1. Introduction and Notation

This short paper elaborates on an example given in [4] to illustrate an application of sequences for complexes:

Let R be a local ring with a dualizing complex D, and let M be a finitely generated R-module; then a sequence x_1, \ldots, x_n is part of a system of parameters for M if and only if it is a $\text{RHom}_R(M, D)$-sequence [4, 5.10].

The final Theorem 3.9 of this paper generalizes the result above in two directions: the dualizing complex is replaced by a Cohen-Macaulay semi-dualizing complex (see [3, Sec. 2] or 3.8 below for definitions), and the finite module is replaced by a complex with finite homology.

Before we can even state, let alone prove, this generalization of [4, 5.10] we have to introduce and study parameters for complexes. For a finite R-module M every M-sequence is part of a system of parameters for M, so, loosely speaking, regular elements are just special parameters. For a complex X, however, parameters and regular elements are two different things, and kinship between them implies strong relations between two measures of the size of X: the amplitude and the Cohen-Macaulay defect (both defined below). This is described in 3.5, 3.6, and 3.7.

The definition of parameters for complexes is based on a notion of anchor prime ideals. These do for complexes what minimal prime ideals do for modules, and the quantitative relations between dimension and depth under dagger duality—studied in [3]—have a qualitative description in terms of anchor and associated prime ideals.

Throughout R denotes a commutative, Noetherian local ring with maximal ideal \mathfrak{m} and residue field $k = R/\mathfrak{m}$. We use the same notation as in [4], but for convenience we recall a few basic facts.

The homological position and size of a complex X is captured by the su-
premum, infimum, and amplitude:

\[
\text{sup } X = \sup \{ \ell \in \mathbb{Z} \mid H_\ell(X) \neq 0 \},
\]

\[
\text{inf } X = \inf \{ \ell \in \mathbb{Z} \mid H_\ell(X) \neq 0 \},
\]

and

\[
\text{amp } X = \text{sup } X - \text{inf } X.
\]

By convention, \(\text{sup } X = -\infty \) and \(\text{inf } X = \infty \) if \(H(X) = 0 \).

The *support* of a complex \(X \) is the set

\[
\text{Supp}_R X = \{ \mathfrak{p} \in \text{Spec } R \mid X_\mathfrak{p} \not\simeq 0 \} = \bigcup \text{Supp}_R H_\ell(X).
\]

As usual \(\text{Min}_R X \) is the subset of minimal elements in the support.

The *depth* and the *(Krull)* *dimension* of an \(R \)-complex \(X \) are defined as follows:

\[
\text{depth}_R X = -\sup(\mathcal{R}\text{Hom}_R(k, X)), \quad \text{for } X \in \mathcal{D}^-(R), \quad \text{and}
\]

\[
\text{dim}_R X = \sup \{ \text{dim } R/\mathfrak{p} - \inf X_\mathfrak{p} \mid \mathfrak{p} \in \text{Supp}_R X \},
\]

cf. [6, Sec. 3]. For modules these notions agree with the usual ones. It follows from the definition that

(1.1) \[
\text{dim}_R X \geq \text{dim}_{R_\mathfrak{p}} X_\mathfrak{p} + \text{dim } R/\mathfrak{p}
\]

for \(X \in \mathcal{D}(R) \) and \(\mathfrak{p} \in \text{Spec } R \); and there are always inequalities:

(1.2) \[
-\inf X \leq \text{dim}_R X \quad \text{for } X \in \mathcal{D}^+(R); \quad \text{and}
\]

(1.3) \[
-\sup X \leq \text{depth}_R X \quad \text{for } X \in \mathcal{D}^-(R).
\]

A complex \(X \in \mathcal{D}^b_+(R) \) is *Cohen-Macaulay* if and only if \(\text{dim}_R X = \text{depth}_R X \), that is, if an only if the *Cohen-Macaulay defect*,

\[
\text{cmd}_R X = \text{dim}_R X - \text{depth}_R X,
\]

is zero. For complexes in \(\mathcal{D}^b_+(R) \) the Cohen-Macaulay defect is always non-negative, cf. [6, Cor. 3.9].

2. Anchor Prime Ideals

In [4] we introduced associated prime ideals for complexes. The analysis of the support of a complex is continued in this section, and the aim is now to identify the prime ideals that do for complexes what the minimal ones do for modules.
DEFINITIONS 2.1. Let $X \in \mathcal{D}_+(R)$; we say that $\mathfrak{p} \in \text{Spec } R$ is an anchor prime ideal for X if and only if $\dim R_\mathfrak{p} X_\mathfrak{p} = -\inf X_\mathfrak{p} > -\infty$. The set of anchor prime ideals for X is denoted by $\text{Anc}_R X$; that is,

$$\text{Anc}_R X = \{ \mathfrak{p} \in \text{Supp } R X | \dim R_\mathfrak{p} X_\mathfrak{p} + \inf X_\mathfrak{p} = 0 \}.$$

For $n \in \mathbb{N}_0$ we set

$$W_n(X) = \{ \mathfrak{p} \in \text{Supp } R X | \dim R X - \dim R/\mathfrak{p} + \inf X_\mathfrak{p} \leq n \}.$$

OBSERVATION 2.2. Let S be a multiplicative system in R, and let $\mathfrak{p} \in \text{Spec } R$. If $\mathfrak{p} \cap S = \emptyset$ then $S^{-1}\mathfrak{p}$ is a prime ideal in $S^{-1}R$, and for $X \in \mathcal{D}_+(R)$ there is an isomorphism $S^{-1}X_{S^{-1}\mathfrak{p}} \simeq X_\mathfrak{p}$ in $\mathcal{D}(R_\mathfrak{p})$. In particular, $\inf S^{-1}X_{S^{-1}\mathfrak{p}} = \inf X_\mathfrak{p}$ and $\dim S^{-1}R_{S^{-1}\mathfrak{p}} S^{-1}X_{S^{-1}\mathfrak{p}} = \dim R_\mathfrak{p} X_\mathfrak{p}$. Thus, the next biconditional holds for $X \in \mathcal{D}_+(R)$ and $\mathfrak{p} \in \text{Spec } R$ with $\mathfrak{p} \cap S = \emptyset$.

(2.1) $\mathfrak{p} \in \text{Anc}_R X \iff S^{-1}\mathfrak{p} \in \text{Anc}_{S^{-1}R} S^{-1}X.$

THEOREM 2.3. For $X \in \mathcal{D}_+(R)$ there are inclusions:

(a) $\text{Min}_R X \subseteq \text{Anc}_R X$; and

(b) $W_0(X) \subseteq \text{Anc}_R X$.

Furthermore, if $\text{amp } X = 0$, that is, if X is equivalent to a module up to a shift, then

(c) $\text{Anc}_R X = \text{Min}_R X \subseteq \text{Ass}_R X$;

and if X is Cohen-Macaulay, that is, $X \in \mathcal{D}_b(R)$ and $\dim R X = \text{depth}_R X$, then

(d) $\text{Ass}_R X \subseteq \text{Anc}_R X = W_0(X)$.

PROOF. In the following X belongs to $\mathcal{D}_+(R)$.

(a): If \mathfrak{p} belongs to $\text{Min}_R X$ then $\text{Supp } R_\mathfrak{p} X_\mathfrak{p} = \{ \mathfrak{p} \}$, so $\dim R_\mathfrak{p} X_\mathfrak{p} = -\inf X_\mathfrak{p}$, that is, $\mathfrak{p} \in \text{Anc}_{R_\mathfrak{p}} X_\mathfrak{p}$ and hence $\mathfrak{p} \in \text{Anc}_R X$ by (2.1).

(b): Assume that \mathfrak{p} belongs to $W_0(X)$, then $\dim R X = \dim R/\mathfrak{p} - \inf X_\mathfrak{p}$, and since $\dim R X \geq \dim R_\mathfrak{p} X_\mathfrak{p} + \dim R/\mathfrak{p}$ and $\dim R_\mathfrak{p} X_\mathfrak{p} \geq -\inf X_\mathfrak{p}$, cf. (1.1) and (1.2), it follows that $\dim R_\mathfrak{p} X_\mathfrak{p} = -\inf X_\mathfrak{p}$, as desired.

(c): For $M \in \mathcal{D}_0(R)$ we have

$$\text{Anc}_R M = \{ \mathfrak{p} \in \text{Supp } R M | \dim R_\mathfrak{p} M_\mathfrak{p} = 0 \} = \text{Min}_R M,$$
and the inclusion $\text{Min}_R M \subseteq \text{Ass}_R M$ is well-known.

(d): Assume that $X \in \mathcal{D}_+(R)$ and $\dim_R X = \text{depth}_R X$, then $\dim_{R_\wp} X_\wp = \text{depth}_{R_\wp} X_\wp$ for all $\wp \in \text{Supp}_R X$, cf. [5, (16.17)]. If $\wp \in \text{Ass}_R X$ we have

$$\dim_{R_\wp} X_\wp = \text{depth}_{R_\wp} X_\wp = - \sup X_\wp \leq - \inf X_\wp,$$

cf. [4, Def. 2.3], and it follows by (1.2) that equality must hold, so \wp belongs to $\text{Anc}_R X$.

For each $\wp \in \text{Supp}_R X$ there is an equality

$$\dim_R X = \dim_{R_\wp} X_\wp + \dim R/\wp,$$

cf. [5, (17.4)(b)], so $\dim_R X - \dim R/\wp + \inf X_\wp = 0$ for \wp with $\dim_{R_\wp} X_\wp = - \inf X_\wp$. This proves the inclusion $\text{Anc}_R X \subseteq W_0(X)$.

Corollary 2.4. For $X \in \mathcal{D}_0(R)$ there is an inclusion:

(a) $\text{Min}_R X \subseteq \text{Ass}_R X \cap \text{Anc}_R X$;

and for $\wp \in \text{Ass}_R X \cap \text{Anc}_R X$ there is an equality:

(b) $\text{cmd}_{R_\wp} X_\wp = \text{amp} X_\wp$.

Proof. Part (a) follows by 2.3 (a) and [4, Prop. 2.6]; part (b) is immediate by the definitions of associated and anchor prime ideals, cf. [4, Def. 2.3].

Corollary 2.5. If $X \in \mathcal{D}_+(R)$, then

$$\dim_R X = \sup \{ \dim R/\wp + \dim_{R_\wp} X_\wp \mid \wp \in \text{Anc}_R X \}.$$

Proof. It is immediate by the definitions that

$$\dim_R X = \sup \{ \dim R/\wp - \inf X_\wp \mid \wp \in \text{Supp}_R X \} \geq \sup \{ \dim R/\wp - \inf X_\wp \mid \wp \in \text{Anc}_R X \} = \sup \{ \dim R/\wp + \dim_{R_\wp} X_\wp \mid \wp \in \text{Anc}_R X \};$$

and the opposite inequality follows by 2.3 (b).

Proposition 2.6. The following hold:

(a) If $X \in \mathcal{D}_+(R)$ and \wp belongs to $\text{Anc}_R X$, then $\dim_{R_\wp}(H_{\inf X_\wp}(X_\wp)) = 0$.

(b) If $X \in \mathcal{D}_0(R)$, then $\text{Anc}_R X$ is a finite set.

Proof. (a): Assume that $\wp \in \text{Anc}_R X$; by [6, Prop. 3.5] we have

$$- \inf X_\wp = \dim_{R_\wp} X_\wp \geq \dim_{R_\wp}(H_{\inf X_\wp}(X_\wp)) - \inf X_\wp,$$
and hence \(\dim_{R_0}(H_{\inf X}(X_p)) = 0 \).

(b): By (a) every anchor prime ideal for \(X \) is minimal for one of the homology modules of \(X \), and when \(X \in D_f^i(R) \) each of the finitely many homology modules has a finite number of minimal prime ideals.

Observation 2.7. By Nakayama’s lemma it follows that

\[
\inf K(x_1, \ldots, x_n; Y) = \inf Y,
\]

for \(Y \in D_f^i(R) \) and elements \(x_1, \ldots, x_n \in \mathfrak{m} \).

Proposition 2.8 (Dimension of Koszul Complexes). The following hold for a complex \(Y \in D_f^i(R) \) and elements \(x_1, \ldots, x_n \in \mathfrak{m} \):

(a) \[
\dim R K(x_1, \ldots, x_n; Y) = \sup \{ \dim R / \mathfrak{p} - \inf Y_{\mathfrak{p}} \mid \mathfrak{p} \in \text{Supp} R Y \cap \mathcal{V}(x_1, \ldots, x_n) \}; \text{ and}
\]

(b) \[
\dim R Y - n \leq \dim R K(x_1, \ldots, x_n; Y) \leq \dim R Y.
\]

Furthermore:

(c) The elements \(x_1, \ldots, x_n \) are contained in a prime ideal

\[
\mathfrak{p} \in W_0(Y);
\]

and

(d) \[
\dim R K(x_1, \ldots, x_n; Y) = \dim R Y \text{ if and only if } x_1, \ldots, x_n \in \mathfrak{p}
\]

for some \(\mathfrak{p} \in W_0(Y) \).

Proof. Since \(\text{Supp} R K(x_1, \ldots, x_n; Y) = \text{Supp} R Y \cap \mathcal{V}(x_1, \ldots, x_n) \) (see [6, p. 157] and [4, 3.2]) (a) follows by the definition of Krull dimension and 2.7. In (b) the second inequality follows from (a); the first one is established through four steps:

1\(^{\circ} \) \(Y = R \): The second equality below follows from the definition of Krull dimension as \(\text{Supp} R K(x_1, \ldots, x_n) = \text{Supp} R H_0(K(x_1, \ldots, x_n)) = \mathcal{V}(x_1, \ldots, x_n) \), cf. [4, 3.2]; the inequality is a consequence of Krull’s Principal Ideal Theorem, see for example [8, Thm. 13.6].

\[
\dim R K(x_1, \ldots, x_n; Y) = \dim R K(x_1, \ldots, x_n)
\]

\[
= \sup \{ \dim R / \mathfrak{p} \mid \mathfrak{p} \in \mathcal{V}(x_1, \ldots, x_n) \}
\]

\[
= \dim R / (x_1, \ldots, x_n)
\]

\[
\geq \dim R - n
\]

\[
= \dim R Y - n.
\]
2° \(Y = B \), a cyclic module: By \(\bar{x}_1, \ldots, \bar{x}_n \) we denote the residue classes in \(B \) of the elements \(x_1, \ldots, x_n \); the inequality below is by 1°.

\[
\dim_R K(x_1, \ldots, x_n; Y) = \dim_R K(\bar{x}_1, \ldots, \bar{x}_n) \\
= \dim_R K(\bar{x}_1, \ldots, \bar{x}_n) \\
\geq \dim B - n \\
= \dim_R Y - n.
\]

3° \(Y = H \in \mathcal{D}^0_0(R) \): We set \(B = R/\text{Ann}_R H \); the first equality below follows by [6, Prop. 3.11] and the inequality by 2°.

\[
\dim_R K(x_1, \ldots, x_n; Y) = \dim_R K(x_1, \ldots, x_n; B) \\
\geq \dim B - n \\
= \dim_R Y - n.
\]

4° \(Y \in \mathcal{D}^1_0(R) \): The first equality below follows by [6, Prop. 3.12] and the last by [6, Prop. 3.5]; the inequality is by 3°.

\[
\dim_R K(x_1, \ldots, x_n; Y) = \sup \{ \dim_R K(x_1, \ldots, x_n; H_\ell(Y)) - \ell \mid \ell \in \mathbb{Z} \} \\
\geq \sup \{ \dim_R H_\ell(Y) - n - \ell \mid \ell \in \mathbb{Z} \} \\
= \dim_R Y - n.
\]

This proves (b).

In view of (a) it now follows that

\[
\dim_R Y - n \leq \dim R/\mathfrak{p} - \inf Y_\mathfrak{p}
\]

for some \(\mathfrak{p} \in \text{Supp}_R Y \cap V(x_1, \ldots, x_n) \). That is, the elements \(x_1, \ldots, x_n \) are contained in a prime ideal \(\mathfrak{p} \in \text{Supp}_R Y \) with

\[
\dim_R Y - \dim R/\mathfrak{p} + \inf Y_\mathfrak{p} \leq n,
\]

and this proves (c).

Finally, it is immediate by the definitions that

\[
\dim_R Y = \sup \{ \dim R/\mathfrak{p} - \inf Y_\mathfrak{p} \mid \mathfrak{p} \in \text{Supp}_R Y \cap V(x_1, \ldots, x_n) \}
\]

if and only if \(W_0(Y) \cap V(x_1, \ldots, x_n) \neq \emptyset \). This proves (d).
Theorem 2.9. If $Y \in \mathcal{D}_b^f(R)$, then the next two numbers are equal.

$$d(Y) = \dim_R Y + \inf Y; \quad \text{and}$$

$$s(Y) = \inf\{ s \in \mathbb{N}_0 \mid \exists x_1, \ldots, x_j : \mathfrak{m} \in \text{Anc}_R K(x_1, \ldots, x_j; Y) \}.$$

Proof. There are two inequalities to prove.

$d(Y) \leq s(Y)$: Let $x_1, \ldots, x_s \in \mathfrak{m}$ be such that $\mathfrak{m} \in \text{Anc}_R K(x_1, \ldots, x_j; Y)$; by 2.8 (b) and 2.7 we then have

$$\dim_R Y - s \leq \dim_R K(x_1, \ldots, x_s; Y) = -\inf K(x_1, \ldots, x_s; Y) = -\inf Y,$$

so $d(Y) \leq s$, and the desired inequality follows.

$s(Y) \leq d(Y)$: We proceed by induction on $d(Y)$. If $d(Y) = 0$ then $\mathfrak{m} \in \text{Anc}_R Y$ so $s(Y) = 0$. If $d(Y) > 0$ then $\mathfrak{m} \notin \text{Anc}_R Y$, and since $\text{Anc}_R Y$ is a finite set, by 2.6(b), we can choose an element $x \in \mathfrak{m} - \cup_{p \in \text{Anc}_R Y}$. We set $K = K(x; Y)$; it is clear that $s(Y) \leq s(K) + 1$. Furthermore, it follows by 2.8 (a) and 2.3 (b) that $\dim_R K < \dim_R Y$ and thereby $d(K) < d(Y)$, cf. 2.7. Thus, by the induction hypothesis we have

$$s(Y) \leq s(K) + 1 \leq d(K) + 1 \leq d(Y);$$

as desired.

3. Parameters

By 2.9 the next definitions extend the classical notions of systems and sequences of parameters for finite modules (e.g., see [8, § 14] and the appendix in [2]).

Definitions 3.1. Let Y belong to $\mathcal{D}_b(R)$ and set $d = \dim_R Y + \inf Y$. A set of elements $x_1, \ldots, x_d \in \mathfrak{m}$ are said to be a system of parameters for Y if and only if $\mathfrak{m} \in \text{Anc}_R K(x_1, \ldots, x_d; Y)$.

A sequence $x = x_1, \ldots, x_n$ is said to be a Y-parameter sequence if and only if it is part of a system of parameters for Y.

Lemma 3.2. Let Y belong to $\mathcal{D}_b(R)$ and set $d = \dim_R Y + \inf Y$. The next two conditions are equivalent for elements $x_1, \ldots, x_d \in \mathfrak{m}$.

(i) x_1, \ldots, x_d is a system of parameters for Y.

(ii) For every $j \in \{0, \ldots, d\}$ there is an equality:

$$\dim_R K(x_1, \ldots, x_j; Y) = \dim_R Y - j;$$

and x_{j+1}, \ldots, x_d is a system of parameters for $K(x_1, \ldots, x_j; Y)$.
Proof. (i) ⇒ (ii): Assume that \(x_1, \ldots, x_d \) is a system of parameters for \(Y \), then
\[
- \inf K(x_1, \ldots, x_d; Y) = \dim_R K(x_1, \ldots, x_d; Y)
\]
\[
= \dim_R K(x_{j+1}, \ldots, x_d; K(x_1, \ldots, x_j; Y))
\]
\[
\geq \dim_R K(x_1, \ldots, x_j; Y) - (d - j) \quad \text{by 2.8 (b)}
\]
\[
\geq \dim_R Y - j - (d - j) \quad \text{by 2.8 (b)}
\]
\[
= \dim_R Y - d - \inf Y.
\]

By 2.7 it now follows that \(- \inf Y = \dim_R K(x_1, \ldots, x_j; Y) - (d - j) \), so
\[
\dim_R K(x_1, \ldots, x_j; Y) = d - j - \inf Y = \dim_R Y - j,
\]
as desired. It also follows that \(d(K(x_1, \ldots, x_j; Y)) = d - j \), and since
\[
\frak{m} \in \Anc_R K(x_1, \ldots, x_d; Y) = \Anc_R K(x_{j+1}, \ldots, x_d; K(x_1, \ldots, x_j; Y)),
\]
we conclude that \(x_{j+1}, \ldots, x_d \) is a system of parameters for \(K(x_1, \ldots, x_j; Y) \).

(ii) ⇒ (i): If \(\dim_R K(x_1, \ldots, x_j; Y) = \dim_R Y - j \) then \(d(K(x_1, \ldots, x_j; Y)) = d - j \) and if \(x_{j+1}, \ldots, x_d \) is a system of parameters for \(K(x_1, \ldots, x_j; Y) \) then \(\frak{m} \) belongs to
\[
\Anc_R K(x_{j+1}, \ldots, x_d; K(x_1, \ldots, x_j; Y)) = \Anc_R K(x_1, \ldots, x_d; Y),
\]
so \(x_1, \ldots, x_d \) must be a system of parameters for \(Y \).

Proposition 3.3. Let \(Y \in \mathcal{D}_b(R) \). The following conditions are equivalent for a sequence \(x = x_1, \ldots, x_n \) in \(\frak{m} \).

(i) \(x \) is a \(Y \)-parameter sequence.

(ii) For each \(j \in \{0, \ldots, n\} \) there is an equality:
\[
\dim_R K(x_1, \ldots, x_j; Y) = \dim_R Y - j;
\]
and \(x_{j+1}, \ldots, x_n \) is a \(K(x_1, \ldots, x_j; Y) \)-parameter sequence.

(iii) There is an equality:
\[
\dim_R K(x_1, \ldots, x_n; Y) = \dim_R Y - n.
\]

Proof. It follows by 3.2 that (i) implies (ii), and (iii) follows from (ii). Now, set \(K = K(x; Y) \) and assume that \(\dim_R K = \dim_R Y - n \). Choose, by 2.9,
$s = s(K) = \dim_R K + \inf K$ elements w_1, \ldots, w_s in \mathfrak{m} such that \mathfrak{m} belongs to $\text{Anc}_R K(w_1, \ldots, w_s; K) = \text{Anc}_R K(x_1, \ldots, x_n, w_1, \ldots, w_s; Y)$. Then, by 2.7, we have

$$n + s = (\dim_Y Y - \dim_R K) + (\dim_R K + \inf K) = \dim_R Y + \inf Y = d,$$

so $x_1, \ldots, x_n, w_1, \ldots, w_s$ is a system of parameters for Y, whence x_1, \ldots, x_n is a Y-parameter sequence.

We now recover a classical result (e.g., see [2, Prop. A.4]):

Corollary 3.4. Let M be an R-module. The following conditions are equivalent for a sequence $x = x_1, \ldots, x_n$ in \mathfrak{m}.

(i) x is an M-parameter sequence.

(ii) For each $j \in \{0, \ldots, n\}$ there is an equality:

$$\dim_R M/(x_1, \ldots, x_j)M = \dim_R M - j;$$

and x_{j+1}, \ldots, x_n is an $M/(x_1, \ldots, x_j)M$-parameter sequence.

(iii) There is an equality:

$$\dim_R M/(x_1, \ldots, x_n)M = \dim_R M - n.$$

Proof. By [6, Prop. 3.12] and [5, (16.22)] we have

$$\dim_R K(x_1, \ldots, x_j; M)
= \sup \{ \dim_R (M \otimes_R H_\ell(K(x_1, \ldots, x_j))) - \ell \mid \ell \in \mathbb{Z} \}
= \sup \{ \dim_R (M \otimes_R H_\ell(K(x_1, \ldots, x_j))) - \ell \mid \ell \in \mathbb{Z} \}
= \dim_R (M \otimes_R R/(x_1, \ldots, x_j)).$$

Theorem 3.5. Let $Y \in \mathcal{D}_K^+(R)$. The following hold for a sequence $x = x_1, \ldots, x_n$ in \mathfrak{m}.

(a) There is an inequality:

$$\text{amp}_K(x; Y) \geq \text{amp}_Y;$$

and equality holds if and only if x is a Y-sequence.

(b) There is an inequality:

$$\text{cmd}_R K(x; Y) \geq \text{cmd}_R Y;$$

and equality holds if and only if x is a Y-parameter sequence.
(c) If x is a maximal Y-sequence, then

$$\text{amp } Y \leq \text{cmd}_R K(x; Y).$$

(d) If x is a system of parameters for Y, then

$$\text{cmd}_R Y \leq \text{amp } K(x; Y).$$

Proof. In the following K denotes the Koszul complex $K(x; Y)$.

(a): Immediate by 2.7 and [4, Prop. 5.1].
(b): By [4, Thm. 4.7 (a)] and 2.8 (b) we have

$$\text{cmd}_R K = \dim_R K - \text{depth}_R K = \dim_R K + n - \text{depth}_R Y \geq \text{cmd}_R Y,$$

and by 3.3 equality holds if and only if x is a Y-parameter sequence.

(c): Suppose x is a maximal Y-sequence, then

$$\text{amp } Y = \sup Y - \inf K \quad \text{by 2.7}$$

$$= -\text{depth}_R K - \inf K \quad \text{by [4, Thm. 5.4]}$$

$$\leq \text{cmd}_R K \quad \text{by (1.2)}.$$

(d): Suppose x is a system of parameters for Y, then

$$\text{amp } K = \sup K + \dim_R K$$

$$\geq \dim_R K - \text{depth}_R K \quad \text{by (1.3)}$$

$$= \text{cmd}_R Y \quad \text{by (b)}.$$

Theorem 3.6. The following hold for $Y \in \mathcal{D}_R(R)$.

(a) The next four conditions are equivalent.

(i) There is a maximal Y-sequence which is also a Y-parameter sequence.

(ii) $\text{depth}_R Y + \sup Y \leq \dim_R Y + \inf Y$.

(ii') $\text{amp } Y \leq \text{cmd}_R Y$.

(iii) There is a maximal strong Y-sequence which is also a Y-parameter sequence.

(b) The next four conditions are equivalent.

(i) There is a system of parameters for Y which is also a Y-sequence.

(ii) $\dim_R Y + \inf Y \leq \text{depth}_R Y + \sup Y$.

(ii') $\text{cmd}_R Y \leq \text{amp } Y$.

(iii) There is a system of parameters for Y which is also a strong Y-sequence.

(c) The next four conditions are equivalent.

(i) There is a system of parameters for Y which is also a maximal Y-sequence.

(ii) $\dim_R Y + \inf Y = \depth_R Y + \sup Y$.

(ii') $\cmd_R Y = \amp Y$.

(iii) There is a system of parameters for Y which is also a maximal strong Y-sequence.

Proof. Let $Y \in D^f(R)$, set $n(Y) = \depth_R Y + \sup Y$ and $d(Y) = \dim_R Y + \inf Y$.

(a): A maximal Y-sequence is of length $n(Y)$, cf. [4, Cor. 5.5], and the length of a Y-parameter sequence is at most $d(Y)$. Thus, (i) implies (ii) which in turn is equivalent to (ii'). Furthermore, a maximal strong Y-sequence is, in particular, a maximal Y-sequence, cf. [4, Cor. 5.7], so (iii) is stronger than (i). It is now sufficient to prove the implication (ii) \Rightarrow (iii): We proceed by induction. If $n(Y) = 0$ then the empty sequence is a maximal strong Y-sequence and a Y-parameter sequence. Let $n(Y) > 0$; the two sets $\Ass_R Y$ and $W_0(Y)$ are both finite, and since $0 < n(Y) \leq d(Y)$ none of them contain m. We can, therefore, choose an element $x \in m - \cup_{\Ass_R Y \cup W_0(Y)} p$, and x is then a strong Y-sequence, cf. [4, Def. 3.3], and a Y-parameter sequence, cf. 3.3 and 2.8. Set $K = K(x; Y)$, by [4, Thm. 4.7 and Prop. 5.1], respectively, 2.8 and 2.7 we have

$$\depth_R K + \sup K = n(Y) - 1 \leq d(Y) - 1 = \dim_R K + \inf K.$$

By the induction hypothesis there exists a maximal strong K-sequence w_1, \ldots, w_{n-1} which is also a K-parameter sequence, and it follows by [4, 3.5] and 3.3 that x, w_1, \ldots, w_{n-1} is a strong Y-sequence and a Y-parameter sequence, as wanted.

The proof of (b) is similar to the proof of (a), and (c) follows immediately by (a) and (b).

Theorem 3.7. The following hold for $Y \in D^f(R)$:

(a) If $\amp Y = 0$, then any Y-sequence is a Y-parameter sequence.

(b) If $\cmd_R Y = 0$, then any Y-parameter sequence is a strong Y-sequence.

Proof. The empty sequence is a Y-parameter sequence as well as a strong Y-sequence, this founds the base for a proof by induction on the length n of
the sequence \(x = x_1, \ldots, x_n \). Let \(n > 0 \) and set \(K = K(x_1, \ldots, x_{n-1}; Y) \); by 2.8 (a) we have
\[
\dim R K(x_1, \ldots, x_n; Y) = \dim R K(x_n; K) = \sup \{ \dim R/v - \inf K_p \mid v \in \text{Supp}_K K \cap V(x_n) \}.
\]

Assume that \(\text{amp} Y = 0 \). If \(x \) is a \(Y \)-sequence, then \(\text{amp} K = 0 \) by 3.5 (a) and \(x_n \not\in Z R K \), cf. [4, Def. 3.3]. As \(Z R K = \bigcup_{v \in \text{Ass}_R K} v \), cf. [4, 2.5], it follows by (b) and (c) in 2.3 that \(x_n \) is not contained in any prime ideal \(v \in \mathcal{W}_0(K) \); so from (*) we conclude that \(\dim R K(x_n; K) < \dim R K \), and it follows by 2.8 (b) that \(\dim R K(x_n, K) = \dim R K - 1 \). By the induction hypothesis \(\dim R K = \dim R Y - (n - 1) \), so \(\dim R K(x_1, \ldots, x_n; Y) = \dim R Y - n \) and it follows by 3.3 that \(x \) is a \(Y \)-parameter sequence. This proves (a).

We now assume that \(\text{cmd} R Y = 0 \). If \(x \) is a \(Y \)-parameter sequence then, by the induction hypothesis, \(x_1, \ldots, x_{n-1} \) is a strong \(Y \)-sequence, so it is sufficient to prove that \(x_n \not\in Z R K \), cf. [4, 3.5]. By 3.3 it follows that \(x_n \) is a \(K \)-parameter sequence, so \(\dim R K(x_n; K) = \dim R K - 1 \) and we conclude from (*) that \(x_n \not\in \bigcup_{v \in \mathcal{W}_0(K)} v \). Now, by 3.5 (b) we have \(\text{cmd} R K = 0 \), so it follows from 2.3 (d) that \(x_n \not\in \bigcup_{v \in \text{Ass}_R K} v = Z R K \). This proves (b).

Semi-dualizing Complexes 3.8. We recall two basic definitions from [3]:

A complex \(C \in \mathcal{D}_b(R) \) is said to be **semi-dualizing** for \(R \) if and only if the homothety morphism \(\chi^R_C : R \to \mathsf{RHom}_R(C, C) \) is an isomorphism [3, (2.1)].

Let \(C \) be a semi-dualizing complex for \(R \). A complex \(Y \in \mathcal{D}_b(R) \) is said to be **\(C \)-reflexive** if and only if the **dagger dual** \(Y^C = \mathsf{RHom}_R(Y, C) \) belongs to \(\mathcal{D}_b(R) \) and the **biduality morphism** \(\delta^C_Y : Y \to \mathsf{RHom}_R(\mathsf{RHom}_R(Y, C), C) \) is invertible in \(\mathcal{D}(R) \) [3, (2.7)].

Relations between dimension and depth for \(C \)-reflexive complexes are studied in [3, sec. 3], and the next result is an immediate consequence of [3, (3.1) and (2.10)].

Let \(C \) be a semi-dualizing complex for \(R \) and let \(Z \) be a \(C \)-reflexive complex. The following holds for \(v \in \text{Spec } R \): If \(v \in \text{Anc}_R Z \) then \(v \in \text{Ass}_R Z^C \), and the converse holds in \(C \) is Cohen-Macaulay.

A **dualizing complex**, cf. [7], is a semi-dualizing complex of finite injective dimension, in particular, it is Cohen-Macaulay, cf. [3, (3.5)]. If \(D \) is a dualizing complex for \(R \), then, by [7, Prop. V.2.1], all complexes \(Y \in \mathcal{D}_b(R) \) are \(D \)-reflexive; in particular, all finite \(R \)-modules are \(D \)-reflexive and, therefore, [4, 5.10] is a special case of the following:
Theorem 3.9. Let C be a Cohen-Macaulay semi-dualizing complex for R, and let $x = x_1, \ldots, x_n$ be a sequence in m. If Y is C-reflexive, then x is a Y-parameter sequence if and only if it is a $R\text{Hom}_R(Y, C)$-sequence; that is

$$x \text{ is a } Y\text{-parameter sequence } \iff x \text{ is a } R\text{Hom}_R(Y, C)\text{-sequence.}$$

Proof. We assume that C is a Cohen-Macaulay semi-dualizing complex for R and that Y is C-reflexive, cf. 3.8. The desired biconditional follows by the next chain, and each step is explained below (we use the notation $-^c$ introduced in 3.8).

$$x \text{ is a } Y\text{-parameter sequence } \iff \text{cmd}_R K(x; Y) = \text{cmd}_R Y$$
$$\iff \text{amp} K(x; Y)^c = \text{amp} Y^c$$
$$\iff \text{amp} K(x; Y^c) = \text{amp} Y^c$$
$$\iff x \text{ is a } Y^c\text{-sequence.}$$

The first biconditional follows by 3.5 (b) and the last by 3.5 (a). Since $K(x)$ is a bounded complex of free modules (hence of finite projective dimension), it follows from [3, Thm. (3.17)] that also $K(x; Y)$ is C-reflexive, and the second biconditional is then immediate by the CMD-formula [3, Cor. (3.8)]. The third one is established as follows:

$$K(x; Y)^c \simeq R\text{Hom}_R(K(x) \otimes_R^L Y, C)$$
$$\simeq R\text{Hom}_R(K(x), Y^c)$$
$$\simeq R\text{Hom}_R(K(x), R \otimes_R^L Y^c)$$
$$\simeq R\text{Hom}_R(K(x), R) \otimes_R^L Y^c$$
$$\sim K(x) \otimes_R^L Y^c$$
$$\simeq K(x; Y^c),$$

where the second isomorphism is by adjointness and the fourth by, so-called, tensor-evaluation, cf. [1, (1.4.2)]. It is straightforward to check that $\text{Hom}_R(K(x), R)$ is isomorphic to the Koszul complex $K(x)$ shifted n degrees to the right, and the symbol \sim denotes isomorphism up to shift.

If C is a semi-dualizing complex for R, then both C and R are C-reflexive complexes, cf. [3, (2.8)], so we have an immediate corollary to the theorem:

Corollary 3.10. If C is a Cohen-Macaulay semi-dualizing complex for R, then the following hold for a sequence $x = x_1, \ldots, x_n$ in m.

(a) x is a C-parameter sequence if and only if it is an R-sequence.
(b) *x* is an *R*-parameter sequence if and only if it is a *C*-sequence.

Acknowledgements. The author would like to thank professor Srikanth Iyengar and professor Hans-Bjørn Foxby for taking the time to discuss the material presented here.

REFERENCES