4

A5

A6

a1

a2

a3

a4

a5

a6

Figure 1

There is another representation of T 2-action on nCP2. Let α : T 2 × nCP2 →
nCP2 be any effective action andA := ∪ki=1Ai the cycle of T 2-invariant spheres
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as above, and set ai := A2
i , 1 ≤ i ≤ k, the self-intersection number of Ai in

nCP2. Then the weighted dual graph of α is the circle together with k points
β1, . . . , βk on the circle which are arranged in the cyclic order of the positive
direction, and each βi is attached by the weight ai .

Instead of this, we also denote (a1, a2, . . . , ak) for short. The latter repres-
entation has an ambiguity of the permutations. Let α1 be the standard action
on CP2 which is given by

α1 : (s, t)×(ξ0 : ξ1 : ξ2) �−→ (ξ0 : sξ1 : tξ2), (s, t) ∈ T 2 = U(1)×U(1),
where (ξ0 : ξ1 : ξ2) denotes a homogeneous coordinate on CP2. Then the dual
graph of α1 is given by (1, 1, 1).

The weighted dual graph also determines T 2-action on nCP2: let α be any
given effective T 2-action, {(mi, ni) | 1 ≤ i ≤ k} the stabilizer data which
is normalized as in Proposition 1.1, and (a1, a2, . . . , ak) its weighted dual
graph. Then a relation between these two representations is given as follows
(subscripts are counted modulo k):
• {(mi, ni)} �−→ (ai): each ai (1 ≤ i ≤ k) is given by ([14])

ai = −
∣∣∣∣mi−1 mi

ni−1 ni

∣∣∣∣
∣∣∣∣mi mi+1

ni ni+1

∣∣∣∣
∣∣∣∣mi−1 mi+1

ni−1 ni+1

∣∣∣∣ .
(Note that the sign are different from [14, p. 544] because we choose the
negative direction.)
• (ai) �−→ {(mi, ni)}: First set (mk, nk) = (1, 0) and (m1, n1) = (0, 1).

Assume that (mi−2, ni−2) and (mi−1, ni−1) is determined for some i ≥ 1. Then
(mi, ni) is determined as the unique solution of the following equations:∣∣∣∣mi−1 mi

ni−1 ni

∣∣∣∣ = −1

and
ai−1 = −

∣∣∣∣mi−2 mi−1

ni−2 ni−1

∣∣∣∣
∣∣∣∣mi−1 mi

ni−1 ni

∣∣∣∣
∣∣∣∣mi−2 mi

ni−2 ni

∣∣∣∣ .
(We have for example (m2, n2)=(1, a1), (m3, n3)=(a2, a1a2 − 1), (m4, n4)=
(a2a3 − 1,−a1 − a3 + a1a2a3), . . . , (mk−1, nk−1) = (ak, 1).) Consequently
the weighted dual graph also determines T 2-action on nCP2. In the sequel we
use this representation, rather than the stabilizer data. tion.

The dual graph of any effective T 2-action on nCP2 can by calculated by the
following two propositions:

Proposition 1.2 (cf. [14, p. 553, Theorem]). Any effective T 2-action
on nCP2 is obtained by a succession of T 2-equivariant connected sums of
(CP2, α1).
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Proposition 1.3. Let α : T 2 × nCP2 → CP2 be any effective action and

(a1, a2, . . . , ak)

be the weighted dual graph of α. Let p := Ak ∩ A1 (= π−1(p1)) ∈ nCP2

(Ai = π−1([pi, pi+1]) as above) be a fixed point of α. Let q ∈ CP2 be any
fixed point of α1. Let α′ : T 2×(n+1)CP2 → (n+1)CP2 be the action obtained
by T 2-equivariant connected sum of α and α1 at p and q. Then the dual graph
of α′ is given by

(a1 + 1, a2, a3, . . . , ak−2, ak−1, ak + 1, 1).

Proof. Recall that equivariant connected sum of α and α1 at p and q is
made as follows: first choose T 2-invariant small neighborhood U of p and V
of q = B3 ∩ B1, where B1, B2 and B3 are α1-invariant spheres in CP2. Next
choose a T 2-equivariant, orientation reversing diffeomorphism f : ∂U →
∂V , where ∂ denotes the boundary. Put s1 := ∂U ∩ A1, sk := ∂U ∩ Ak ,
t1 := ∂V ∩ B1 and t3 := ∂V ∩ B3, all of which are T 2-invariant circles (if
we choose U and V sufficiently small). Then equivariant connected sum is
defined as {(nCP2 \ U) ∪ (CP2 \ V )}/ ∼f , where ∼f means to identify ∂U

with ∂V by f . Since f is T 2-equivariant we have a natural T 2-action α′ on
this space (which is (n+ 1)CP2).

The T 2-equivariance implies that either of the following holds:

f (s1) = t1, f (sk) = t3

or
f (s1) = t3, f (sk) = t1.

We only consider the former case because the latter can be treated in the same
way. LetA+1 ⊆ A1 (resp.B+1 ⊆ B1) be the hemisphere which satisfies p �∈ A+1
and ∂A+1 = s1 (resp. q �∈ B+1 and ∂B+1 = t1), and A−1 ⊆ A1 (resp. B−1 ⊆ B1)
be the hemisphere which satisfies p ∈ A−1 and ∂A−1 = s1 (resp. q ∈ B−1 and
∂B−1 = t1). In a similar way, let A+k ⊆ Ak (resp. B+3 ⊆ B3) be the hemisphere
which satisfies p ∈ A+k and ∂A+k = sk (resp. q ∈ B+3 and ∂B+3 = t3),
and A−k ⊆ Ak (resp. B−3 ⊆ B3) be the hemisphere which satisfies p �∈ A−k
and ∂A−k = sk (resp. q �∈ B−3 and ∂B−3 = t3). Then we have T 2-invariant
decompositions

A1 = A+1 ∪
s1

A−1 , Ak = A+k ∪
sk
A−k

and
B1 = B+1 ∪

t1
B−1 , B3 = B+3 ∪

t3
B−3 .
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Then the new invariant spheres obtained by these procedures are

A := A+1 ∪ B+1 and A′ := A−k ∪ B−3 .
We have only to show that A2 = a1 + 1 and (A′)2 = ak + 1. We put p′ :=
A1 ∩ A2, p′′ := Ak−1 ∩ Ak and q ′ := B1 ∩ B2, q

′′ := B2 ∩ B3. Let u+ (resp.
u−) be a complex coordinate on A1 \ {p} (resp. A1 \ {p′} ) which satisfies
{u+ = 0} = {p′} (resp. {u− = 0} = {p}). We may assume that u+u− = 1.
In the same manner let v+ (resp. v−) be a complex coordinate on B1 \ {q}
(resp. B1 \ {q ′}) which satisfies {v+ = 0} = {q ′} (resp. {v− = 0} = {q}) and
v+v− = 1. Choose a complex structure on the normal bundleNA1/nCP2 such that
the complex orientation on the total space gives the reverse orientation to the
standard one on nCP2. Then we choose a trivialization of NA1/nCP2 on A1 \ {p}
(resp. A1 \ {p′}) and let ξ+ (resp. ξ−) denote the induced fiber coordinate.
Similarly, choose a complex structure and a trivialization ofNB1/nCP2 onB1\{q}
(resp. B1 \ {q ′}) and let η+ (resp. η−) denotes the induced fiber coordinate.
Then A2

1 = a1 and B2
1 = 1 imply

ξ− = u
a1+ ξ+, η− = v+η+.

On the other hand, since f reverses the orientation and, the tangent spaces of
∂U (resp. ∂V ) are generated by the normal directions of A1 (resp. B1) in nCP2

(resp. CP2) and the tangent spaces of s1 (resp. t1), we may assume that f gives
an identification u− = v−1

− and ξ− = η− on s1 � t1. As a consequence the
relation between ξ+ and η+ is given by

ξ+ = u
−a1+ ξ− = u

a1− ξ− = u
a1−η− = v

−a1− v+η+ = v
a1+1
+ η+.

This implies that the degree of the normal bundle of A in (n+ 1)CP2 is a1+ 1.
In the same way we can show that (A′)2 = ak + 1, as claimed.

1.2. Theory of toric varieties

Let N be a free Z-module of rank r and put NR := N ⊗Z R, TN := N ⊗Z C∗.
A strongly convex rational polyhedral cone in NR is a subset σ ⊆ NR which
can be expressed as σ = ∑s

i=1 R≥0ni for some n1, . . . , ns ∈ N and satisfies
σ ∩ (−σ) = 0. We simply call such σ a cone for short. Put M := HomZ(N, Z)
and let 〈·, ·〉 denotes the dual pairing. For a cone σ in NR, let σ∨ := {x ∈
MR | 〈x, y〉 ≥ 0 for all y ∈ σ } be the dual cone of σ and put Sσ := M ∩ σ∨.
Then by Gordan’s lemma we can write Sσ = Z≥0m1 + · · · + Z≥0mp for some
m1, . . . , mp ∈ Sσ . Further we set

Uσ := {u : Sσ → C | u(0) = 1, u(m+m′) = u(m)u(m′) for anym,m′ ∈ Sσ }.
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Since u ∈ Uσ is determined by (u(m1), . . . , u(mp)) ∈ Cp, and any (linear)
relation

∑p

i=1 aimi = 0 (ai ∈ Z) changes into the relation
∏p

i=1 u(mi)
ai = 1,

we can regard Uσ as an algebraic subset in Cp whose defining equations are
of the form (monomial)=(monomial). In particular for σ = 0, we have U0 =
(C∗)r . Setting (tu)(m) := t (m)u(m) for t ∈ TN , u ∈ Uσ and m ∈ Sσ , we get a
natural TN -action on Uσ . Further, we put σ⊥ := {x ∈ MR | 〈x, y〉 = 0 for all
y ∈ σ } and orb(σ ) := HomZ(M∩σ⊥, C∗). Assigning zero on the complement
of M ∩ σ⊥, we have a natural embedding orb(σ ) ↪→ Uσ . Then orb(σ ) is a
unique closed TN -orbit in Uσ .

A cone τ in NR is said to be a face of σ and write τ ≺ σ if there exists
m0 ∈ σ∨ such that τ = {y ∈ σ | 〈m0, y〉 = 0}. In this case, we can naturally
regard Uτ as a TN -invariant open set in Uσ .

Definition 1.4. Let / := {σ } be a collection of cones in NR. / is called
a fan of N if the following conditions are satisfied:

(i) if σ ∈ / then τ ∈ / for any τ ≺ σ ,

(ii) if σ, τ ∈ / then σ ∩ τ is a face of σ and τ .

Let / be a fan of N . Then by (ii) the set of affine algebraic varieties {Uσ |
σ ∈ /} naturally patch together to obtain a variety X := X/ := ∪σ∈/Uσ on
which TN acts naturally. X/ is called a toric variety associated to /. We note
that any fan contains σ = 0 as a cone so that X/ always contains U0 � (C∗)r
as a Zariski open set. Conversely, it is known that if an algebraic variety X of
dimension r has an algebraic action of the algebraic torus TC := (C∗)r and if
there exists an open orbit which is equivariantly isomorphic to TC, then there
exists a fan / such that X = X/.

There are correspondences between properties of / and X/. For example,
the compactness of X/ is equivalent to the completeness of /; here, / is said
to be complete if |/| = NR, where |/| denotes the support of / in NR. X/

is non-singular if and only if each σ ∈ / is non-singular in the following
sense: there exists a basis {n1, . . . , nr} of N and an integer s ≤ r such that
σ = R≥0n1 + · · · + R≥0ns .

In what follows we only consider the case r = 2. Let / ⊆ NR = R2

be a complete non-singular fan and X/ the associated toric surface which is
compact and non-singular. In this case, X/ can be described by another data
instead of the fan: indeed, first by compactness, / is uniquely determined by
the set of one-dimensional cones (i.e. half lines) {σi = R≥0(mi, ni)}si=1. Here,
we have fixed any basis of N to represent the cones and (mi, ni) is the pair of
coprime integers. Second, the non-singularity implies that |mini+1−mi+1ni | =
1 for any 1 ≤ i ≤ s, where subscripts are counted modulo s. This implies that
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there uniquely exists a set of integers {ai}si=1 such that

(1) (mi−1, ni−1)+ (mi+1, ni+1)+ ai(mi, ni) = 0 for 1 ≤ i ≤ s.

The weighted dual graph ofX/ is defined by (a1, a2, . . . , as): The meaning of
this representation is the same as that of §1.1 except that the weighted points
are arranged in the positive direction. It is easily verified that ai (1 ≤ i ≤ s)

is explicitly given by

(2) ai = −mi−1ni+1 +mi+1ni−1.

Finally, if (a1, a2, . . . , as) is the weighted dual graph of some compact non-
singular toric surface, we can recover a fan as follows: we first choose any
(m1, n1) and (m2, n2) which satisfies m1n2 − m2n1 = 1. Then (m3, n3),

(m4, n4), . . . (ms, ns) are determined inductively by (1) and the fan determined
from {(mi, ni)}ri=1 is equivalent to the original fan under the SL(2, Z)-action.
In consequence of these, it is equivalent for a non-singular toric surface to give
a fan and to give the dual graph.

A geometric meaning of the weighted dual graph of / is similar to that on
§2.1: let Ci (1 ≤ i ≤ s) be the closure of orb(σi) in X/. Ci is a TN -invariant
non-singular rational curve. Then we have C2

i = ai .
In the subsequent sections we need the following two lemmas.

Lemma 1.5. Let (m, n) be a pair of coprime integer and σ = R≥0(m, n) a
one-dimensional cone in R2 and Uσ the corresponding affine toric surface and
orb(σ ) the unique closed TN -orbit in Uσ as above. Then Uσ is isomorphic to
C × C∗ and orb(σ ) is given by {0} × C∗. Moreover the stabilizer subgroup of
orb(σ ) is given by

{(s, t) ∈ C∗ × C∗ | snt−m = 1}.

Lemma 1.6. Let / be a complete and non-singular fan in NR = R2 and
S the compact non-singular toric surface associated to /. Let Hi(−KS)

TN

denote the linear subspace of Hi(−KS) generated by all elements which are
TN -fixed with respect to the natural TN -action on Hi(−KS). Then we have

Hi(−KS)
TN �

{
C, i = 0,

0, i ≥ 1.

Proof. Since S is rational, we have only to prove the claim for i = 0 and
1. Let {τi}si=1 be the set of one-dimensional cones in / and ni ∈ τi ∩N be the
primitive point on τi . Put σi := τi + τi+1 for 1 ≤ i ≤ s, where τs+1 := τ1.
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Then {σi}si=1 is the set of two-dimensional cones in /. Let hi : σi → R be a
function defined by

hi(x) := −x1 − x2,

where x1 and x2 are real numbers which are uniquely determined from x ∈ σi
by the equation x = x1τi + x2τi+1 in NR = R2. Then {hi}si=1 naturally patch
together to give a continuous function h : NR → R. Further we set

W := {n ∈ NR | h(n) ≤ 0}.
Then [13, Theorem 2.6] implies that

Hi(S,−KS)
TN � Hi

W(NR, C),

where the right-hand-side denotes the cohomology group of NR with support
W and with coefficients in C. But since each hi is non-positive on σi , we have
W = NR. Then the cohomology exact sequence

0 → H 0
W(NR, C)→ H 0(NR, C)→ H 0(NR\W, C)

→ H 1
W(NR, C)→ H 1(NR, C) = 0

implies the claim.

1.3. Pedersen-Poon twistor spaces

In this subsection we recall a result of Pedersen and Poon [16] who proved the
existence of twistor spaces over nCP2 on which T 2 acts. Their result relies on
the theory of Donaldson and Friedman [3], which we first review briefly.

Let (M1, g1) and (M2, g2) be compact self-dual manifolds and Z1 and Z2

the associated twistor spaces respectively. Z1 and Z2 are three-dimensional
compact complex manifolds with anti-holomorphic involutions, which we
denote by σ1 and σ2 respectively. These are also called the real structures.
Let πi : Zi → Mi (i = 1, 2) be the twistor fibrations. πi gives Zi a CP1-
bundle structure over Mi , whose fibers are σi-invariant complex submanifolds
of Zi . Let p1 ∈ M1 and p2 ∈ M2 be any points and put Li := π−1

i (pi). Let
µi : Z′i → Zi be the blowing-up along Li , Qi the exceptional divisor and
σ ′i the real structure induced by σi . Since the normal bundle of Li in Zi is
isomorphic to H ⊕H , where H denotes the holomorphic line bundle over Li

whose degree is one, Qi is biholomorphic to CP1× CP1. The normal bundle of
Qi in Z′i is biholomorphic to O(−1, 1), where we set O(0, 1) := µ∗i OLi

(1).
Let ρ : Tp1M1 → Tp2M2 be an orientation reversing isometry. ρ naturally

induces a holomorphic identification between Q1 and Q2, which we also de-
note by ρ. ρ preserves the real structures. Identifying Q1 and Q2 by ρ, we
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set
Z′ := Z′1 ∪

ρ
Z′2,

which can be regarded as a compact complex space that has only simple normal
crossing singularities along Q := Q1 � Q2. Let σ ′ be the real structure of Z′
which is naturally induced by σ ′1 and σ ′2. Then since ρ∗OQ2(0, 1) � OQ1(1, 0),
we have

	1
Z′ � NQ1/Z

′
1
⊗NQ2/Z

′
2
� OQ(−1, 1)⊗ OQ(1,−1) � OQ,

where we put 	1
Z′ := E xt1

OZ′ (8Z′ ,OZ′) (8Z′ is the sheaf of Kähler differential
of Z′; see §4 for the definition) and NQi/Z

′
i

is the normal bundle of Qi in Z′i .
HenceZ′ is d-semi-stable in the sense of Friedman [4]. Then one of the results
of [3] is the following

Proposition 1.7 ([3]). Suppose that H 2(Z1,	Z1) = H 2(Z2,	Z2) = 0.
Then there exist
• non-singular complex space Z with an anti-holomorphic involution σ ,

and
• a proper surjective holomophic map p : Z → /, where / is a disk in C

which is invariant under the complex conjugation σ ,
such (i)–(iv) below are fulfilled:

(i) There exists a biholomorphic map between Z′ and p−1(0) preserving
the real structures,

(ii) p is smooth (i.e. maximal rank) on Z \ p−1(0),
(iii) p · σ = σ · p, and if t is non-zero and real with respect to σ , then

Zt := p−1(t) is a twistor space over M1#M2,
(iv) H 2(Zt ,	Zt

) = 0 for any t ∈ / \ {0}.
As a consequence of this theorem, Donaldson and Friedman proved the

existence of twistor spaces on nCP2 in the following way. First set M1 =
M2 = CP2 with the Fubini-Study metric. The corresponding twistor spaces Zi

(i = 1, 2) are a flag manifold F (cf. Example 2.4), which satisfiesH 2(	F) = 0.
Hence we may apply Proposition 1.7 to obtain a twistor space Z over 2CP2

which satisfies H 2(	Z) = 0. (This is nothing but the twistor space discovered
by Poon [19].) Next set Z1 := Z and Z2 := F and apply Proposition 1.7 again.
Then we get twistor space over 3CP2 and it satisfiesH 2(	) = 0. Repeating this
procedure, they inductively obtain a twistor space over nCP2 for any n ≥ 1.

Next let us explain an equivariant version of this result, which is due to
Pedersen and Poon [16]. Let (M1, g1), (M2, g2), Z1, Z2, π1, π2, σ1 and σ2 be
as above, andG a compact Lie group acting isometrically both on (M1, g1) and
(M2, g2). We assume that there existG-fixed pointsp1 ∈ M1 andp2 ∈ M2 such
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that there exists an orientation reversing isometry ρ : Tp1M1 → Tp2M2 which
is G-equivariant with respect to the isotropic representations. This condition
implies that we can make G-equivariant connected sum of M1 and M2 at pi .
TheG-action onMi naturally gives rise to a holomorphicG-action onZi . Then
since Li = π−1(pi) (i = 1, 2) is G-invariant, Z′i also has a holomorphic G-
action with respect to which Qi is invariant. Further, because ρ : Q1 → Q2

is G-equivariant, the complex space Z′ := Z′1 ∪ρ Z′2 also has a G-action.

Proposition 1.8 ([16]). Suppose that H 2(Z1,	Z1) = H 2(Z2,	Z2) = 0.
Then there exists aG-equivariant deformationZt ofZ′ such thatZt is a twistor
space over M1#M2 which satisfies H 2(Zt ,	Zt

) = 0. In particular, M1#M2

admits a self-dual metric with a G-symmetry.

This result implies that if the above machinery of Donaldson-Friedman can
be applied for Z1 → M1 and Z2 → M2 to prove the existence of twistor space
over M1#M2, then its equivariant version automatically works so long as one
can take equivariant connected sum of M1 and M2.

Let α : T 2 × nCP2 → nCP2 be any effective T 2-action. Then by Propos-
ition 1.2 α is obtained as a succession of T 2-equivariant connected sums of
CP2 with the standard action α1 (see §2.1). Hence by applying Proposition 1.8
n times, we get a twistor space over nCP2 which has a holomorphic T 2-action.
By construction, twistor fibration π : Z→ nCP2 is T 2-equivariant.

Definition 1.9. We call this twistor space a Pedersen-Poon twistor space
associated to α.

2. Reducible members of the pencil |F |T 2

In this section we show (ii) and (iii) of Main Theorem follow from that of (i).
Let α : T 2 × nCP2 → nCP2 be any effective T 2-action and g any self-

dual metric on nCP2, with respect to which α is an isometric action. Let Z
be the twistor space of (M, g) and σ the real structure of Z. (We do not
assume here that Z is a Pedersen-Poon twistor space.) Recall that there exists
a holomorphic line bundle F over Z which is characterized by F ⊗F � −KZ

(cf. Introduction). Let |F |T 2
denote the linear subsystem of |F | associated

to H 0(Z, F )T
2
, where H 0(Z, F )T

2
denotes the linear subspace of H 0(Z, F )

generated by all T 2-fixed sections.
To clarify the reasoning of Main Theorem, we introduce the following

Definition 2.1. Z is said to satisfy Condition (A) ifZ satisfies (i) of Main
Theorem. That is, |F |T 2

is one-dimensional as a linear system and their generic
members are biholomorphic to a non-singular toric surface.

Remark 2.2. Let (nCP2, g), α and Z be as above assume that Z satisfies
Condition (A). Then the type of scalar curvature of the conformal class [g]
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is positive. In fact, Condition (A) implies a(Z) ≥ 1, where a(Z) denotes the
algebraic dimension of Z. Therefore results of Pontecorvo [18, 3.5, 3.3, 4.4]
together with the simply connectedness of nCP2 show the claim. In particular,
we may use the vanishing theorem of Hitchin [6].

Example 2.3. The twistor space of the Euclidean four-sphere S4 is CP3, the
three-dimensional complex projective space. It is convenient to regardS4 as the
quaternionic projective line HP1. Let (q0 : q1) be a homogeneous coordinate
on HP1 and α0 be a T 2-action on HP1 given by

(q0 : q1)
(s,t)�−→ (sq0 : tq1), (s, t) ∈ T 2 = U(1)× U(1).

The fixed locus of α0 is {(1 : 0), (0 : 1)} and the dual graph is given by
(0, 0). We can explicitly see that the twistor space CP3 satisfies Condition (A)
as follows.

Let (z0 : z1 : z2 : z3) be a homogeneous coordinate on CP3. The real
structure σ and the natural lifting of α0 on CP3 is respectively given by

(z0 : z1 : z2 : z3)
σ�−→ (z1 : −z0 : z3 : −z2)

and
(z0 : z1 : z2 : z3)

(s,t)�−→ (sz0 : s−1z1 : tz2 : t−1z3).

Since KCP3 = OCP3(−4), we have F = − 1
2KCP3 = OCP3(2). Hence we get

H 0(Z, F )T
2 = 〈z0z1, z2z3〉.

As a consequence the reducible members of |F |T 2
are {z0z1 = 0} and {z2z3 =

0} and all of the other members are non-singular toric surfaces biholomorphic
to CP1 × CP1. Thus we have checked Condition (A).

The next example will be used to prove Main Theorem.

Example 2.4. The twistor space of CP2 with the Fubini-Study metric is a
flag manifold which is defined by

F := {(x, l) ∈ CP2 × (CP2)∗ | x ∈ l},
where (CP2)∗ denotes the dual projective plane. Let (z0 : z1 : z2) and (w0 :
w1 : w2) be homogeneous coordinates on CP2 and (CP2)∗ respectively so that
F is expressed by an equation

(3) z0w0 + z1w1 + z2w2 = 0.
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The real structure σ and the natural lifting of α1 (cf. §1.1) on F, are respectively
given by

(z0 : z1 : z2)× (w0 : w1 : w2)
σ�−→ (w0 : w1 : w2)× (z0 : z1 : z2)

and

(z0 : z1 : z2)× (w0 : w1 : w2)
(s,t)�−→ (z0 : sz1 : tz2)× (w0 : s−1w1 : t−1w2).

By adjunction formula, we have F = OF(1, 1) (:= OCP2×(CP2)∗(1, 1)|F). It is
easily verified that

H 0(F, F )T
2 = 〈z0w0, z1w1, z2w2〉

and the reducible members are {z0w0 = 0}, {z1w1 = 0} and {z2w2 = 0}. (Note
that the system 〈z0w0, z1w1, z2w2〉 is one-dimensional as a linear system be-
cause the equation (3) holds on F). From these, we can easily see that F together
with α1 satisfies Condition (A). We note thatH 2(F,	F⊗F−1) = 0 as is easily
shown by Akizuki-Nakano vanishing (see the proof of [7, Lemma 4.2]).

We recall the following three results which are needed to study the reducible
members of |F |T 2

.

Proposition 2.5 ([20]). Let Z be any twistor space over nCP2 and D any
divisor onZ which satisfiesD ·L′ = 1, whereL′ is a twistor line onZ. ThenD
is non-singular and obtained from CP2 by blowing-up n points. Further D∩D
coincides with a twistor line L and the intersection is transversal. Moreover,
the first Chern class of the line bundle [D] satisfies

c1([D]) = 1

4
c1(Z)+ 1

2

n∑
i=1

σiπ
∗ξi

for some orthonormal basis {ξ1, . . . , ξn} of H 2(nCP2, Z) and σi equal to 1 or
−1.

Proposition 2.6 ([15]). Let Z be any twistor space over nCP2. For any
real and irreducible member S of |F |, there exists a birational morphism µ :
S → CP1 × CP1 which preserves the real structure. Moreover c2

1(S) = 8− 2n
and the resultant real structure of CP1 × CP1 is given by (anti-podal map) ×
(complex conjugation). Furthermore the blown-up points of µ never lie on
CP1 × (the real circle).

Let S ∈ |F | and µ : S → CP1 × CP1 be as in the above proposition. µ
naturally defines the exceptional curves E1, . . . , En which satisfy Ei · Ej =
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Ei · Ej = −δij and Ei · Ej = 0 for any 1 ≤ i, j ≤ n. Let {ξ1, . . . , ξn} be
the orthonormal basis of H 2(nCP2, Z) which is naturally determined by the
condition

π∗ξi |S = Ei − Ei for 1 ≤ i ≤ n.

(This is possible because π |S : S → nCP2 is a ramified double covering and
the blown-up points of µ do not lie on the ramification locus CP1× (the real
circle) [15]). Put αi := π∗ξi ∈ H 2(Z, Z) (1 ≤ i ≤ n). Let σi (1 ≤ i ≤ n) be
integers which are equal to 1 or −1 and Dσ1···σn the holomorphic line bundle
over Z whose first Chern class is 1

4c1(Z) + 1
2

∑n
i=1 σiαi ∈ H 2(Z, Z). (Here

we have used the vanishing theorem of Hitchin to see that H 2(Z, Z) � PicZ).

Proposition 2.7 ([7]). As elements of H 2(S, Z), we have

Dσ1···σn |S = µ∗O(1, 1)− 1

2

n∑
i=1

(1− σi)Ei − 1

2

n∑
i=1

(1+ σi)Ei.

Let Z be a twistor space over nCP2 which satisfies Condition (A) and S ∈
|F |T 2

a generic member which is an irreducible non-singular toric surface. In
addition we assume that S is real. (Practically it suffices to suppose that S is
real and reducible. See Remark 2.9.) Since c2

1(S) = 8 − 2n, the number of
one-dimensional orbits of the (C∗)2-action is 2n+4. Let {Ci}2n+4

i=1 be the set of
one-dimensional orbit. Then it is well known that C := ∑2n+4

i=1 Ci is the only
(C∗)2-invariant anticanonical curve of S and that by renumbering if necessary
we may assume that

Ci · Cj =
{

1, |i − j | = 1, 2n+ 3,

0, |i − j | ≥ 2.

Since S is real, C is also real. Then Proposition 2.6 implies that Ci �= Ci for
any i, because the blown-up points ofµ, which must lie on the T 2 fixed points,
never lie on the real locus. So we may write C = ∑k

i=1(Ci + Ci), where we
set k := n+ 2. Then we put qi := Ci−1 ∩Ci for 2 ≤ i ≤ k and q1 := Ck ∩C1.
Then {qi, qi | 1 ≤ i ≤ k} is the set of T 2-fixed points of S. Let Li (1 ≤ i ≤ k)

be the twistor line which goes through qi and qi . For each i, 1 ≤ i ≤ k, we
decompose C as follows: C = C(i) + C(i), where C(i) and C(i) are connected
curves satisfying C(i) ∩ C(i) = {qi, qi}.

Proposition 2.8 (See also [5]). Let Z be a twistor space over nCP2 with
T 2-action which satisfies Condition (A) and S, C, Ci , C(i) and Li as above.
Then

(i) the base locus of |F |T 2
coincides with C,
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(ii) the number of reducible members of |F |T 2
is k = n+2, all of which are

of the formDi+Di (1 ≤ i ≤ k), where everyDi (1 ≤ i ≤ k) is an irreducible
non-singular toric surface,

(iii) for each Di in (ii), there exists j , 1 ≤ j ≤ k such that Di ∩ S = C(j)

(and Di ∩ S = C(j)),
(iv) renumbering {Dj } if necessary we assume that Di ∩ S = C(i) for any

1 ≤ i ≤ k. Then Di ∩Di = Li for any 1 ≤ i ≤ k,
(v) any irreducible non-singular member of |F |T 2

does not contain Li for
any 1 ≤ i ≤ k.

In particular Condition (A) implies (ii) and (iii) of Main Theorem.
Proof of Proposition 2.8. (i) Let S ∈ |F |T 2

be as proposition (that is, S
is non-singular and real member). Then since F |S � −KS by adjunction, we
have a T 2-equivariant exact sequence

0 −→ OZ −→ F −→ −KS −→ 0.

By the simply connectedness, we have H 1(Z,OZ) = 0 ([12]). Hence we
obtain T 2-equivariant exact sequence of the cohomology groups:

0 −→ H 0(Z,OZ) −→ H 0(Z, F ) −→ H 0(S,−KS) −→ 0.

Since T 2 is a compact group, the T 2-fixed parts of each term yields the exact
sequence

(4) 0 −→ H 0(Z,OZ)
T 2 −→ H 0(Z, F )T

2 −→ H 0(S,−KS)
T 2 −→ 0.

Lemma 1.6 implies that C is the zero locus of a non-zero element of
H 0(S,−KS) � C. Hence (4) implies that Bs |F |T 2 = Bs | −KS |T 2 = {C}.

(ii),(iii) Let D +D′ be any reducible member of |F |T 2
. First we show that

D = D′. By Proposition 2.5 we have c1([D]) = c1([D′]), where [D] and [D′]
denote the line bundles determined by D and D′ respectively. Hence D′ �= D

implies thatD′ andD are distinct members of the same linear system (because
we have H 2(Z, Z) � PicZ by the exponential sequence and the vanishing
theorem of Hitchin). This implies [20, Theorem 3.1] that Z is a twistor space
of LeBrun (with T 2-action) ([11]). Let @ : Z → Q := CP1 × CP1 ⊆ CP3

be the rational map associated to the system |F |, which is three dimensional.
Then the pencil |F |T 2

is the pull-back of certain pencil in |OQ(1, 1)| and we
can explicitly check that any reducible member of |F |T 2

is real, because we
have an explicit defining equation of these twistor spaces. Thus even in the
LeBrun case, any reducible member of |F |T 2

is real.
Next we show that there do exist k = n+2 reducible members of |F |T 2

and
that they satisfy (iii). We use the argument in the proof of [7, Proposition 1.2].
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For σ1, . . . , σn with all σi equal to 1 or −1, Dσ1···σn denotes the holomorphic
line bundle over Z as before. We consider an exact sequence

(5) 0 −→ Dσ1···σn ⊗ F−1 −→ Dσ1···σn −→ Dσ1···σn |S −→ 0.

Note that this is a T 2-equivariant sequence, since H 2(Z, Z) � PicZ as we
have seen above. Now as shown in the proof of [7, Proposition 1.2], we have
Hi(Dσ1···σn ⊗ F−1) = 0 for any i ≥ 0 and hence (5) in particular induces a
T 2-equivariant isomorphism

(6) H 0(Z,Dσ1···σn) � H 0(S,Dσ1···σn |S).
We now show that for any i, 1 ≤ i ≤ k, there exists a set {σ1, . . . , σn | σi = ±1}
such that C(i) is a member of |Dσ1···σn |S |. We may write

C(i) = µ∗O(α, β)−
n∑
i=1

aiEi −
n∑
i=1

biEi

for some integers α, β, ai and bi . But since C(i) + C(i) = C ∈ | − KS |, we
have

α = β = 1 and ai + bi = 1

for any 1 ≤ i ≤ n. Hence we have

(7) C2
(i) = 2−

n∑
i=1

a2
i −

n∑
i=1

b2
i = 2− n− 2

n∑
i=1

a2
i + 2

n∑
i=1

ai

On the other hand, we have

8−2n = c2
1(S) = C2 = (C(i)+C(i))

2 = C2
(i)+C2

(i)+2C(i) ·C(i) = 2C2
(i)+4.

Therefore we get

(8) C2
(i) = 2− n.

Combining (7) and (8), we get
∑n

i=1 a
2
i =

∑n
i=1 ai . This implies that every ai ,

is equal to 1 or 0. Let I ⊆ {1, 2, . . . , n} (resp. J ⊆ {1, 2, . . . , n} be the subset
such that i ∈ I (resp. i ∈ J ) implies ai = 1 (resp. ai = −1). We set σi = −1
for i ∈ I and σi = 1 for i ∈ J . Then we have

Ci = µ∗O(1, 1)− 1

2

n∑
i=1

(1− σi)Ei − 1

2

n∑
i=1

(1+ σi)Ei.
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Hence by Proposition 2.7, C(i) is a member of |Dσ1···σn |S |. Further by (6) C(i)

uniquely extends to T 2-invariant divisor Di ∈ |Dσ1···σn |. Thus we have seen
that for each i there exist σ1, . . . , σn (= ±1) such that Di ∈ |Dσ1···σn | and it
satisfies Di ∩ S = C(i).

Next we show that any reducible member of |F |T 2
must coincide with one

of the above Di + Di . Any reducible member D + D of |F |T 2
determines a

decomposition C = A+ A, where A = D ∩ S and D = A ∩ S. It suffices to
show that A is connected. Let m ≥ 1 be the number of connected component
of A. Then in the same manner as in (8), we have A2 = 2 − n. Hence we
have (A+A)2 = A2 +A

2 + 2A ·A = 2(2− n)+ 4m. On the other hand we
have (A+ A)2 = 8− 2n. From these, we get m = 1, which implies that A is
connected.

(iv) We may assume that Di ∩ S = C(i). Set L := Di ∩ Di , which is a
twistor line by Proposition 2.5. Since both Di and Di are T 2-invariant, L is
also T 2-invariant. This implies that the point p := π(L) ∈ nCP2 is a T 2-fixed
point. But since qi (and qi) lies on L, we have p = pi . That is L = Li .

(v) LetS ∈ |F |T 2
be a generic non-singular member which is not necessarily

real. Then we also have c2
1(S) = 8−2n, which implies that the number of one-

dimensional orbits of (C∗)2-action is 2k. By (i) S containsC =∑k
i=1(Ci+Ci)

and hence cannot contain Lj which is also (C∗)2-invariant orbit.

Remark 2.9. We can show the following: Let Z be a twistor space over
nCP2 with T 2-action and S ∈ |F | be a real irreducible T 2-invariant member.
Then S is a non-singular toric surface. Proof: Proposition 2.6 directly implies
the non-singularity of such S. Let (C∗)2×S → S be the complexification of the
T 2-action. Then since S being algebraic, the orbit which goes through generic
point of S must (C∗)2 itself. In fact, let s be any point on two-dimensional orbit
of the (C∗)2-action and assume that s has non-trivial stabilizer g ∈ (C∗)2. Since
S → nCP2 is an equivariant and generic orbit of the T 2-action on nCP2 is T 2

itself, we may assume that g �∈ U(1)2. Then {gn | n ∈ Z} becomes an infinete
cyclic group in (C∗)2. But this is a contradiction because the (C∗)2-action is
meromorphic. (Note that the action has a fixed point.) Hence two-dimensional
orbit of the (C∗)2-action must be (C∗)2 itself, and this implies S is a toric
surface.

3. Main construction

In this section we give a construction which is needed to prove that Pedersen-
Poon twistor spaces satisfy Condition (A).

We recall the situation again. Let n be any positive integer and αn be any
effective T 2-action on nCP2. Let g be a self-dual metric on nCP2 and assume
that αn is an isometric action with respect to g. Let Z1 be the twistor space of
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(nCP2, g), π1 : Z1 → nCP2 the twistor fibration and σ1 the real structure of
Z1. αn naturally induces a holomorphic action on Z1 which we also denote by
αn. We assume that Z1 satisfies Condition (A) (see Definition 2.1). Further we
suppose that H 2(Z1,	Z1 ⊗ F−1

1 ) = 0.
On the other hand letα1 be theT 2-action on CP2 defined in §1.1, andZ2 := F

the twistor space of CP2 (cf. Example 2.4). Let π2, σ2 have similar meanings
to π1, σ1.

Any of the fixed points of αn on nCP2 (resp. α1 on CP2) is isolated and
the number of the fixed points is n + 2 (resp. 3) (cf. §1.1). Let p1 ∈ nCP2

and p2 ∈ CP2 be any of fixed points of αn and α1 respectively. Let αn+1 be
the T 2-action on (n+ 1)CP2 obtained as the T 2-equivariant connected sum of
(nCP2, αn) and (CP2, α1) at p1 and p2.

Put Li := π−1(pi) (i = 1, 2) and let µi : Z′i → Zi be the blowing-ups
along Li and Qi (� CP1× CP1) the exceptional divisors. Let ρ : Q1 → Q2 be
a T 2-equivariant biholomorphic map which preserves the real structures and
interchanges the directions of fibers of µ1 and µ2. Identifying Q1 and Q2 by
ρ we get a variety

Z′ := Z′1 ∪ρ Z′2,

which has a natural structure of compact complex space with only normal
crossing singularities along Q := Q1 � Q2. Let σ ′ be the real structure of
Z′ obtained from σ1 and σ2, and α′ the holomorphic T 2-action on Z′ obtained
from αn and α1. Under these setups, we now construct two families P1 and
P2 of Cartier divisors on Z′.

Let Fi = − 1
2KZi

(i = 1, 2) be the line bundles over Zi . Condition (A)

implies that |Fi |T 2
is pencil and its general members are a non-singular toric

surface. Let Ci (i = 1, 2) be the base curve of |Fi |T 2
(see Proposition 2.8 (i)).

By Proposition 2.8 (iv) and (v), there exist unique elements Di +Di ∈ |Fi |T 2

for i = 1, 2 which containLi . Let qi and qi (i = 1, 2) be the intersection ofCi

with Li . Let Si ∈ |Fi |T 2
(i = 1, 2) be any member other than Di +Di . Then

Si intersects Li transversally at qi and qi because Si · Li = 2 and Li �⊆ Si .
(Note that the meanings of subscripts of these Li , Ci and qi are different from
those which used in the previous section.)

Let S ′i (i = 1, 2) be the proper transforms of Si in Z′i . Then µi |S ′i : S ′i → Si

is the blowing-up ofSi atqi andqi . Put li := µ−1
i (qi) (⊆ Qi) and li := µ−1

i (qi)

(⊆ Qi), the exceptional curves. li and li are also T 2-invariant.

On the other hand let D′
i and D

′
i (i = 1, 2) be the proper transforms of

Di and Di respectively. Then since Di and Di intersect transversally along Li

(Proposition 2.5), D′
i and D

′
i are disjoint and they define disjoint two sections

Di := D′
i ∩Qi and Di := D

′
i ∩Qi of µi |Qi

: Qi → Li . It is obvious that Di
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and Di are also T 2-invariant. Since ρ is T 2-equivariant, we may assume that

ρ(l1) = D2, ρ(l1) = D2, ρ(D1) = l2, ρ(D1) = l2.

These indicate that for each S1 ∈ |F1|T 2
other than D1 +D1, the divisor

S ′ := S ′1 ∪ρ (D′
2 !D

′
2) = D′

2 ∪ S ′1 ∪D′
2

is a T 2-invariant connected Cartier divisor on Z′. Interchanging the roles of 1
and 2, we set

S ′′ := (D′
1 !D

′
1) ∪ρ S ′2 = D′

1 ∪ S ′2 ∪D′
1,

which is also T 2-invariant connected Cartier divisor on Z′. We note that these
are σ ′-invariant if we choose σi-invariant Si ∈ |F |T 2

. Next we set

P1 := {S ′1 ∪ (D′
2 !D

′
2) | S1 ∈ |F1|T 2

, S1 �= D1 +D1}
and

P2 := {(D′
1 !D

′
1) ∪ S ′2 | S2 ∈ |F2|T 2

, S2 �= D2 +D2}.
Any element of P1 and P2 is T 2-invariant (Cartier) divisor. We also note that
any element in P1 is d-semi-stable. In fact we have

Nl1/S
′
1
⊗ND2/D

′
2
� (NQ1/Z

′
1
|l1)⊗ (NQ2/Z

′
2
|D2)

� (NQ1/Z
′
1
⊗NQ2/Z

′
2
)|l1(=D2)

� OQ|l1(=D2) � Ol1(=D2)

and Nl1/S
′
1
⊗ N

D2/D
′
2
� Ol1(=D2)

as well. In the same way we see that any
element of P2 is also d-semi-stable.

Remark 3.1. We note that if we choose D1 +D1 for S1 and D2 +D2 for
S2, then these define the same divisor G := D′

1 +D
′
1 +D′

2 +D
′
2 + 2Q. That

is, the parameter spaces of P1 and P2, which are naturally isomorphic to C,
can be compactified by adding the same point and hence P1 ∪G∪P2 can be
regarded as a continuous family.

Technically our key result is the following

Proposition 3.2. Let S1 ∈ |F1|T 2
(resp. S2 ∈ |F2|T 2

) be any non-singular
member and S ′ := S ′1 ∪ (D′

2 !D
′
2) (resp. S ′′ := (D′

1 !D
′
1) ∪ S ′2) the corres-

ponding element of P1 (resp. P2) as above. Then
(i) S ′ and S ′′ are stable (in the sense of Kodaira) under any T 2-equivariant

deformation of Z′,
(ii) Z′ can be T 2-equivariantly deformed into a non-singular threefold Zt ,
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(iii) when Z′ will be deformed into a non-singular Zt T
2-equivariantly,

both S ′ and S ′′ are deformed into T 2-invariant non-singular toric surfaces in
Zt .

Note that in the beginning of this section we have assume that H 2(	Z1 ⊗
F−1

1 ) = 0. Proposition 3.2 will be proved in the next section. (Of course, the
points are (i) and (iii); (ii) has already proved in [16]). Here we use Proposition
3.2 to prove

Proposition 3.3 (= Main Theorem (i)). Let n be any positive integer and
α be any effective T 2-action on nCP2. Let Z be any Pedersen-Poon twistor
space associated to α. Then Z satisfies Condition (A).

Propositions 2.8 and 3.3 imply (i)–(iii) of Main Theorem holds.

Proof of Proposition 3.3. We prove by induction on n. The case n = 1 is
easy; in this case, Pedersen-Poon twistor space is nothing but F in Example 2.4
and we have explicitly checked Condition (A) holds for this space. In addition,
we know that H 2(	F ⊗ F−1) = 0. Let n be any positive integer and fix any
effective T 2-action αn on nCP2. Let Z1 be any Pedersen-Poon twistor space
associated to αn. Suppose that Z1 satisfies Condition (A) and further assume
that H 2(	Z1 ⊗ F−1

1 ) = 0. Take any points p1 ∈ nCP2 and p2 ∈ CP2, which
are fixed by αn and α1 (see §1.1) respectively. Let αn+1 be the effective T 2-
action on (n+ 1)CP2 obtained by T 2-equivariant connected sum of (nCP2, αn)

and (CP2, α1) at p1 and p2. Let Zt be a Pedersen-Poon twistor space over
(n+1)CP2 associated to αn+1. By definitionZt is obtained as a T 2-equivariant
deformation of Z′ = Z′1 ∪ Z′2 as above. Since any Pedersen-Poon twistor
space is obtained in this way it suffices to show that Zt satisfies Condition (A)
together with H 2(	Zt

⊗ F−1
t ) = 0, where Ft = − 1

2KZt
be the line bundle

over Zt .
First we show that |Ft |T 2

is one-dimensional as a linear system. Let S1 ∈
|F1|T 2

be any σ -invariant irreducible member, which is always non-singular
toric surface as noted in Remark 2.9. Let S ′ = S ′1 ∪ (D′

2 !D
′
2) ∈ P1 be the

corresponding element. By (i) of Proposition 3.2, there exists St in Zt which
is a deformation of S ′. By (iii) of Proposition 3.2, St is a T 2-invariant non-
singular toric surface. Since S ′ is supposed to be real, St is also real. On the
other hand we have St · Lt = 2, where Lt denotes any twistor line in Zt . In
fact, if we denote the proper transform of a twistor line which is different from
L1 by L′ (⊆ Z′), then we have S ′ · L′ = 2. Since intersection numbers are
invariant under deformations, we get St · Lt = 2, as claimed.

We now know that St is a real divisor with St · Lt = 2. This implies that
St is a member of |Ft |T 2

. We note that the same argument shows that any
real irreducible member S2 ∈ |F2|T 2

also gives a real non-singular member
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of |Ft |T 2
. Then as showed in the proof of Proposition 2.8 we have an exact

sequence

0 −→ H 0(Zt ,OZt
)T

2 −→ H 0(Zt , Ft )
T 2 −→ H 0(St ,−KSt )

T 2 −→ 0.

As a consequence, we have dimH 0(Zt , Ft )
T 2 = 2, as claimed.

Next we show that general members of the pencil |Ft |T 2
are non-singular

toric surface. Proposition 3.2 (i) implies that P1 and P2 on Z′ induce a one-
dimensional family P of T 2-invariant divisors onZt . By (iii), general element
of P is a non-singular toric surface. As we have shown above at least one
element of this family is a member of |Ft |T 2

. On the other hand we have
PicZt ⊆ H 2(Zt , Z). Consequently this family is contained in |Ft |T 2

, which
implies that generic member of |Ft |T 2

is an element of P .
Finally to work induction we have to show that H 2(	Zt

⊗F−1
t ) = 0, since

Proposition 3.2 requires the assumption H 2(	Z1 ⊗ F−1
1 ) = 0. By [7, Propos-

ition 4.1] we have an isomorphism H 2(	0
Z′(−S ′)) � H 2(	Z1(−S1)) and the

latter is zero by the assumption. Hence we have H 2(	0
Z′(−S ′)) = 0. Then

upper semi-continuity of cohomology groups shows that H 2(	0
Zt
(−St )) = 0,

at least if we shrink a parameter space of deformations sufficiently small.

Remark 3.4. If we choose a reducible element for Si ∈ |Fi |T 2
(i = 1 or 2)

other than Di +Di then the corresponding S ′ ∈ P1 and S ′′ ∈ P2 consist of
four irreducible components. The number of such elements in P1 (resp. P2)
is (n+ 2)− 1 = n+ 1 (resp. 3− 1 = 2). All the other elements in P1 ∪P2

has three irreducible components. Hence there exist (n + 1) + 2 = n + 3
elements in P1 ∪ P2 which are “special” in the sense that the number of
irreducible components is four (Proposition 3.!!), and this number coincides
with the number of the reducible members of |Ft |T 2

. It is conceivable, though
we do not prove, that “special” elements of P1 ∪P2 exactly give reducible
members in |Ft |T 2

. (See also Remark 3.1.)

4. Proof of Proposition 3.2

In this section we prove Proposition 3.2. As in Proposition 3.3, Proposition 3.2
implies that (i)–(iii) of Main Theorem hold true. We continue to use the nota-
tions used in the previous section.

Let Z′ = Z′1 ∪Z′2 be the compact complex space (with only simple normal
crossing singularities along Q) which was constructed from Z1 → nCP2 (with
αn) and Z2 = F → CP2 (with α1). Z′ has the holomorphic T 2-action α′
and there exist two families P1 and P2 whose elements are T 2-invariant
Cartier divisors on Z′. P1 and P2 have constructed from the pencils |F1|T 2

and |F2|T 2
respectively. Let S1 ∈ |F1|T 2

be any non-singular member and
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S ′ := S ′1 ∪ (D′
2 ! D

′
2) be the corresponding element of P1. Similarly, let

S ′′ := (D′
1 ! D

′
1) ∪ S ′2 be the element of P2 for non-singular S2 ∈ |F2|T 2

.
Further, we have supposed that H 2(	Z1 ⊗ F−1

1 ) = 0, from which it follows
that

(9) H 2(Z′,	0
Z′(−S ′)) = 0

as seen in the last paragraph of the proof of Proposition 3.3.
The first half of this section is devoted to prove the following

Proposition 4.1 (= Proposition 3.2 (i)). S ′ and S ′′ are stable under any
T 2-equivariant deformation of Z′.

Although we prove the above result only for S ′ ∈ P1, the same proof works
for S ′′ ∈ P2 by interchanging the roles of 1 and 2.

To prove this, we need to study
• (T 2-equivariant) deformations of Z′,
• (T 2-equivariant) deformations of S ′,
• (T 2-equivariant) deformations of the pair (Z′, S ′), and
• relation between these three deformations.

The following three sheaves are fundamental for these purposes:
• 8Z′ (resp. 8S ′ ): the sheaf of Kähler differentials of Z′ (resp. S ′). If we

embed Z′ into C4 (resp. C3) as a hypersurface {(z1, z2, z3, z4) ∈ C4 | z1z2 = 0}
(resp. {(z1, z2, z3) ∈ C3 | z1z2 = 0}), then 8Z′ (resp. 8S ′ ) is defined as

the cokernel of the natural injection 0 → IZ′/I
2
Z′

d→ 8C4 |Z′ (resp. 0 →
IS ′/I

2
S ′

d→ 8C3 |S ′ ), where IZ′ (resp. IS ′ ) denotes the ideal sheaf of Z′ (resp.
S ′) in C4 (resp. C3).
•8Z′,S ′ = 8Z′(log S ′): the sheaf of Kähler differentials ofZ′ which have at

worst logarithmic poles alongS ′. IfS ′ is defined in C4 as a complete intersection
S ′ = Z′ ∩ H , where H is a hypersurface defined by {z4 = 0}, then 8Z′,S ′

is defined as the cokernel of a natural injection 0 → IZ′/I
2
Z′

d→ 8C4,H |Z′ ,
where8C4,H denotes the sheaf of Kähler differentials of C4 which have at worst
logarithmic poles along H (that is, 8C4,H is the free OC4 -module generated by
{dz1, dz2, dz3, dz4/z4}).
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These three sheaves fit into the following exact and commutative diagrams:

0 0

↓ ↓
0 −−−→ IZ′/I

2
Z′ ##### IZ′/I

2
Z′ −−−→ 0

↓d ↓d ↓
0 −−−→ 8C4 |Z′ −−−→ (8C4,H )|Z′ res−−−−→ OS ′ −−−→ 0

↓ ↓
0 −−−→ 8Z′ −−−→ 8Z′,S ′

res−−−−→ OS ′ −−−→ 0

↓ ↓ ↓
0 0 0

0 0

↓ ↓
0 −−−→ 8Z′ ##### 8Z′ −−−→ 0

↓d ↓d ↓
0 −−−→ 8Z′,S ′ −−−→ 8Z′,S ′(S

′) −−−→ 8S ′(S
′) −−−→ 0

↓res ↓
0 −−−→ OS ′ −−−→ 8Z′ |S ′ ⊗ OS ′(S

′) −−−→ 8S ′(S
′) −−−→ 0

↓ ↓ ↓
0 0 0

(If S ′ were a non-singular hypersurface in a non-singular Z′, then the last row
of the first diagram would be called the Poincaré residue sequence.)

In addition, we use the following notations:
	i

Z′ := E xtiOZ′ (8Z′ ,OZ′), 	
i
S ′ := E xtiOS′ (8S ′ ,OS ′),

	i
Z′,S ′ := E xtiOZ′ (8Z′,S ′ ,OZ′),

T i
Z′ := ExtiZ′(8Z′ ,OZ′), T

i
S ′ := ExtiS ′(8S ′ ,OS ′),

T i
Z′,S ′ := ExtiZ′(8Z′,S ′ ,OZ′).

Deformation theories of compact complex spaces imply that T 1
Z′ (resp. T 1

Z′
and resp. T 1

Z′,S ′ ) is the space of first order deformations of Z′ (resp. S ′ and
resp. the pair (Z′, S ′)) and that T 2

Z′ (resp. T 2
S ′ and resp. T 2

Z′,S ′ ) is the obstruction
space. In particular, if T 2

Z′ = 0 (resp. T 2
S ′ = 0 and resp. T 2

Z′,S ′ = 0), then any
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first order deformation extends to an actual deformation of Z′ (resp. the pair
S ′ and resp. the pair (Z′, S ′)). When a compact Lie group G acts on Z′ (resp.
(Z′, S ′); that is S ′ is a G-invariant subspace of Z′), equivariant deformation
theory [2] implies that if T 2

Z′ = 0 (resp. T 2
S ′ = 0 and resp. T 2

Z′,S ′ = 0), then
(T 1

Z′)
G (resp. (T 1

S ′)
G and resp. (T 1

Z′,S ′)
G) is the space of Kuranishi family of

G-equivariant deformations of Z′ (resp. the pair S ′ and resp. the pair (Z′, S ′)).
To calculate these spaces, we use the local to global spectral sequences:

E
p,q

2 := Hp(Z′,	q

Z′)⇒ T
p+q
Z′ ,

E
p,q

2 := Hp(S ′,	q

S ′)⇒ T
p+q
S ′

and
E
p,q

2 := Hp(Z′,	q

Z′,S ′)⇒ T
p+q
Z′,S ′ .

Before studying deformations of Z′, we study deformations of S ′.

Lemma 4.2. We have H 2(	0
S ′) = T 2

S ′ = 0 and there exists a T 2-equivariant
exact sequence

0 −→ H 1(	0
S ′) −→ T 1

S ′ −→ H 0(	1
S ′) −→ 0.

Proof. SinceS ′1 andD′
2 are rational surfaces, we haveH 2(	S ′1)=H 2(	D′

2
)

= 0. Because the degree of l1 and D2 are (−1) and (+1)-curves of S ′1 and D′
2

respectively, we have Hi(Nl1/S
′
1
) = Hi(ND2/D

′
2
) = 0 for any i ≥ 1. Hence the

cohomology exact sequences of the following two exact sequences:

(10) 0 −→ 	S ′1,l1+l1 −→ 	S ′1 −→ Nl1/S
′
1
⊕Nl1/S

′
1
−→ 0,

(11) 0 −→ 	D′
2,D2 −→ 	D′

2
−→ ND2/D

′
2
−→ 0

together with the reality imply thatH 2(	S ′1,l1+l1)=H 2(	D′
2,D2)=H 2(	

D
′
2,D2

)

= 0. Consequently the cohomology exact sequence of

(13) 0 → 	0
S ′ → ν∗(	S ′1,l1+l1 ⊕	D′

2,D2 ⊕	
D
′
2,D2

) −→ 	l ⊕	l −→ 0

and the Leray spectral sequence show that H 2(	0
S ′) = 0, where we denote

l := l1 � D2 and l := l1 � D2. Next it is easily verified that

	i
S ′ := E xtiOS′ (8S ′ ,OS ′) �

{
Ol ⊕ Ol , i = 1,

0, i ≥ 2.
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Hence the local to global spectral sequence associated to the hypercohomology
groups T i

S ′ := ExtiS ′(8S ′ ,OS ′) induces the long exact sequence

0 −→ H 1(	0
S ′) −→ T 1

S ′ −→ H 0(	1
S ′) −→ H 2(	0

S ′) −→ T 2
S ′ −→ H 1(	1

S ′).

From this, the claims of the lemma follow.

Next we prove

Lemma 4.3. H 1(	0
S ′)

T 2 = 0 and (T 1
S ′)

T 2 � H 0(	1
S ′) � C2.

Proof. SinceD′
2�D2 is a non-singular toric surface andD2 is one of its one-

dimensional orbit of the (C∗)2-action, we see readily that dimH 0(	D′
2,D2)

T 2

= 2 and dimH 0(	D2)
T 2 = 1 and that the restriction map H 0(	D′

2,D2)
T 2 →

H 0(	D2)
T 2

is surjective. Hence the cohomology exact sequence of (12) implies

H 1(	0
S ′)

T 2 � H 1(	S ′1,l1+l1)
T 2 ⊕H 1(	D′

2,D2)
T 2 ⊕H 1(	

D
′
2,D2

)T
2
.

We now show that all the terms of the right-hand-side vanish. The cohomology
exact sequence of (10) induces a T 2-equivariant isomorphismH 1(	S ′1,l1+l1) �
H 1(	S ′1). But since S ′1 is a non-singular toric surface, we haveH 1(	S ′1)

T 2 = 0.

Hence we haveH 1(	S ′1,l1+l1)
T 2 = 0. Next, becauseD′

2 is biholomorphic to the
non-minimal Hirzebruch surface, we can easily show that the mapH 0(	D′

2
)→

H 0(ND2/D
′
2
) is surjective. Hence by (11) we have T 2-equivariant isomorphisms

H 1(	D′
2,D2) � H 1(	D′

2
) and by realityH 1(	

D
′
2,D2

) � H 1(	
D
′
2
). But as in S ′1,

we have H 1(	D′
2
)T

2 = H 1(	
D
′
2
)T

2 = 0. Therefore we have H 1(	0
S ′)

T 2 = 0.

For the latter claim, we note that since 	1
S ′ is naturally identified with

	1
Z′ |S ′(� Ol ⊕ Ol) and the T 2-action on H 0(	1

Z′) � C is trivial, we have
H 0(	1

S ′)
T 2 � H 0(	1

S ′) � C2. Then the first claim and the exact sequence of
Lemma 4.2 give rise to the required isomorphism (T 1

S ′)
T 2 � H 0(	1

S ′) � C2.

Let p : S → B with p−1(0) � S ′ be the Kuranishi family of T 2-
equivariant deformations of S ′. Lemmas 4.2 and 4.3 show that B can be re-
garded as a sufficiently small open disk in (T 1

S ′)
T 2 � C2. Corresponding to the

T 2-equivariant decomposition (T 1
S ′)

T 2
(� H 0(	1

S ′) � (H 0(Ol⊕Ol)) � C⊕C,
there exist two non-singular holomorphic curves B1 and B2 in B which inter-
sect transversally at 0.

Proposition 4.4. Let p : S → B ⊇ B1, B2 be as above. If t �∈ B1 ∪ B2

then p−1(t) is a non-singular toric surface which is biholomorphic to S ′1.

Proof. Assume t �∈ B1∪B2. Then St := p−1(t) is non-singular by a result
of [4]. By upper semi-continuity of cohomology groups and the classification
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of compact complex surfaces, we can easily show that St is a rational surface.
Then an argument used in Remark 2.9 shows that St is a toric surface. On the
other hand, as in the argument in the proof of [7, Proposition 1.3], S ′ admits a
deformation p0 : S0 → C such that p−1

0 (t) � S ′1 for every t �= 0. Since every
T 2-equivariant deformation of toric surface is the trivial deformation (which
follows from the rationality of the cones of the fan/ ⊆ NR (cf. §1.2)), St must
be biholomorphic to S ′1.

Next we recall deformation theory of Z′.

Lemma 4.5 ([3], [4]).

	i
Z′ �

{
OQ, i = 1,

0, i ≥ 2.

Lemma 4.6 ([3], [4]). H 2(	0
Z′) = T 2

Z′ = 0 and we have a T 2-equivariant
exact sequence

0 −→ H 1(	0
Z′) −→ T 1

Z′ −→ H 0(	1
Z′) −→ 0.

Lemma 4.7 ([16]). The natural T 2-action on H 0(	1
Z′) � C is the trivial

action.

Next we study (T 2-equivariant) deformations of the pair (Z′, S ′).
The following result was used in [7] and [8].

Lemma4.8. For any i ≥ 1 we have a canonicalT 2-equivariant isomorphism

	i
Z′ � 	i

Z′,S ′ .

Proof. Since OZ′ and OZ′(−S ′) are locally free OZ′ -modules, we have
T 2-equivariant isomorphisms

(13) E xtiOZ′ (OZ′ ,OZ′) �
{

OZ′ i = 0,

0 i ≥ 1

and

(14) E xtiOZ′ (OZ′(−S ′),OZ′) �
{

OZ′(S
′) i = 0,

0 i ≥ 1.

On the other hand we have

(15) E xt0
OZ′ (OS ′ ,OZ′) � H omOZ′ (OS ′ ,OZ′) = 0.
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Indeed, since S ′ is a Cartier divisor, we may choose a local defining equation
f ∈ OZ′ of S ′. Let ϕ : OS ′ → OZ′ be any homomorphism over OZ′ and g ∈ OS ′

be any element. Then we have f · ϕ(g) = ϕ(fg) = ϕ(0) = 0. This implies
ϕ(g) = 0. Next we consider the obvious T 2-equivariant exact sequence

0 −→ OZ′(−S ′) −→ OZ′ −→ OS ′ −→ 0.

Applying the functor H omOZ′ ( · ,OZ′) to this and using (13), (14) and (15),
we get a T 2-equivariant exact sequence

(16) 0 −→ OZ′ −→ OZ′(S
′) −→ E xt1

OZ′ (OS ′ ,OZ′) −→ 0

and for any i ≥ 2

(17) E xtiOZ′ (OS ′ ,OZ′) = 0.

Moreover, (16) shows that

(18) E xt1
OZ′ (OS ′ ,OZ′) � OS ′(S

′).

Next we consider the “Poincaré residue sequence”

(20) 0 −→ 8Z′ −→ 8Z′,S ′
res−→ OS ′ −→ 0,

which is also T 2-equivariant. Applying the functor H omOZ′ ( · ,OZ′) to this
and using (15), (18) and (17), we obtain a T 2-equivariant exact sequence

(20) 0 −→ 	0
Z′,S ′ −→ 	0

Z′
α−→ OS ′(S

′) −→ 	1
Z′,S ′ −→ 	1

Z′ −→ 0

and T 2-equivariant isomorphisms 	i
Z′,S ′ � 	i

Z′ for any i ≥ 2. Hence to
complete a proof, it suffices to show that α is surjective. To see this, we choose
a complex coordinate (z1, z2, z3, z4) on C4 such that

Z′ = {z1z2 = 0} and S ′ = {z1z2 = z4 = 0}
as before. Then 	0

Z′ is generated by {z1∂1, z2∂2, ∂3, and ∂4}, and 	0
Z′,S ′ is

generated by {z1∂1, z2∂2, ∂3, and z4∂4}, where we set ∂i := ∂/∂zi . These imply
that the cokernel of the natural injection 	0

Z′,S ′ → 	0
Z′ is OS ′∂/∂z4, which is

naturally isomorphic to OS ′(S
′). Therefore α is surjective and we get from (20)

the required isomorphism 	1
Z′,S ′ � 	1

Z′ .

Lemma 4.9. H 2(	0
Z′,S ′) = T 2

Z′,S ′ = 0 and we have a T 2-equivariant exact
sequence

0 −→ H 1(	0
Z′,S ′) −→ T 1

Z′,S ′ −→ H 0(	1
Z′,S ′) −→ 0.
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Proof. Lemmas 4.8 and 4.5 imply 	i
Z′,S ′ = 0 for any i ≥ 2. Therefore

local to global spectral sequence yields a T 2-equivariant exact sequence

0 → H 1(	0
Z′,S ′)→ T 1

Z′,S ′ → H 0(	1
Z′,S ′)

→ H 2(	0
Z′,S ′)→ T 2

Z′,S ′ → H 1(	1
Z′,S ′).

Now we have H 2(	0
Z′(−S ′)) = 0 (see (9)) and by Lemma 4.2 H 2(	0

S ′) = 0.
Then the exact sequence

(21) 0 −→ 	0
Z′(−S ′) −→ 	0

Z′,S ′ −→ 	0
S ′ −→ 0

shows that H 2(	0
Z′,S ′) = 0 and the above long exact sequence implies the

required sequence.

Having proved the unobstructedness of deformations of Z′ and the pair
(Z′, S ′), we study T 2-equivariant deformations of Z′.

Lemma 4.10. There exists a T 2-equivariant, commutative and exact dia-
gram:

0 0 0 0

↓ ↓ ↓ ↓
H 0(OS ′(S

′)) −→ H 1(	0
Z′,S ′) −→ H 1(	0

Z′) −→ H 1(OS ′(S
′)) −→ 0

↓ ↓ ↓ ↓
Ext1

Z′(OS ′ ,OZ′) −→ T 1
Z′,S ′

f−−→ T 1
Z′ −→ Ext2

Z′(OS ′ ,OZ′) −→ 0

↓ ↓ ↓β ↓
0 −→ H 0(OQ) ## H 0(OQ) −→ 0

↓ ↓
0 0

Proof. In the course of the proof of Lemma 4.8 we have proved that there
exists a T 2-equivariant exact sequence (see (20))

0 −→ 	0
Z′,S ′ −→ 	0

Z′ −→ OS ′(S
′) −→ 0.

The first row is the cohomology exact sequence of this with the aid of Lemma
4.9. The second row is obtained by applying the functor Hom( · ,OZ′) to (19)
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and using Lemma 4.9. The first and fourth columns are consequences of (18),
(17), (15) and the spectral sequence

E
p,q

2 := Hp(Z′, E xtqOZ′ (OS ′ ,OZ′))⇒ Extp+qZ′ (OS ′ ,OZ′).

The second and third columns are nothing but Lemmas 4.9 and 4.6 respectively.
Finally, T 2-equivariance of the diagram follows from T 2-invariance of the
divisor S ′, and the commutativity follow from naturality.

In view of the above diagram our next aim is to calculate H 1(OS ′(S
′))T 2

.

Lemma 4.11. Hi(Z′,OZ′) = 0 for any i ≥ 1.

Proof. Simply connectedness implies H 1(Z,OZ) = 0 for any twistor
spaceZ overnCP2 [12]. On the other hand by Serre duality we have for j = 1, 2

(22) dimHi(Zj ,OZj ) = dimH 3−i (Zj ,KZj ) for 0 ≤ i ≤ 3.

Now by Remark 2.2 we may use vanishing theorem of Hitchin to getH 1(Zj,KZj)

= 0 for j = 1, 2. Further since KZj has degree (−4) on each twistor line, we
have H 0(Zj ,KZj ) = 0. So by (22) we obtain for j = 1, 2

Hi(Zj ,OZj ) = 0 for i ≥ 1,

which imply (by using Leray spectral sequence)

(23) H i(Z′j ,OZ′j ) = 0 for i ≥ 1.

Let

(24) 0 −→ OZ′ −→ ν∗(OZ′1 ⊕ OZ′2) −→ OQ −→ 0

be the normalization sequence of Z′. By Leray spectral sequence, we have

Hi(Z′, ν∗(OZ′1 ⊕ OZ′2)) � Hi(Z′1,OZ′1)⊕Hi(Z′2,OZ′2)

for any i ≥ 0. The claim of the lemma follows from this and (23) and the
cohomology exact sequence of (24).

Lemma 4.12. There exists a T 2-equivariant isomorphism

H 1(S ′,OS ′(S
′)) � H 1(Z′,OZ′(S

′)).

Proof. We have a standard exact sequence

0 −→ OZ′ −→ OZ′(S
′) −→ OS ′(S

′)→ 0,
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which is T 2-equivariant. The associated cohomology sequence and Lemma
4.11 imply the claim.

Lemma 4.13. LetZ be a twistor space over nCP2 with a T 2-action satisfying
Condition (A) and F be the holomorphic line bundle satisfying F⊗2 � −KZ .
Then we have H 1(Z, F )T

2 = 0.

Proof. Let S ∈ |F |T 2
be any real irreducible member. Then S is non-

singular toric surface (Remark 2.9) and we have a T 2-equivariant exact se-
quence

0 −→ OZ −→ F −→ −KS −→ 0.

As mentioned in the proof of Lemma 4.11, we have H 1(OZ) = H 2(OZ) =
0. So we get a T 2-equivariant isomorphism H 1(Z, F ) � H 1(S,−KS). By
Lemma 1.6 we have H 1(S,−KS)

T 2 = 0. Hence we get H 1(Z, F )T
2 = 0, as

desired.

Proof of Proposition 4.1. It suffices to prove that the T 2-fixed part of
the forgetting map f : T 1

Z′,S ′ → T 1
Z′ is surjective. By Lemmas 4.10 and 4.12

this is equivalent to H 1(OZ′(S
′))T 2 = 0, which we now prove.

Recalling thatS ′ = S ′1∪(D′
2!D′

2), we have aT 2-equivariant exact sequence

(25) 0 → OZ′(S
′)→ ν∗(OZ′1(S

′
1)⊕ OZ′2(D

′
2 +D

′
2))→ OQ(l + l)→ 0,

where we set l := S ′1 ∩D′
2 and l := S ′1 ∩D′

2. By Leray spectral sequence, we
obtain

Hi(ν∗(OZ′1(S
′
1)⊕ OZ′2(D

′
2 +D

′
2))) � Hi(OZ′1(S

′
1))⊕Hi(OZ′2(D

′
2 +D

′
2))

for any i ≥ 0. On the other hand since T 2 acts each factor of Q � CP1 × CP1

non-trivially, we have H 0(OQ(l + l))T
2 � C. Hence the restriction map

H 0(OZ′2(D
′
2 +D

′
2))

T 2 −→ H 0(OQ(l + l))T
2

is surjective (because a section of OZ′2(D
′
2 + D

′
2) which defines the divisor

D′
2 +D

′
2 does not contain Q). Then because the map

(26) H 0(OZ′1(S
′
1))⊕H 0(OZ′2(D

′
2 +D

′
2))→ H 0(OQ(l + l))

is of the form (a, b) �→ a|Q− b|Q, it follows that the T 2-fixed part of the map
(26) is surjective. Therefore by (25) to prove H 1(OZ′(S

′))T 2 = 0 it suffices to
show that

H 1(Z′1,OZ′1(S
′
1))

T 2 = H 1(Z′2,OZ′2(D
′
2 +D

′
2))

T 2 = 0.
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Since S ′1 is a member of |σ ∗1 F1|T 2
, we have by Leray spectral sequence a

T 2-equivariant isomorphism

H 1(Z′1,OZ′1(S
′
1)) � H 1(Z1, F1).

Hence by Lemma 4.13, we get H 1(OZ′1(S
′
1))

T 2 = 0. Next since D′
2 + D

′
2 is

the proper transform of D2 +D2, we have

OZ′2(D
′
2 +D

′
2) � σ ∗2 F2 ⊗ OZ′2(−2Q2).

Then Leray spectral sequence shows

(27) H 1(Z′2,OZ′2(D
′
2 +D

′
2)) � H 1(Z2, F2 ⊗I 2

L2
)

where IL2 denotes the ideal sheaf of L2 in Z2. We note that this is also a
T 2-equivariant isomorphism. Next we consider the following exact sequences

(28) 0 −→ F2 ⊗I 2
L2
−→ F2 ⊗IL2 −→ F2 ⊗N∗

L2/Z2
−→ 0,

and

(29) 0 −→ F2 ⊗IL2 −→ F2 −→ F2|L2 −→ 0,

both of which are T 2-equivariant. Now we show that H 0(F2⊗N∗
L2/Z2

)T
2 = 0.

Since D2 + D2 is a member of of |F2|T 2
and D2 ∩ D2 = L2 (transversally),

we have T 2-equivariant isomorphisms

(30)
F2|L2 � (OZ2(D2 +D2))|L2 � (OZ2(D2))|L2 ⊗ (OZ2(D2))|L2

� (OD2
(D2))|L2 ⊗ (OD2(D2))|L2 � NL2/D2 ⊗NL2/D2

.

Therefore we get T 2-equivariant isomorphisms

F2 ⊗N∗
L2/Z2

� (NL2/D2 ⊗NL2/D2
)⊗ (N∗

L2/D2
⊕N∗

L2/D2
)

� NL2/D2 ⊕NL2/D2
.

The T 2-action on H 0(NL2/D2 ⊕NL2/D2
) can be explicitly calculated to be

(z1, z2, w1, w2)
(s,t)�−→ (stz1, s

−1tz2, s
−1t−1w1, st

−1w2)

for a coordinate (z1, z2, w1, w2) on H 0(NL2/D2)⊕H 0(NL2/D2
) � C2⊕C2 and

(s, t) ∈ T 2 = U(1)×U(1). In particular, we have H 0(NL2/D2 ⊕NL2/D2
)T

2 =
0. Therefore we get H 0(F2 ⊗ N∗

L2/Z2
)T

2 = 0. On the other hand, since
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F2 ⊗ N∗
L2/Z2

� OL2(1)
⊕2, we have H 1(F2 ⊗ N∗

L2/Z2
) = 0. Therefore, by

the cohomology exact sequence of (28), we obtain

(31) H 1(F2 ⊗I 2
L2
)T

2 � H 1(F2 ⊗IL2)
T 2
.

Next we show that the restriction mapH 0(F2)
T 2 → H 0(F2|L2)

T 2
is surject-

ive. Using (30), we can explicitly calculate the T 2-action on H 0(F2|L2) � C3

to be
(u1, u2, u3)

(s,t)�−→ (s2u1, u2, s
−2u3)

for a coordinate (u1, u2, u3) on C3 and (s, t) ∈ T 2 = U(1) × U(1). Thus we
have H 0(F2|L2)

T 2 � C and is generated by a section whose zero locus is the
fixed point set of the T 2-action on L2. On the other hand since any member of
the pencil |F2|T 2

other than D′
2 +D

′
2 does not contain L2 by Proposition 2.8

(v), the image of the map H 0(F2)
T 2 → H 0(F2|L2)

T 2
is not zero. This implies

the surjectivity. Therefore the cohomology exact sequence of (29) together
with Lemma 4.13 shows that H 1(F2 ⊗ IL2)

T 2 � H 1(F2)
T 2 = 0. Hence by

(27) and (32), we get H 1(	Z′2(D
′
2 + D

′
2))

T 2 = 0. Consequently we have

H 1(Z′,OZ′(S
′))T 2 = 0 and the claim of the proposition follows.

Our next task is to study relation of deformations of the pair (Z′, S ′) and
those of S ′. The following T 2-equivariant exact sequence is the key:

(32) 0 −→ 8Z′,S ′ −→ 8Z′(S
′) −→ 8S ′(S

′) −→ 0.

Here we set 8Z′(S
′) := 8Z′ ⊗OZ′ OZ′(S

′) and 8S ′(S
′) := 8S ′ ⊗OS′ OS ′(S

′).
Applying the functor H omOZ′ ( · ,OZ′) to (31) and using Lemmas 4.5 and 4.8,
we get the long exact sequence

(33) 0 −→ 	0
Z′(−S ′) −→ 	0

Z′,S ′ −→ E xt1
OZ′ (8S ′(S

′),OZ′)

−→ 	1
Z′(−S ′) −→ 	1

Z′,S ′ −→ E xt2
OZ′ (8S ′(S

′),OZ′) −→ 	2
Z′(−S ′) = 0

and

(34) E xtiOZ′ (8S ′(S
′),OZ′) = 0

for any i ≥ 3. Here we have used the invertibility of OZ′(S
′) to obtain

E xt
q

OZ′ (8Z′(S
′),OZ′) � 	

q

Z′(−S ′).
On the other hand, we have 	1

Z′,S ′ � 	1
Z′ by Lemma 4.8. Therefore the map

	1
Z′(−S ′)→ 	1

Z′,S ′ in (33) is injective and (33) reduces to the following two
short exact sequences:

(35) 0 −→ 	0
Z′(−S ′) −→ 	0

Z′,S ′ −→ E xt1
OZ′ (8S ′(S

′),OZ′) −→ 0,
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(36) 0 −→ 	1
Z′(−S ′) −→ 	1

Z′,S ′ −→ E xt2
OZ′ (8S ′(S

′),OZ′) −→ 0.

By naturality, these imply there exist T 2-equivariant isomorphisms

(37) E xt1
OZ′ (8S ′(S

′),OZ′) � 	0
S ′ ,

(38) E xt2
OZ′ (8S ′(S

′),OZ′) � 	1
Z′ |S ′ (� Ol ⊕ Ol).

Lemma 4.14. There exists a T 2-equivariant, commutative and exact dia-
gram:

0 0 0

↓ ↓ ↓
H 1(	0

Z′,S ′) −−−→ H 1(	0
S ′) −−−→ H 2(	0

Z′(−S ′)) −−−→ 0

↓ ↓ ↓
T 1
Z′,S ′

g−−−−→ T 1
S ′ −−−→ Ext2(8Z′(S

′),OZ′) −−−→ 0

↓ ↓γ ↓
H 0(OQ) −−−→ H 0(Ol ⊕ Ol) −−−→ H 1(OQ(−l − l)) −−−→ 0

↓ ↓ ↓
0 0 0

Proof. The first row is induced by (21) (or (35)), with the aid of Lemma 4.9.
The third row is the cohomology sequence of (36). The third column is obtained
by local to global spectral sequence for ExtiZ′(8Z′(S

′),OZ′). The first and the
second columns were already proved in Lemmas 4.9 and 4.2 respectively.

By (34), (37) and (38) local to global spectral sequence associated to the
hypercohomology groups ExtiZ′(8S ′(S

′),OZ′) induces a T 2-equivariant exact
sequence

0 −→ H 1(	0
S ′) −→ Ext2

Z′(8S ′(S
′),OZ′)

−→ H 0(Ol ⊕ Ol) −→ H 2(	0
S ′) = 0.

Here, we have used Lemma 4.2. The T 2-action determines a splitting of this
sequence. On the other hand, the exact sequence in Lemma 4.2 also has a
splitting arising from the T 2-action. That is, T 1

S ′ � H 1(	0
S ′) ⊕ H 0(	1

S ′).
These induce T 2-equivariant isomorphism Ext2

Z′(8S ′(S
′),OZ′) � T 1

S ′ . Then
the second row is obtained by applying the functor HomZ′( · ,OZ′) to (32) and
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using Lemma 4.9. Finally, T 2-equivariance of the diagram follows from T 2-
invariance of the divisor S ′, and the commutativity follow from the naturality.

Remark 4.15. As proved in Proposition 3.3 we have H 2(	0
Z′(−S ′)) = 0.

Hence the third column of the above diagram implies

Ext2
Z′(8Z′(S

′),OZ′) � H 1(OQ(−l − l)) � C.

In particular, g : T 1
Z′,S ′ → T 1

S ′ is not surjective. (See also [7, Remark 2.D].)

Proposition 4.16 (= Proposition 3.2 (ii), (iii)). Let Z′, S ′ be as in Pro-
position 4.1. Then Z′ can be T 2-equivariantly deformed into a non-singular
threefold. In such a case, S ′ is also deformed into a non-singular toric surface
which is biholomorphic to S ′1.

Proof. Let η ∈ H 0(	1
Z′) � C be any non-zero element. Then by Lemmas

4.6 and 4.7 there exists ξ ∈ (T 1
Z′)

T 2
such that β(ξ) = η. Moreover because we

have shown in the proof of Proposition 4.1 the surjectivity of f : T 1
Z′,S ′ → T 1

Z′

(in the diagram of Lemma 4.10), there exists ξ̂ ∈ (T 1
Z′,S ′)

T 2
such that f (ξ̂ ) = ξ .

Let / ⊆ C be a small disk around zero and {p : Z → /, q : S →
/, S ↪→ Z } be a T 2-equivariant deformation of the pair (Z′, S ′) whose
Kodaira-Spencer class is ξ̂ . Then the assumption on η and a commutativity of
the diagram in Lemma 4.10 imply Zt := p−1(t) is non-singular for t �= 0.
Furthermore, a commutativity of the diagram in Lemma 4.14 implies that both
of the two factors of γ (g(ξ̂ )) ∈ H 0(Ol ⊕ Ol) are non-zero. This implies that
g(ξ̂ ) ∈ (T 1

S ′)
T 2

is not tangent to B1 nor B2 in Proposition 4.4 and hence the
fiber St := q−1(t) is non-singular toric surface biholomorphic to S ′1. Hence all
of the claims of the proposition are verified.

5. Relation between the orbit data

In this section we determine relation between the weighted dual graphs of
T 2-actions on nCP2 (cf. §1.1) and those of toric surfaces (cf. §1.2) in |F |T 2

of
Pedersen-Poon twistor spaces. This in particular implies (iv) of Main Theorem
in Introduction.

Let α : T 2× nCP2 → nCP2 be any effective T 2-action and (a1, a2, . . . , ak)

with k := n+ 2 be the dual graph of α. Let Ai (1 ≤ i ≤ k) be the set of T 2-
invariant spheres which satisfy A2

i = ai (hence {Ai} is arranged in the cyclic
order), and pi = Ai−1 ∩ Ai, 1 ≤ i ≤ k, the T 2-fixed points, where subscripts
are counted modulo k. Let Z be a Pedersen-Poon twistor space associated to
α. Let {Di +Di | 1 ≤ i ≤ k} be the set of reducible members of |F |T 2

, where
Di (andDi) is a non-singular toric surface (see (i)–(iii) of Main Theorem). We
assume that {Di} is arranged as in Proposition 2.8 (iv); that is,Di∩Di = Li for
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any 1 ≤ i ≤ k, where Li is the twistor line over pi . Let S ∈ |F |T 2
be a generic

member, which is also a non-singular toric surface. Let C = ∑k
i=1(Ci + Ci)

be the base locus of the pencil |F |T 2
, where we assume Ci are arranged so as

to satisfy Ci−1 ∩ Ci ⊆ Li for any 1 ≤ i ≤ k.
Main result of this section is the following

Proposition 5.1 (See also [5]). Let (b1, b2, . . . , b2k) and (c1, c2, . . . , ck+1)

be the dual graphs of S and Di (1 ≤ i ≤ k) respectively. Then we have

bj =
{−aj , 1 ≤ j ≤ k,

−aj−k, k + 1 ≤ j ≤ 2k
and cj =




1, j = i,

−aj + 1, j = i ± 1,

−aj , otherwise.

Proof. First we show the statement for S. In this proof we use the following
conventions: subscripts attached to r , s, m′′ and n′′ are counted modulo 2k and
subscripts attached to m, n and a are counted modulo k. Let / be a fan to
which S corresponds and {τi = R≥0(ri, si) | 1 ≤ i ≤ 2k} be the set of one-
dimensional cones of /. {(rj , sj )} satisfy risj+1 − rj+1si = 1 for 1 ≤ j ≤ 2k.
Then what we have to prove is, by (2) (in §1.2), that there exists an integer l
such that

(39) −rj−1sj+1 + rj+1sj−1 = −a−j+l
holds for every 1 ≤ j ≤ 2k. (Recall that the direction of points on the graphs
of α and S are reverse to each other.)

It is obvious that π |C induces an unramified double covering map

C =
k∑

j=1

(Cj + Cj) −→ A := ∪kj=1Aj

with π(Cj ) = π(Cj ) = Aj . Of course this is a T 2-equivariant map and
therefore the stabilizer of Cj and Cj are the same as that of Aj . Let {(mj , nj ) |
1 ≤ j ≤ k} be the stabilizer data which is obtained from (aj ) by using the
procedure explained in §2.1 ((aj ) �−→ {(mj , nj )}). They satisfy

aj = −
∣∣∣∣mj−1 mj

nj−1 nj

∣∣∣∣
∣∣∣∣mj mj+1

nj nj+1

∣∣∣∣
∣∣∣∣mj−1 mj+1

nj−1 nj+1

∣∣∣∣

=


−mj−1nj+1 +mj+1nj−1, 2 ≤ j ≤ k − 1,

mkn2 −m2nk, j = 1,

mk−1n1 −m1nk−1, j = k.
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In order for these stabilizer data to fit in the setting of toric surface geometry
explained in §2.2, first we set

(
m′j
n′j

)
:=

(
mj

nj

)
and

(
m′k+j
n′k+j

)
:=

(−mj

−nj
)

for 1 ≤ j ≤ k. Further (to reverse the direction of the rotation of numbering)
we set (

m′′j
n′′j

)
:=

(
m′k−j+1
n′k−j+1

)
and

(
m′′k+j
n′′k+j

)
:=

(
m′2k−j+1
n′2k−j+1

)

for 1 ≤ j ≤ k. Then it is readily checked that these new data satisfy∣∣∣∣m′′j m′′j+1
n′′j n′′j+1

∣∣∣∣ = 1

for 1 ≤ j ≤ 2k, where we have m′′2k+1 = m′′1 and n′′2k+1 = n′′1 by the conven-
tions. Then by Lemma 1.5 we have

(
rj
sj

)
=

(−n′′j
m′′j

)

for any 1 ≤ j ≤ 2k. Hence we have

−rj−1sj+1 + rj+1sj−1

= n′′j−1m
′′
j+1 − n′′j+1m

′′
j−1

=
{
n′k−j+2m

′
k−j − n′k−jm

′
k−j+2, 2 ≤ j ≤ k − 1,

n′3k−j+2m
′
3k−j − n′3k−jm

′
3k−j+2, k + 2 ≤ j ≤ 2k − 1,

=
{
nk−j+2mk−j − nk−jmk−j+2, 2 ≤ j ≤ k − 1,

n2k−j+2m2k−j − n2k−jm2k−j+2, k + 2 ≤ j ≤ 2k − 1,

=
{−ak−j+1, 2 ≤ j ≤ k − 1,

−a2k−j+1, k + 2 ≤ j ≤ 2k − 1.

On the other hand, if we take j = 1,

−r2ks2 + r2s2k = n′′2km
′′
2 − n′′2m

′′
2k = n′k+1m

′
k−1 − n′k−1m

′
k+1

= −n1mk−1 + nk−1m1 = −ak.



212 nobuhiro honda

If we take j = k we have

−rk−1sk+1 + rk+1sk−1 = n′′k−1m
′′
k+1 − n′′k+1m

′′
k−1 = n′2m

′
2k − n′2km

′
2

= −n2mk + nkm2 = −a1.

In a similar way, we have

−rksk+2 + rk+2sk = −ak, (j = k + 1),

and
−r2k−1s1 + r1s2k−1 = −a1, (j = 2k).

Therefore if we set l := k + 1 (≡ 1), then (39) holds. Thus the claim for S is
proved.

The claim forDi is easier if we notice thatDi is obtained as a T 2-equivariant

connected sum of (nCP2, α) and (CP
2
, α1) at pi (here CP

2
denotes the complex

projective plane with the complex orientation reversed): We can use the same
argument used in the proof of Proposition 1.3. So we omit it.
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