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SEQUENCES FOR COMPLEXES II

LARS WINTHER CHRISTENSEN

1. Introduction and Notation

This short paper elaborates on an example given in [4] to illustrate an applic-
ation of sequences for complexes:

Let R be a local ring with a dualizing complex D, and let M be a finitely
generated R-module; then a sequence x1, . . . , xn is part of a system of
parameters for M if and only if it is a RHomR(M, D)-sequence [4, 5.10].

The final Theorem 3.9 of this paper generalizes the result above in two
directions: the dualizing complex is replaced by a Cohen-Macaulay semi-
dualizing complex (see [3, Sec. 2] or 3.8 below for definitions), and the finite
module is replaced by a complex with finite homology.

Before we can even state, let alone prove, this generalization of [4, 5.10]
we have to introduce and study parameters for complexes. For a finite R-
module M every M-sequence is part of a system of parameters for M , so,
loosely speaking, regular elements are just special parameters. For a complex
X, however, parameters and regular elements are two different things, and
kinship between them implies strong relations between two measures of the
size of X: the amplitude and the Cohen-Macaulay defect (both defined below).
This is described in 3.5, 3.6, and 3.7.

The definition of parameters for complexes is based on a notion of anchor
prime ideals. These do for complexes what minimal prime ideals do for mod-
ules, and the quantitative relations between dimension and depth under dagger
duality—studied in [3]—have a qualitative description in terms of anchor and
associated prime ideals.

Throughout R denotes a commutative, Noetherian local ring with maximal
ideal � and residue field k = R/�. We use the same notation as in [4], but for
convenience we recall a few basic facts.

The homological position and size of a complex X is captured by the su-
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premum, infimum, and amplitude:

sup X = sup{ 
 ∈ Z | H
(X) �= 0 },
inf X = inf{ 
 ∈ Z | H
(X) �= 0 }, and

amp X = sup X − inf X.

By convention, sup X = −∞ and inf X = ∞ if H(X) = 0.
The support of a complex X is the set

SuppR X = { � ∈ Spec R | X� �	 0 } =
⋃




SuppR H
(X).

As usual MinR X is the subset of minimal elements in the support.
The depth and the (Krull) dimension of an R-complex X are defined as

follows:

depthR X = − sup(RHomR(k, X)), for X ∈ D−(R), and

dimR X = sup{ dim R/� − inf X� | � ∈ SuppR X },
cf. [6, Sec. 3]. For modules these notions agree with the usual ones. It follows
from the definition that

(1.1) dimR X ≥ dimR�
X� + dim R/�

for X ∈ D(R) and � ∈ Spec R; and there are always inequalities:

− inf X ≤ dimR X for X ∈ D+(R); and(1.2)

− sup X ≤ depthR X for X ∈ D−(R).(1.3)

A complex X ∈ D f
b(R) is Cohen-Macaulay if and only if dimR X =

depthR X, that is, if an only if the Cohen-Macaulay defect,

cmdR X = dimR X − depthR X,

is zero. For complexes in D f
b(R) the Cohen-Macaulay defect is always non-

negative, cf. [6, Cor. 3.9].

2. Anchor Prime Ideals

In [4] we introduced associated prime ideals for complexes. The analysis of
the support of a complex is continued in this section, and the aim is now to
identify the prime ideals that do for complexes what the minimal ones do for
modules.
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Definitions 2.1. Let X ∈ D+(R); we say that � ∈ Spec R is an anchor
prime ideal for X if and only if dimR�

X� = − inf X� > −∞. The set of
anchor prime ideals for X is denoted by AncR X; that is,

AncR X = { � ∈ SuppR X | dimR�
X� + inf X� = 0 }.

For n ∈ N0 we set

Wn(X) = { � ∈ SuppR X | dimR X − dim R/� + inf X� ≤ n }.

Observation 2.2. Let S be a multiplicative system in R, and let � ∈
Spec R. If � ∩ S = ∅ then S−1� is a prime ideal in S−1R, and for X ∈
D(R) there is an isomorphism S−1XS−1� 	 X� in D(R�). In particular,
inf S−1XS−1� = inf X� and dimS−1RS−1�

S−1XS−1� = dimR�
X�. Thus, the next

biconditional holds for X ∈ D+(R) and � ∈ Spec R with � ∩ S = ∅.

(2.1) � ∈ AncR X ⇐⇒ S−1� ∈ AncS−1R S−1X.

Theorem 2.3. For X ∈ D+(R) there are inclusions:

MinR X ⊆ AncR X; and(a)

W0(X) ⊆ AncR X.(b)

Furthermore, if amp X = 0, that is, if X is equivalent to a module up to a
shift, then

(c) AncR X = MinR X ⊆ AssR X;
and if X is Cohen-Macaulay, that is, X ∈ D f

b(R) and dimR X = depthR X,
then

(d) AssR X ⊆ AncR X = W0(X).

Proof. In the following X belongs to D+(R).
(a): If � belongs to MinR X then SuppR�

X� = {��}, so dimR�
X� =

− inf X�, that is, �� ∈ AncR�
X� and hence � ∈ AncR X by (2.1).

(b): Assume that � belongs to W0(X), then dimR X = dim R/� − inf X�,
and since dimR X ≥ dimR�

X� + dim R/� and dimR�
X� ≥ − inf X�, cf. (1.1)

and (1.2), it follows that dimR�
X� = − inf X�, as desired.

(c): For M ∈ D0(R) we have

AncR M = { � ∈ SuppR M | dimR�
M� = 0 } = MinR M,
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and the inclusion MinR M ⊆ AssR M is well-known.
(d): Assume that X ∈ D f

b(R) and dimR X = depthR X, then dimR�
X� =

depthR�
X� for all � ∈ SuppR X, cf. [5, (16.17)]. If � ∈ AssR X we have

dimR�
X� = depthR�

X� = − sup X� ≤ − inf X�,

cf. [4, Def. 2.3], and it follows by (1.2) that equality must hold, so � belongs
to AncR X.

For each � ∈ SuppR X there is an equality

dimR X = dimR�
X� + dim R/�,

cf. [5, (17.4)(b)], so dimR X − dim R/� + inf X� = 0 for � with dimR�
X� =

− inf X�. This proves the inclusion AncR X ⊆ W0(X).

Corollary 2.4. For X ∈ Db(R) there is an inclusion:

(a) MinR X ⊆ AssR X ∩ AncR X;
and for � ∈ AssR X ∩ AncR X there is an equality:

(b) cmdR�
X� = amp X�.

Proof. Part (a) follows by 2.3 (a) and [4, Prop. 2.6]; part (b) is immediate
by the definitions of associated and anchor prime ideals, cf. [4, Def. 2.3].

Corollary 2.5. If X ∈ D f+(R), then

dimR X = sup{ dim R/� + dimR�
X� | � ∈ AncR X }.

Proof. It is immediate by the definitions that

dimR X = sup{ dim R/� − inf X� | � ∈ SuppR X }
≥ sup{ dim R/� − inf X� | � ∈ AncR X }
= sup{ dim R/� + dimR�

X� | � ∈ AncR X };
and the opposite inequality follows by 2.3 (b).

Proposition 2.6. The following hold:

(a) If X ∈ D+(R) and � belongs to AncR X, then dimR�
(Hinf X�

(X�)) = 0.

(b) If X ∈ D f
b(R), then AncR X is a finite set.

Proof. (a): Assume that � ∈ AncR X; by [6, Prop. 3.5] we have

− inf X� = dimR�
X� ≥ dimR�

(Hinf X�
(X�)) − inf X�,
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and hence dimR�
(Hinf X�

(X�)) = 0.
(b): By (a) every anchor prime ideal for X is minimal for one of the homo-

logy modules of X, and when X ∈ D f
b(R) each of the finitely many homology

modules has a finite number of minimal prime ideals.

Observation 2.7. By Nakayama’s lemma it follows that

inf K(x1, . . . , xn; Y ) = inf Y,

for Y ∈ D f+(R) and elements x1, . . . , xn ∈ �.

Proposition 2.8 (Dimension of Koszul Complexes). The following hold
for a complex Y ∈ D f+(R) and elements x1, . . . , xn ∈ �:

dimR K(x1, . . . , xn; Y )(a)

= sup{ dim R/� − inf Y� | � ∈ SuppR Y ∩ V(x1, . . . , xn) }; and

dimR Y − n ≤ dimR K(x1, . . . , xn; Y ) ≤ dimR Y.(b)

Furthermore:

The elements x1, . . . , xn are contained in a prime ideal(c)

� ∈ Wn(Y ); and

dimR K(x1, . . . , xn; Y ) = dimR Y if and only if x1, . . . , xn ∈ �(d)

for some � ∈ W0(Y ).

Proof. Since SuppR K(x1, . . . , xn; Y ) = SuppR Y ∩ V(x1, . . . , xn) (see
[6, p. 157] and [4, 3.2]) (a) follows by the definition of Krull dimension and
2.7. In (b) the second inequality follows from (a); the first one is established
through four steps:

1◦ Y = R: The second equality below follows from the definition of
Krull dimension as SuppR K (x1, . . . , xn) = SuppR H0(K (x1, . . . , xn)) =
V(x1, . . . , xn), cf. [4, 3.2]; the inequality is a consequence of Krull’s Prin-
cipal Ideal Theorem, see for example [8, Thm. 13.6].

dimR K(x1, . . . , xn; Y ) = dimR K (x1, . . . , xn)

= sup{ dim R/� | � ∈ V(x1, . . . , xn) }
= dim R/(x1, . . . , xn)

≥ dim R − n

= dimR Y − n.
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2◦ Y = B, a cyclic module: By x̄1, . . . , x̄n we denote the residue classes in
B of the elements x1, . . . , xn; the inequality below is by 1◦.

dimR K(x1, . . . , xn; Y ) = dimR K (x̄1, . . . , x̄n)

= dimB K (x̄1, . . . , x̄n)

≥ dim B − n

= dimR Y − n.

3◦ Y = H ∈ D f
0(R): We set B = R/ AnnR H ; the first equality below

follows by [6, Prop. 3.11] and the inequality by 2◦.

dimR K(x1, . . . , xn; Y ) = dimR K(x1, . . . , xn; B)

≥ dimR B − n

= dimR Y − n.

4◦ Y ∈ D f
b(R): The first equality below follows by [6, Prop. 3.12] and the

last by [6, Prop. 3.5]; the inequality is by 3◦.

dimR K(x1, . . . , xn; Y ) = sup{ dimR K(x1, . . . , xn; H
(Y )) − 
 | 
 ∈ Z }
≥ sup{ dimR H
(Y ) − n − 
 | 
 ∈ Z }
= dimR Y − n.

This proves (b).
In view of (a) it now follows that

dimR Y − n ≤ dim R/� − inf Y�

for some � ∈ SuppR Y ∩ V(x1, . . . , xn). That is, the elements x1, . . . , xn are
contained in a prime ideal � ∈ SuppR Y with

dimR Y − dim R/� + inf Y� ≤ n,

and this proves (c).
Finally, it is immediate by the definitions that

dimR Y = sup{ dim R/� − inf Y� | � ∈ SuppR Y ∩ V(x1, . . . , xn) }

if and only if W0(Y ) ∩ V(x1, . . . , xn) �= ∅. This proves (d).
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Theorem 2.9. If Y ∈ D f
b(R), then the next two numbers are equal.

d(Y ) = dimR Y + inf Y ; and

s(Y ) = inf{ s ∈ N0 | ∃ x1, . . . , xs : � ∈ AncR K(x1, . . . , xs; Y ) }.

Proof. There are two inequalities to prove.
d(Y ) ≤ s(Y ): Let x1, . . . , xs ∈ � be such that � ∈ AncR K(x1, . . . , xs; Y );

by 2.8 (b) and 2.7 we then have

dimR Y − s ≤ dimR K(x1, . . . , xs; Y ) = − inf K(x1, . . . , xs; Y ) = − inf Y,

so d(Y ) ≤ s, and the desired inequality follows.
s(Y ) ≤ d(Y ): We proceed by induction on d(Y). If d(Y ) = 0 then � ∈

AncR Y so s(Y ) = 0. If d(Y ) > 0 then � �∈ AncR Y , and since AncR Y is a
finite set, by 2.6(b), we can choose an element x ∈ � − ∪�∈AncR Y �. We set
K = K(x; Y ); it is cleat that s(Y ) ≤ s(K) + 1. Furthermore, it follows by
2.8 (a) and 2.3 (b) that dimR K < dimR Y and thereby d(K) < d(Y ), cf. 2.7.
Thus, by the induction hypothesis we have

s(Y ) ≤ s(K) + 1 ≤ d(K) + 1 ≤ d(Y );
as desired.

3. Parameters

By 2.9 the next definitions extend the classical notions of systems and se-
quences of parameters for finite modules (e.g., see [8, § 14] and the appendix
in [2]).

Definitions 3.1. Let Y belong to D f
b(R) and set d = dimR Y + inf Y . A

set of elements x1, . . . , xd ∈ � are said to be a system of parameters for Y if
and only if � ∈ AncR K(x1, . . . , xd; Y ).

A sequence x = x1, . . . , xn is said to be a Y -parameter sequence if and
only if it is part of a system of parameters for Y .

Lemma 3.2. Let Y belong to D f
b(R) and set d = dimR Y + inf Y . The next

two conditions are equivalent for elements x1, . . . , xd ∈ �.

(i) x1, . . . , xd is a system of parameters for Y .

(ii) For every j ∈ {0, . . . , d} there is an equality:

dimR K(x1, . . . , xj ; Y ) = dimR Y − j ;
and xj+1, . . . , xd is a system of parameters for K(x1, . . . , xj ; Y ).
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Proof. (i) ⇒ (ii): Assume that x1, . . . , xd is a system of parameters for Y ,
then

− inf K(x1, . . . , xd; Y ) = dimR K(x1, . . . , xd; Y )

= dimR K(xj+1, . . . , xd; K(x1, . . . , xj ; Y )

≥ dimR K(x1, . . . , xj ; Y ) − (d − j) by 2.8 (b)

≥ dimR Y − j − (d − j) by 2.8 (b)

= dimR Y − d

= − inf Y.

By 2.7 it now follows that − inf Y = dimR K(x1, . . . , xj ; Y ) − (d − j), so

dimR K(x1, . . . , xj ; Y ) = d − j − inf Y = dimR Y − j,

as desired. It also follows that d(K(x1, . . . , xj ; Y )) = d − j , and since

� ∈ AncR K(x1, . . . , xd; Y ) = AncR K(xj+1, . . . , xd; K(x1, . . . , xj ; Y )),

we conclude that xj+1, . . . , xd is a system of parameters for K(x1, . . . , xj ; Y ).
(ii) ⇒ (i): If dimR K(x1, . . . , xj ; Y ) = dimR Y−j then d(K(x1, . . . , xj ; Y ))

= d − j ; and if xj+1, . . . , xd is a system of parameters for K(x1, . . . , xj ; Y )

then � belongs to

AncR K(xj+1, . . . , xd; K(x1, . . . , xj ; Y )) = AncR K(x1, . . . , xd; Y ),

so x1, . . . , xd must be a system of parameters for Y .

Proposition 3.3. Let Y ∈ D f
b(R). The following conditions are equivalent

for a sequence x = x1, . . . , xn in �.

(i) x is a Y -parameter sequence.

(ii) For each j ∈ {0, . . . , n} there is an equality:

dimR K(x1, . . . , xj ; Y ) = dimR Y − j ;
and xj+1, . . . , xn is a K(x1, . . . , xj ; Y )-parameter sequence.

(iii) There is an equality:

dimR K(x1, . . . , xn; Y ) = dimR Y − n.

Proof. It follows by 3.2 that (i) implies (ii), and (iii) follows from (ii). Now,
set K = K(x; Y ) and assume that dimR K = dimR Y − n. Choose, by 2.9,
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s = s(K) = dimR K + inf K elements w1, . . . , ws in � such that � belongs
to AncR K(w1, . . . , ws; K) = AncR K(x1, . . . , xn, w1, . . . , ws; Y ). Then, by
2.7, we have

n + s = (dimR Y − dimR K) + (dimR K + inf K) = dimR Y + inf Y = d,

so x1, . . . , xn, w1, . . . , ws is a system of parameters for Y , whence x1, . . . , xn

is a Y -parameter sequence.

We now recover a classical result (e.g., see [2, Prop. A.4]):

Corollary 3.4. Let M be an R-module. The following conditions are
equivalent for a sequence x = x1, . . . , xn in �.

(i) x is an M-parameter sequence.

(ii) For each j ∈ {0, . . . , n} there is an equality:

dimR M/(x1, . . . , xj )M = dimR M − j ;
and xj+1, . . . , xn is an M/(x1, . . . , xj )M-parameter sequence.

(iii) There is an equality:

dimR M/(x1, . . . , xn)M = dimR M − n.

Proof. By [6, Prop. 3.12] and [5, (16.22)] we have

dimR K(x1, . . . , xj ; M)

= sup{ dimR(M ⊗L
R H
(K (x1, . . . , xj ))) − 
 | 
 ∈ Z }

= sup{ dimR(M ⊗R H
(K (x1, . . . , xj ))) − 
 | 
 ∈ Z }
= dimR(M ⊗R R/(x1, . . . , xj )).

Theorem 3.5. Let Y ∈ D f
b(R). The following hold for a sequence x =

x1, . . . , xn in �.

(a) There is an inequality:

amp K(x; Y ) ≥ amp Y ;
and equality holds if and only if x is a Y -sequence.

(b) There is an inequality:

cmdR K(x; Y ) ≥ cmdR Y ;
and equality holds if and only if x is a Y -parameter sequence.
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(c) If x is a maximal Y -sequence, then

amp Y ≤ cmdR K(x; Y ).

(d) If x is a system of parameters for Y , then

cmdR Y ≤ amp K(x; Y ).

Proof. In the following K denotes the Koszul complex K(x; Y ).
(a): Immediate by 2.7 and [4, Prop. 5.1].
(b): By [4, Thm. 4.7 (a)] and 2.8 (b) we have

cmdR K = dimR K − depthR K = dimR K + n − depthR Y ≥ cmdR Y,

and by 3.3 equality holds if and only if x is a Y -parameter sequence.
(c): Suppose x is a maximal Y -sequence, then

amp Y = sup Y − inf K by 2.7

= − depthR K − inf K by [4, Thm. 5.4]

≤ cmdR K by (1.2).

(d): Suppose x is system of parameters for Y , then

amp K = sup K + dimR K

≥ dimR K − depthR K by (1.3)

= cmdR Y by (b).

Theorem 3.6. The following hold for Y ∈ D f
b(R).

(a) The next four conditions are equivalent.

(i) There is a maximal Y -sequence which is also a Y -parameter se-
quence.

(ii) depthR Y + sup Y ≤ dimR Y + inf Y .

(ii’) amp Y ≤ cmdR Y .

(iii) There is a maximal strong Y -sequence which is also a Y -parameter
sequence.

(b) The next four conditions are equivalent.

(i) There is a system of parameters for Y which is also a Y -sequence.

(ii) dimR Y + inf Y ≤ depthR Y + sup Y .

(ii’) cmdR Y ≤ amp Y .
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(iii) There is a system of parameters for Y which is also a strong Y -
sequence.

(c) The next four conditions are equivalent.

(i) There is a system of parameters for Y which is also a maximal Y -
sequence.

(ii) dimR Y + inf Y = depthR Y + sup Y .

(ii’) cmdR Y = amp Y .

(iii) There is a system of parameters for Y which is also a maximal strong
Y -sequence.

Proof. Let Y ∈ D f
b(R), set n(Y ) = depthR Y + sup Y and d(Y ) =

dimR Y + inf Y .
(a): A maximal Y -sequence is of length n(Y ), cf. [4, Cor. 5.5], and the

length of a Y -parameter sequence is at most d(Y ). Thus, (i) implies (ii) which
in turn is equivalent to (ii’). Furthermore, a maximal strong Y -sequence is, in
particular, a maximal Y -sequence, cf. [4, Cor. 5.7], so (iii) is stronger than (i). It
is now sufficient to prove the implication (ii) ⇒ (iii): We proceed by induction.
If n(Y ) = 0 then the empty sequence is a maximal strong Y -sequence and a
Y -parameter sequence. Let n(Y ) > 0; the two sets AssR Y and W0(Y ) are
both finite, and since 0 < n(Y ) ≤ d(Y ) none of them contain �. We can,
therefore, choose an element x ∈ � − ∪AssR Y∪W0(Y ) �, and x is then a strong
Y -sequence, cf. [4, Def. 3.3], and a Y -parameter sequence, cf. 3.3 and 2.8. Set
K = K(x; Y ), by [4, Thm. 4.7 and Prop. 5.1], respectively, 2.8 and 2.7 we
have

depthR K + sup K = n(Y ) − 1 ≤ d(Y ) − 1 = dimR K + inf K.

By the induction hypothesis there exists a maximal strong K-sequence w1, . . . ,

wn−1 which is also a K-parameter sequence, and it follows by [4, 3.5] and 3.3
that x, w1, . . . , wn−1 is a strong Y -sequence and a Y -parameter sequence, as
wanted.

The proof of (b) i similar to the proof of (a), and (c) follows immediately
by (a) and (b).

Theorem 3.7. The following hold for Y ∈ D f
b(R):

(a) If amp Y = 0, then any Y -sequence is a Y -parameter sequence.

(b) If cmdR Y = 0, then any Y -parameter sequence is a strong Y -sequence.

Proof. The empty sequence is a Y -parameter sequence as well as a strong
Y -sequence, this founds the base for a proof by induction on the length n of
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the sequence x = x1, . . . , xn. Let n > 0 and set K = K(x1, . . . , xn−1; Y ); by
2.8 (a) we have
(∗)

dimR K(x1, . . . , xn; Y ) = dimR K(xn; K)

= sup{ dim R/� − inf K� | � ∈ SuppR K ∩ V(xn) }.

Assume that amp Y = 0. If x is a Y -sequence, then amp K = 0 by 3.5 (a)
and xn �∈ zR K , cf. [4, Def. 3.3]. As zR K = ∪�∈AssR K �, cf. [4, 2.5], it follows
by (b) and (c) in 2.3 that xn is not contained in any prime ideal � ∈ W0(K); so
from (∗) we conclude that dimR K(xn; K) < dimR K , and it follows by 2.8 (b)
that dimR K(xn, K) = dimR K − 1. By the induction hypothesis dimR K =
dimR Y − (n − 1), so dimR K(x1, . . . , xn; Y ) = dimR Y − n and it follows by
3.3 that x is a Y -parameter sequence. This proves (a).

We now assume that cmdR Y = 0. If x is a Y -parameter sequence then, by
the induction hypothesis, x1, . . . , xn−1 is a strong Y -sequence, so it is sufficient
to prove that xn �∈ ZR K , cf. [4, 3.5]. By 3.3 it follows that xn is a K-parameter
sequence, so dimR K(xn; K) = dimR K − 1 and we conclude from (∗) that
xn �∈ ∪�∈W0(K) �. Now, by 3.5 (b) we have cmdR K = 0, so it follows from
2.3 (d) that xn �∈ ∪�∈AssR K � = ZR K . This proves (b).

Semi-dualizing Complexes 3.8. We recall two basic definitions from
[3]:

A complex C ∈ D f
b(R) is said to be semi-dualizing for R if and only if the

homothety morphism χR
C : R → RHomR(C, C) is an isomorphism [3, (2.1)].

Let C be a semi-dualizing complex for R. A complex Y ∈ D f
b(R) is said

to be C-reflexive if and only if the dagger dual Y †C = RHomR(Y, C) belongs
to D f

b(R) and the biduality morphism δC
Y : Y → RHomR(RHomR(Y, C), C)

is invertible in D(R) [3, (2.7)].
Relations between dimension and depth for C-reflexive complexes are stud-

ied in [3, sec. 3], and the next result is an immediate consequence of [3, (3.1)
and (2.10)].

Let C be a semi-dualizing complex for R and let Z be a C-reflexive
complex. The following holds for � ∈ Spec R: If � ∈ AncR Z then
� ∈ AssR Z†C , and the converse holds in C is Cohen-Macaulay.

A dualizing complex, cf. [7], is a semi-dualizing complex of finite injective
dimension, in particular, it is Cohen-Macaulay, cf. [3, (3.5)]. If D is a dualizing
complex for R, then, by [7, Prop. V.2.1], all complexes Y ∈ D f

b(R) are D-
reflexive; in particular, all finite R-modules are D-reflexive and, therefore, [4,
5.10] is a special case of the following:
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Theorem 3.9. Let C be a Cohen-Macaulay semi-dualizing complex for R,
and let x = x1, . . . , xn be a sequence in �. If Y is C-reflexive, then x is a
Y -parameter sequence if and only if it is a RHomR(Y, C)-sequence; that is

x is a Y -parameter sequence ⇐⇒ x is a RHomR(Y, C)-sequence.

Proof. We assume that C is a Cohen-Macaulay semi-dualizing complex
for R and that Y is C-reflexive, cf. 3.8. The desired biconditional follows by
the next chain, and each step is explained below (we use the notation −†C

introduced in 3.8).

x is a Y -parameter sequence ⇐⇒ cmdR K(x; Y ) = cmdR Y

⇐⇒ amp K(x; Y )†C = amp Y †C

⇐⇒ amp K(x; Y †C ) = amp Y †C

⇐⇒ x is a Y †C -sequence.

The first biconditional follows by 3.5 (b) and the last by 3.5 (a). Since K (x) is
a bounded complex of free modules (hence of finite projective dimension), it
follows from [3, Thm. (3.17)] that also K(x; Y ) is C-reflexive, and the second
biconditional is then immediate by the CMD-formula [3, Cor. (3.8)]. The third
one is established as follows:

K(x; Y )†C 	 RHomR(K (x) ⊗L
R Y, C)

	 RHomR(K (x), Y †C )

	 RHomR(K (x), R ⊗L
R Y †C )

	 RHomR(K (x), R) ⊗L
R Y †C

∼ K (x) ⊗L
R Y †C

	 K(x; Y †C ),

where the second isomorphism is by adjointness and the fourth by, so-
called, tensor-evaluation, cf. [1, (1.4.2)]. It is straightforward to check that
HomR(K (x), R) is isomorphic to the Koszul complex K (x) shifted n degrees
to the right, and the symbol ∼ denotes isomorphism up to shift.

If C is a semi-dualizing complex for R, then both C and R are C-reflexive
complexes, cf. [3, (2.8)], so we have an immediate corollary to the theorem:

Corollary 3.10. If C is a Cohen-Macaulay semi-dualizing complex for
R, then the following hold for a sequence x = x1, . . . , xn in �.

(a) x is a C-parameter sequence if and only if it is an R-sequence.
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(b) x is an R-parameter sequence if and only if it is a C-sequence.
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