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COMPACT MEASURES AND MEASURABLE
WEAK SECTIONS

WERNER RINKEWITZ

Abstract
Compact measures, i.e. measures that are inner-regular with respect to a compact family of sets,
are related to measurable weak sections in the same way as semicompact measures are related
to disintegration. This enables us to prove several stability properties of the class of compact
measures. E.g., a countable sum of compact measures is compact; the image ν of a compact
measure µ is compact provided µ is an extremal preimage measure of ν. As a consequence, we
show that every tight Baire measure is compact.

0. Introduction

Let (X,A ) be a measurable space, (Y,B, ν) be a finite measure space, and
p : X −→ Y be an (A ,B)-measurable map. If µ is a measure on A with
µ(p−1[B]) = ν(B) for all B ∈ B, we write p(µ) = ν, and call µ a preimage
measure of ν; let us denote the convex set of all such measures byM(p, ν). One
way to solve the equation p(µ) = ν (for µ) consists in finding a measurable
section s for p (i.e. a map s : Y −→ X with p ◦ s = idY ) and then putting
µ := s(ν). It is well-known that in this case we get even an extremal preimage
measure of ν, i.e., µ ∈ exM(p, ν); and this last fact remains true if we replace
s by a so-called measurable weak section q for p, a notion introduced in [3]
(see §2 for the definition). Since in general not every µ ∈ exM(p, ν) can
be representated in this way (§2, Example 2.1), it is natural to ask in which
situation this is true. E.g., S. Graf gives a positive answer for the case that µ
is a Radon measure on a Hausdorff space X ([4, Theorem 3]). In this paper,
we show first (Theorem 2.2) that the result of S. Graf holds for a more general
class of measures: the compact measures in the sense of [14] (see §1 for a
definition; cf. also [7, Remark 3]). More important, however, is that we can
also prove a converse of this result: If we obtain a given measure µ for all p
and ν satisfying µ ∈ exM(p, ν) as the image of ν under a measurable weak
section for p, then µ is compact (Theorem 2.4).

These two results show that the class of compact measures is related to the
notion of a measurable weak section in the same way as the class of semi-
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compact measures – i.e. the compact measures in the sense of [9]; here we
use the terminology suggested in [10, 1.4.(d)], cf. also [11] and §1 – is re-
lated to a kind of disintegration introduced by J. Pachl (cf. [10, Theorem 3.5,
Theorem 2.2]). As in [10], [11], this connection enables a further investigation
of the class of compact measures. E.g., we can show that a countable sum
of compact measures is compact again. While in this aspect the behaviour of
compact measures is analogous to that of the semicompact ones, the same is
not true for another important operation: The image ν = p(µ) of a compact
measure µ is in general not compact (§2, Example 2.5). But, if in addition
µ ∈ exM(p, ν), then ν is compact (Theorem 2.6). By this invariance prop-
erty, we prove a result that was implicitly shown in [1] (Proposition 3.1) for
completely regular Hausdorff spaces: Every tight Baire measure is compact
(cf. Corollary 2.8 and Remark 1.2(a)). Hence compact measures are a common
generalization of finite Radon measures (in the sense of [15, p. 82]) and tight
Baire measures on arbitrary topological spaces.

Of course, the significance of these considerations stems finally from the fact
that some theorems in measure theory hold for compact measures in general:
Let us mention, e.g., the results in [7] (Theorems 1, 2, 3) on measurable
selections and uncountable measurable unions, the representation of compact
measures by Loeb measures ([14, Theorem 1.1], [13, Corollary 4.5]), or our
Theorem 2.2. In this sense, the present work is addressed to the question:
Which measures are compact?

1. Preliminaries and first results on compact measures

Before we introduce the main subject of this paper, the class of compact meas-
ures, let us fix some general notations. LetA be a subset of some setX, and let
B be a collection of subsets ofX. We writeAc for the complement ofA inX and
χA for the characteristic function of A; Bc := {Bc | B ∈ B}, Bδ denotes the
class of all countable intersections of members of B, andσ(B) is theσ -algebra
generated by B. If B contains ∅, X and is closed under finite unions and finite
(countable) intersections, we call B a (δ-)lattice. B has the finite intersection
property (f.i.p.) provided every finite subset of B has nonempty intersection.
B is called compact (semicompact) if every (countable) B0 ⊂ B with f.i.p. has
nonempty intersection. Let (X,A , µ) be a measure space; throughout our pa-
per this means that µ is nonnegative and finite. The completion of A with
respect to µ is denoted by Aµ; whenever necessary, we will identify µwith its
completion on Aµ. We write A ⊂µ B provided µ(A \ B) = 0. Similarly, we
defineA =µ B and f =µ g for Aµ-measurable functions f, g : X −→ R. The
measureµ is called K -regular or regular with respect to K (where K ⊂ A )
provided µ(A) = sup{µ(K) | K ∈ K , K ⊂ A} for all A ∈ A ; the measure
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space (X,A , µ) or the measure µ is compact (semicompact) if there exists a
compact (semicompact) lattice K ⊂ A such that µ is K -regular. (By [14,
Corollary 3.2], our definition is equivalent to that given in [14] or [7]; however,
it is often convenient to assume that K is a lattice.)

Basic examples of compact measures are finite Radon measures, i.e. meas-
ures defined on the Borel σ -algebra of a topological space X that are regular
with respect to the family of closed compact sets in X, and, of course, the
Dirac measures.

The main tool of our investigation is Proposition 1.1. For this it is necessary
to introduce, similar to [10, §2], the Stone representation space S(A ) of a
σ -algebra A . We summarize some well-known facts concerning it: S(A ) is
a compact zero dimensional Hausdorff space, which is, up to a homeomorph-
ism, uniquely determined by the condition that the algebra of its clopen sets,
�(S(A )), is isomorphic to A . Let in the sequal

̂ : A � A → Â ∈ Â := �(S(A ))

be such an algebra isomorphism. Furthermore, with every measure µ on A
we can associate a measure µ̂ on σ(Â ) in a natural way: Put µ̂(Â) := µ(A)

for all A ∈ A ; then µ̂ is additive on Â and σ -smooth at ∅. Therefore µ̂ can
uniquely be extended to a measure µ̂ on σ

(
Â

)
.

Proposition 1.1. Let (X,A , µ) be a measure space, and let L ⊂ A be
a δ-lattice such that µ is L -regular. The following conditions are equivalent:

(i) µ is compact.

(ii) For every measure space (Y,B, ν) and every algebra homomorphism
� : A −→ Bν satisfying ν◦� = µ, there exists a (Bν,A )-measurable
map q : Y −→ X such that �(A) =ν q

−1[A] for all A ∈ A .

(iii) There exists a
(
σ(Â )µ̂,A

)
-measurable map q : X̂ −→ X such that

Â ⊂µ̂ q
−1[A] for all A ∈ A .

(iv) There exists a compact lattice K ⊂ L such that µ is K -regular and a(
σ(Â )µ̂,A

)
-measurable map q : X̂ −→ X with K̂ ⊂ q−1[K] for all

K ∈ K .

Proof. (i)⇒ (ii). Let� be as in (ii), and let K be a compact lattice such
that µ is K -regular. For all y ∈ Y , put Ky := {K ∈ K | y ∈ �(K)}. Then
Ky ⊂ K is nonempty and has f.i.p.; thus,

⋂
Ky �= ∅. Select an (arbitrary)

element q(y) ∈ ⋂
Ky , y ∈ Y . This gives us a map q : Y −→ X. We claim

that q has the desired properties. To prove this, fix A ∈ A and ε > 0. Since
µ is K -regular, there exist K ∈ K and U ∈ K c with K ⊂ A ⊂ U and
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µ(U \K) ≤ ε. An easy consequence of our definition of q is�(K) ⊂ q−1[K]
and, by taking complements, q−1[U ] ⊂ �(U). Thus

ν(�(U)\�(K)) ≤ ε and �(K) ⊂ q−1[K] ⊂ q−1[A] ⊂ q−1[U ] ⊂ �(U).
This shows q−1[A] ∈ Bν and, by �(K) ⊂ �(A) ⊂ �(U), also �(A) =ν

q−1[A].
(ii)⇒ (iii). If we put (Y,B, ν) := (

X̂, σ (Â ), µ̂
)

and� := ̂ : A −→ Â ,
this implication is obvious.
(iii) ⇒ (iv). Take q as in (iii), and put K := {L ∈ L | L̂ ⊂ q−1[L]}.

Obviously, K ⊂ L is a lattice satisfying K̂ ⊂ q−1[K] for all K ∈ K ; since
X̂ is compact, K is also compact. To prove that µ is K -regular, fix A ∈ A
and ε > 0. Then there exists L1 ∈ L with

(∗) L̂1 ⊂ Â ∩ q−1[A] and µ̂(Â ∩ q−1[A] \ L̂1) ≤ ε/2.
Ad (∗). Since µ̂ is Â δ-regular, there exists a decreasing sequence (Cn)n∈N ⊂ A
with

⋂
n∈N Ĉn ⊂ Â∩ q−1[A] and µ̂(Â∩ q−1[A] \⋂

n∈N Ĉn) ≤ ε/4 (N denotes
the set of natural numbers without zero). The L -regularity of µ gives us for
C := ⋂

n∈N Cn ∈ A a setL1 ∈ L withL1 ⊂ C andµ(C \L1) = µ̂(Ĉ \L̂1) ≤
ε/4. Since L̂1 ⊂ Ĉ ⊂ ⋂

n∈N Ĉn and Ĉ =µ̂

⋂
n∈N Ĉn, these inequalities show

that L1 satisfies (∗).
Similarly, there exists L2 ∈ L with

L̂2 ⊂ L̂1 ∩ q−1[L1] and µ̂(L̂1 ∩ q−1[L1] \ L̂2) ≤ ε/4.
By recursion, we obtain therefore a decreasing sequence (Ln)n∈N ⊂ L with

L̂n ⊂ q−1[Ln−1] and µ̂(L̂n−1 ∩q−1[Ln−1]\L̂n) ≤ ε/2n (n ∈ N, L0 := A).
PutK := ⋂

n∈N Ln ⊂ A. ThenK ∈ L and K̂ ⊂ ⋂
n∈N L̂n ⊂ ⋂

n∈N q
−1[Ln−1]

= q−1[K], i.e., K ∈ K . Moreover, we obtain

µ(A \K) = µ
(
A \

⋂
n∈N

Ln

)
= µ

(⋃
n∈N

(Ln−1 \ Ln)
)

=
∑
n∈N

µ(Ln−1 \ Ln) =
∑
n∈N

µ̂
(
L̂n−1 \ L̂n

)
(iii)=

∑
n∈N

µ̂
(
L̂n−1 ∩ q−1[Ln−1] \ L̂n

) ≤
∑
n∈N

ε

2n
= ε.

This shows (iv).
(iv)⇒ (i). Trivial.
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Remark 1.2. In many aspects Proposition 1.1 is related to [1, Theorem 3.2],
a theorem dealing with measuresµ defined on the Baire σ -field of a completely
regular Hausdorff space. The most important ones are:

(a) Since a Baire measure µ is regular with respect to the δ-lattice of zero-
sets, a comparison of 1.1(iv) with [1, 3.2(vi)] yields that µ is compact iff it is
H-compact (see [1, p. 559] for the definition).

(b) The defining property of a H-compact Baire measure and condition (ii)
of Proposition 1.1 for the abstract measure µ are similar. Conequently, the
same is true for the proofs of 1.1, (i)⇒ (ii) and [1, Theorem 3.2, (vi)⇒ (i)].

(c) The proof of Proposition 1.1, (iii)⇒ (iv) should be compared with that
of [1, Theorem 3.2, (v) ⇒ (vi)]. The idea of a recursive construction in the
proof of these implications is taken from [10] (Theorem 2.2; cf. [1, Remark (b),
p. 564]).

Proposition 1.1 enables us to prove the following Corollary (see [11, Co-
rollary 3] for the corresponding result on semicompact measures).

Corollary 1.3. Suppose µn, n ∈ N, are measures on a measurable space
(X,A ) with

∑
n∈N µn(X) <∞. Then

µn is compact for all n ∈ N ⇐⇒ µ :=
∑
n∈N

µn is compact.

Proof. Since “⇐” is obvious, we only prove “⇒”. Obviously, each meas-
ure µ̂n is absolutely continuous with respect to µ̂; let hn be a corresponding
Radon-Nikodym density. We may assume that

∑
n∈N hn(y) = 1 for all y ∈ X̂.

Since eachµn is compact, there are lattices Kn and maps qn, n ∈ N, satisfying
the conditions of Proposition 1.1(iv) with L := A . First we will show that
for all n ∈ N, A ∈ A , and B ∈ σ(Â )
(1) hnχq−1

n [A] is σ(Â )µ̂-measurable

and

(2) µ̂n(Â ∩ B) =
∫
B

hnχq−1
n [A] dµ̂.

Ad (1), (2). Choose, for given n ∈ N and A ∈ A , an increasing sequence
(Ki)i∈N ⊂ Kn and a decreasing sequence (Ui)i∈N ⊂ K c

n with
⋃
i∈NKi ⊂ A ⊂⋂

i∈N Ui and µn(
⋃
i∈NKi) = µn(⋂i∈N Ui). Then, for all B ∈ σ(Â ),

µ̂n(Â ∩ B) = sup
i∈N
µ̂n(K̂i ∩ B) = sup

i∈N

∫
K̂i∩B

hn dµ̂ =
∫
B

hnχ⋃
i∈N K̂i

dµ̂

≤
∫
B

hnχ⋂
i∈N Ûi

dµ̂ = inf
i∈N

∫
Ûi∩B

hn dµ̂ = inf
i∈N
µ̂n(Ûi ∩ B) = µ̂n(Â ∩ B).
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If we put B := X̂, this yields hnχ⋃
i∈N K̂i

=µ̂ hnχ⋂
i∈N Ûi

. Therefore we obtain
(1) and (2) by the inequalities hnχ⋃

i∈N K̂i
≤ hnχq−1

n [A] ≤ hnχ⋂
i∈N Ûi

(note

K̂ ⊂ q−1
n [K] for all K ∈ Kn).

Now let B1 := {h1 > 0} and Bk := {h1 = 0, . . . , hk−1 = 0, hk > 0} for
k ≥ 2. The sets Bk ∈ σ(Â ), k ∈ N, form a partition of X̂. Therefore, if we
put q(y) := qk(y) for y ∈ Bk , k ∈ N, we obtain a map q : X̂ −→ X. We
will show that q satisfies (iii) of Proposition 1.1. Fix A ∈ A . Then q−1[A] =⋃
k∈N(Bk ∩ q−1[A]) = ⋃

k∈N(Bk ∩ q−1
k [A]). Since each hkχq−1

k [A] is σ(Â )µ̂-

measurable (recall (1)), Bk ∩ q−1
k [A] ∈ σ(Â )µ̂. Thus, q−1[A] ∈ σ(Â )µ̂;

i.e., q is
(
σ(Â )µ̂,A

)
-measurable. Given k ∈ N, we obtain by the equation

µ̂ = ∑
n∈N µ̂n and by (2) (put there B := Â ∩ Bk)

µ̂(Â ∩ Bk) =
∑
n∈N

µ̂n(Â ∩ Bk) =
∑
n∈N

∫
Â∩Bk

hnχq−1
n [A] dµ̂

=
∫
Â∩Bk

∑
n∈N

hnχq−1
n [A] dµ̂.

This shows that
∑
n∈N(hnχq−1

n [A])(y) = 1 holds for µ̂-almost every y ∈ Â∩Bk .
Let y0 ∈ Â ∩ Bk with

∑
n∈N(hnχq−1

n [A])(y0) = 1 be given. Since hk(y0) > 0
and

∑
n∈N hn(y0) = 1, we have y0 ∈ q−1

k [A]. Thus, Â∩Bk ⊂µ̂ q
−1
k [A]∩Bk =

q−1[A] ∩ Bk ⊂ q−1[A], and hence Â ⊂µ̂ q
−1[A].

We notice some further properties of compact measures, mainly obtained
by Corollary 1.3.

Remark 1.4. Letµ, ν be measures. Ifν is absolutely continuous with respect
toµ andµ is compact, then ν is compact, too. Sinceµ∨ν, µ∧ν ≤ µ+ν, this
shows together with Corollary 1.3 that the supremum and the infimum of two
compact measures is compact again. Obviously, the same is true for the direct
product of two compact measures. Moreover, using Corollary 1.3 again, we
can prove (completely analogous to [11, Corollary 4]) that for every countable
familyM of compact measures there is always a compact lattice K such that
each µ ∈ M is K -regular.

2. The relation between compact measures and measurable weak
sections and its consequences

In this section, we prove our main results on compact measures. Let us begin
with the following central definition: Suppose (X,A ) is a measurable space,
(Y,B, ν) is a measure space, and p : X −→ Y is (A ,B)-measurable; then,
following [3] and [4], we call a map q : Y −→ X a measurable weak section
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for p provided q is (Bν,A )-measurable and q−1
[
p−1[B]

] =ν B holds for all
B ∈ B.

To prove our theorems, we need a well-known criterion due to D. Plachky:
A measure µ ∈ M(p, ν) (the convex set of all preimage measures of ν) is
an extreme point, i.e. a member of exM(p, ν), iff for all A ∈ A there exists
B ∈ B with A =µ p

−1[B] (see [12] or, e.g., [5, Lemma 3]). In the sequal, we
will simply write “(Pl)” if we refer to this fact.

To become more familiar with the above definition and with (Pl), let us
discuss a simple, but instructive

Example 2.1. Let (X,A ) := ([0, 1], {A ⊂ X | A or Ac is countable })
and µ(A) := 0 if A is countable and µ(A) := 1 for all other sets A ∈
A . Furthermore, let us put (Y,B) := (X, {∅, X}), ν(∅) := 0, ν(Y ) := 1,
and p := id[0,1]. By (Pl), we obtain µ ∈ exM(p, ν); but, since every weak
measurable section q of p is constant, we cannot obtain µ in the way q(ν),
which yields a Dirac measure. However, if we note that a 2-valued nontrivial
measure is compact iff it is a Dirac measure ([13, Theorem 4.6]), we can
see that exactly the compact measures µ ∈ exM(p, ν) are of the form q(ν).
(The content of Corollary 2.9 is that this fact remains true even in a general
situation.)

Our first result generalizes [4, Theorem 3].

Theorem 2.2. Let (X,A , µ) be a compact measure space, (Y,B, ν) be
a measure space, and p : X −→ Y be an (A ,B)-measurable map with
p(µ) = ν. Then the following statements are equivalent:

(i) µ ∈ exM(p, ν).

(ii) There exists a measurable weak section q : Y−→X for p with q(ν)=µ.

Proof. (i) ⇒ (ii). We may assume that the measure ν is nontrivial. Since
µ is extremal, for every A ∈ A there exists, by (Pl), a set %(A) ∈ B with
A =µ p

−1[%(A)]. This gives us a map % : A −→ B with the following
properties:

• %(∅) =ν ∅, %(X) =ν Y ;

• %(A1 ∩ A2) =ν %(A1) ∩%(A2) for all A1, A2 ∈ A ;

• %(Ac) =ν (%(A))
c for all A ∈ A .

Let l be a lifting for Bν (see, e.g., [6, Chapter IV]); then � := l ◦ % :
A −→ Bν is an algebra homomorphism with (∗) ν(�(A)) = ν(%(A)) =
µ(p−1[%(A)]) = µ(A) for all A ∈ A . Therefore, according to Proposi-
tion 1.1, (i)⇒ (ii), there exists a (Bν,A )-measurable map q : Y −→ X with
q−1[A] =ν �(A) for all A ∈ A . Together with (∗) this gives us q(ν) = µ.
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By definition of %, we have p−1[B] =µ p
−1[%(p−1[B])] for all B ∈ B, and

therefore B =ν %(p
−1[B]) =ν �(p

−1[B]) =ν q
−1[p−1[B]]. Hence q is a

measurable weak section for p.
(ii) ⇒ (i) (this implication is known; see, e.g., [4, Remark, p. 74]). Since

ν(B) = ν(q−1[p−1[B]]) = µ(p−1[B]) for all B ∈ B, we have µ ∈ M(p, ν).
Moreover, for every A ∈ A there exists a set B ∈ B with q−1[A] =ν B =ν

q−1[p−1[B]]. Thus, A =µ p
−1[B]. By (Pl), this gives us µ ∈ exM(p, ν).

For the proof of a converse of Theorem 2.2 (and for Theorem 2.6) we need
the following Lemma. There, given a measurable space (X,A ) and x ∈ X,
we write pA (x) for the unique element contained in the nonempty set

⋂{Â |
A ∈ A , x ∈ A}.

Lemma 2.3. Let (X,A , µ) be a measure space, and let pA : X � x →
pA (x) ∈ X̂. Then pA is an

(
A , σ (Â )

)
-measurable map with p−1

A [Â ] = A

for all A ∈ A . Moreover, µ ∈ exM(pA , µ̂) holds.

Proof. Let A ∈ A . Since pA (x) ∈ Â iff x ∈ A, we have p−1
A [Â ] = A.

This shows that pA is
(
A , σ (Â )

)
-measurable and, moreover, that the set

M(pA , µ̂) is a singleton containing µ; hence µ ∈ exM(pA , µ̂).

Theorem 2.4. Let (X,A , µ) be a measure space. Suppose that for every
measure space (Y,B, ν) and every (A ,B)-measurable map p : X −→ Y

satisfyingµ ∈ exM(p, ν) there exists a measurable weak section q : Y −→ X

for p with q(ν) = µ. Then µ is compact.

Proof. Put (Y,B, ν) := (
X̂, σ (Â ), µ̂

)
and p := pA : X −→ Y . By

Lemma 2.3, p is an (A ,B)-measurable map withµ ∈ exM(p, ν). According
to our assumption, there exists therefore a

(
σ(Â )µ̂,A

)
-measurable map q :

X̂ −→ X with Â =µ̂ q
−1[p−1

A [Â ]] = q−1[A] for all A ∈ A . This shows that
µ is compact (Proposition 1.1, (iii)⇒ (i)).

By [11, Theorem 2], the image p(λ) of a semicompact measure λ is semi-
compact again. The following simple example shows that this is no longer true
for compact measures.

Example 2.5. Let λ be the Lebesgue measure on the usual Borel σ -algebra
of [0, 1], and let (X,A , µ) and p be as in Example 2.1. Then p(λ) = µ, but
µ is not compact.

Of course, in this example λ is not an extremal preimage measure. The next
result shows that this fact is crucial.

Theorem 2.6. Let (X,A , µ) be a compact measure space, (Y,B, ν) be a
measure space, and p : X −→ Y be an (A ,B)-measurable map such that
µ ∈ exM(p, ν). Then p(µ) = ν is compact.
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Proof. Put p̃ := pB ◦ p : X −→ Ŷ (recall Lemma 2.3). Then µ ∈
exM(p̃, ν̂). According to Theorem 2.2, (i)⇒ (ii), there exists a

(
σ(B̂)ν̂ ,A

)
-

measurable map q̃ : Ŷ −→ X such that B̂ =ν̂ q̃
−1[p̃−1[B̂ ]] holds for all

B ∈ B. Now, put q := p ◦ q̃; then q : Ŷ −→ Y is
(
σ(B̂)ν̂ ,B

)
-measurable

with q−1[B] = q̃−1[p−1[B]] = q̃−1[p−1[p−1
B [B̂ ]]] = q̃−1[p̃−1[B̂ ]] =ν̂ B̂

for all B ∈ B. Again, Proposition 1.1 proves the theorem.

An immediate consequence of Theorem 2.6 and (Pl) is

Remark 2.7. Suppose (X,A , µ) is a compact measure space and B ⊂ A
is a σ -algebra such that for all A ∈ A there exists B ∈ B with B =µ A; then
µ|B is compact. E.g., if the completion of a measure µ is compact, then µ is
compact, too. (The last fact follows already from Proposition 1.1, (i)⇒ (iv).)

In the case of a completely regular Hausdorff space the next result is Pro-
position 3.1 of [1] (cf. Remark 1.2(a)). Recall the following definition (see,
e.g., [2]): A Baire measure ν, i.e. a finite measure defined on the σ -algebra
�(X) generated by the lattice �(X) of zero-sets in an (arbitrary) topological
space X, is called tight provided for every ε > 0 there exists a compact set
K ⊂ X such that ν∗(K) ≥ ν(X)− ε (as usual, ν∗ denotes the outer measure
associated with ν).

Corollary 2.8. Every tight Baire measure on a topological space X is
compact with respect to a sublattice of �(X).

Proof. Let ν|�(X) be tight, and let (Kn)n∈N be an increasing sequence
of compact sets with supn∈N ν

∗(Kn) = ν(X). Since ν is �(X)-regular, we
only have to prove that ν is compact (Proposition 1.1, (i) ⇒ (iv)). Put A :=
σ(�(X)∪ {Kn | n ∈ N}). According to [8, Theorem 2], there exists a (unique)
measure µ on A with µ(Kn) = ν∗(Kn) for all n ∈ N and µ|�(X) = ν. Then
µ is an extremal extension of ν (see, e.g., [8, Remark 2]). By Theorem 2.6, it
remains to show thatµ is compact. We put Kn := {Kn∩Z | Z ∈ �(X)}, n ∈ N,
and K ′ := ⋃

n∈N Kn. SinceKn is compact andKn ⊂ Kn+1, n ∈ N, the family
K ′ is compact. Let K be the δ-lattice generated by K ′. Then K ⊂ A is
compact, too (see, e.g., [14, Corollary 3.2]). We will show thatµ is K -regular.
Put A0 := {A ∈ A | A and Ac satisfy (∗)}, where (∗) holds for A ∈ A iff
µ(A) = sup{µ(K) | K ∈ K , K ⊂ A}. Using well-known arguments, we
see that A0 is a σ -algebra. If we can show that �(X) ∪ {Kn | n ∈ N} ⊂ A0,
the proof is complete.

Fix B ∈ �(X) and ε > 0. Since every Baire measure in a spaceX is �(X)-
regular, there exists Z ∈ �(X) with Z ⊂ B and µ(B \Z) = ν(B \Z) ≤ ε/2.
Furthermore, there exists N ∈ N with µ(KcN) ≤ ε/2. ForK := Z ∩KN ∈ K
we obtain therefore K ⊂ B and µ(B \K) ≤ ε. Hence B satisfies (∗); for the
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same reasons, this is also true for Bc. Thus, B ∈ A0. Finally, let Kn, n ∈ N,
and ε > 0 be given. AsKn ∈ K , we only have to considerKcn. Sinceµ(Kn) =
ν∗(Kn), there exists U ∈ �(X)c with U ⊃ Kn and µ(U \ Kn) ≤ ε/2 (recall
that µ|�(X) = ν and that ν is �(X)-regular). Again, choose N ∈ N with
µ(KcN) ≤ ε/2, and put K := KN ∩ Uc ∈ K . Then we have K ⊂ Uc ⊂ Kcn
and µ(Kcn \K) = µ(Kcn \Uc)+µ(Uc \ (KN ∩Uc)) ≤ ε/2 + ε/2 = ε. This
shows that Kn ∈ A0.

A motivation for our last result is provided by Example 2.1: There we
recognized that the set {q(ν) | q is a weak measurable section for p} and the
set of all extremal compact preimage measures of ν, denoted by exMc(p, ν) –
note that, according to Corollary 1.3, the setMc(p, ν) of all compact preimage
measures is convex and a face in M(p, ν) – coincide. Of course, this is not
always the case: consider, e.g., a noncompact measure ν on a σ -algebra B,
and put µ := ν, A := B, and p = id. But, in Example 2.1, ν is compact; and
this is crucial:

Corollary 2.9. Let (X,A )be a measurable space, (Y,B, ν)be a compact
measure space, and p : X −→ Y be an (A ,B)-measurable map. Then

exMc(p, ν) = {q(ν) | q is a weak measurable section for p}.

Proof. By Theorem 2.2, (i) ⇒ (ii), the inclusion “⊂” is obvious. Let
now q be a weak measurable section for p. By Theorem 2.2, (ii) ⇒ (i),
q(ν) ∈ exM(p, ν) holds. We claim that q(ν) is also compact. Since ν is
compact, this is true if ν ∈ exM(q, q(ν)) (recall Theorem 2.6). The relation
ν ∈ M(q, q(ν)) is obvious. Therefore, by (Pl), we have to prove that for all
B ∈ Bν there exists a set A ∈ A with B =ν q

−1[A]. Obviously, we may
assume that B ∈ B; but then we can put A := p−1[B] ∈ A , and obtain the
desired equation B =ν q

−1[p−1[B]] = q−1[A].
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