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ON THE HORN SYSTEM OF PARTIAL
DIFFERENTIAL EQUATIONS AND SERIES OF

HYPERGEOMETRIC TYPE

T. M. SADYKOV∗

Abstract

The paper deals with the Horn system of hypergeometric differential equations. We consider the
associated D-module and construct an explicit basis in the space of holomorphic solutions to the
Horn system under some assumptions on its parameters.

0. Introduction

This paper deals with the following system of partial differential equations of
hypergeometric type

(1) xiPi

(
x
∂

∂x

)
y(x) = Qi

(
x
∂

∂x

)
y(x), i = 1, . . . , n.

Here Pi,Qi are nonzero polynomials in n complex variables and

x
∂

∂x
=

(
x1

∂

∂x1
, . . . , xn

∂

∂xn

)
.

The system (1) goes back to Horn and Mellin (see [8] and [7], §1.2). It was
originally introduced as a natural system of partial differential equations having
a given series of hypergeometric type [7] as one of its solutions. In the present
paper the system (1) is referred to as the Horn system of hypergeometric
differential equations. Here and later we assume that the polynomials Pi,Qi ,
i = 1, . . . , n, can be represented as products of linear factors. This assumption
is used in the proof of Theorem 1.3 which describes solutions to the system of
difference equations (3). It also allows one to construct a basis in the space of
holomorphic solutions to some systems of the Horn type (Theorem 3.1).
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Solutions to (1) are closely related to the notion of a Horn series which is
defined as a formal (Laurent) series

(2) y(x) = xγ
∑
s∈Zn

ϕ(s)xs,

whose coefficients ϕ(s) are characterized by the property that ϕ(s + ei) =
ϕ(s)Ri(s) (see [7], §1.2). Here ei = (0, . . . , 1, . . . , 0) (1 in the ith posi-
tion),Ri(s) are rational functions. We also use the notationsγ = (γ1, . . . , γn) ∈
Cn, Re γi ∈ [0, 1), xs = x

s1
1 . . . x

sn
n .

In the case of two or more variables the Horn system (1) is in general not
solvable in the class of series (2) without additional assumptions on the poly-
nomials Pi,Qi . In section 1 we investigate the solvability of hypergeometric
systems of equations. The necessary and sufficient conditions for a formal
solution to the system (1) in the class (2) to exist are given in Theorem 1.3.

In section 2 we consider the D-module associated with the Horn system.
We give a formula which allows one to compute the dimension of the space of
holomorphic solutions to (1) at a generic point under some additional assump-
tions on the system under study (Theorem 2.8). The author benefited greatly
from reading paper [1] by A. Adolphson whose ideas are used in section 2.

In the case of one variable the Horn system (1) coincides with the one-
dimensional generalized hypergeometric differential equation (see [5], page
77). The construction of a fundamental system of solutions to this equation
shows [5] that there exists a basis in its solution space consisting of series (2)
if the parameters of the equation are sufficiently general. In section 3 we
give a generalization of this fact to the case of systems of partial differential
equations of the Horn type (Corollary 3.3). We show that in the case when the
polynomialQi(s)depends on si only and degQi(s) > degPi(s), i = 1, . . . , n,
there exists a basis in the space of holomorphic solutions to (1) consisting of
series (2) if the parameters of the system under study are sufficiently general.
This basis is constructed explicitly in section 3 (Theorem 3.1).

The author is very grateful to J. -E. Björk and M. Passare for their constant
support and encouragement during the work with this paper. Sincere thanks
are due to C. Löfwall for many fruitful discussions which have led to improved
proofs of the results in section 2. The author is greatly indebted to A. Tsikh for
his comments and advice.
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1. Solvability conditions, Horn’s series and their supports

Suppose that the series (2) represents a solution to the system (1). Computing
the action of the operator xiPi

(
x ∂
∂x

)−Qi

(
x ∂
∂x

)
on this series we arrive at the

following system of difference equations

(3) ϕ(s + ei)Qi(s + γ + ei) = ϕ(s)Pi(s + γ ), i = 1, . . . , n,

where {ei}ni=1 is the standard basis of Zn. The system (3) is equivalent to (1)
as long as we are concerned with those solutions to the Horn system which
admit a series expansion of the form (2). Let Zn + γ denote the shift in Cn of
the lattice Zn with respect to the vector γ . We assume that the polynomials
Pi(s),Qi(s + ei) are relatively prime for all i = 1, . . . , n. In this section
we shall describe nontrivial solutions to the system (3) (i.e. those ones which
are not equal to zero identically). While looking for a solution to (3) which is
different from zero on some subsetS of Zn we shall assume that the polynomials
Pi(s),Qi(s), the set S and the vector γ satisfy the condition

(4) |Pi(s + γ )| + |Qi(s + γ + ei)| 	= 0,

for any s ∈ S and for all i = 1, . . . , n. That is, for any s ∈ S the equality
Pi(s+γ ) = 0 implies thatQi(s+γ +ei) 	= 0 andQi(s+γ +ei) = 0 implies
Pi(s+γ ) 	= 0. This assumption eliminates the case when a solution to (3) can
independently take arbitrary values at two adjacent points in the set S.

The system (3) can be considered for s varying over Cn as well as for s
being a discrete argument, that is, for s ∈ Zn. In the first case the solution
to (3) is determined uniquely up to a periodic factor. The following Theorem
(see [10]) gives necessary and sufficient conditions for a nontrivial solution to
the system (3) to exist in the case when s ∈ Cn.

Theorem 1.1. The system (3) has a nontrivial solution if and only if the
conditions

(5) Ri(s + ej )Rj (s) = Rj(s + ei)Ri(s)

hold for all i, j = 1, . . . , n. Here Ri(s) = Pi(s)/Qi(s + ei). A solution to a
solvable system (3) is determined uniquely up to a factor φ(s) satisfying the
periodicity conditions φ(s + ei) ≡ φ(s), i = 1, . . . , n.

In the paper [10] an algorithm for constructing the general solution to a
solvable system (3) was developed. It was shown that in accordance with the
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Ore-Sato theorem [12] (see also [7], §1.2) it must be of the form
(6)

ϕ0(s) = t
s1
1 . . . t

sn
n

p∏
i=1

�(〈Ai, s+ γ 〉− ci)

( q∏
i=p+1

�(〈Ai, s+ γ 〉− ci)

)−1

φ(s).

Here �(z) is the Euler �-function, ti ∈ C, Ai = (Ai1, . . . , Ain) ∈ Zn, p, q ∈
N0, p ≤ q, and φ(s) is an arbitrary periodic function satisfying φ(s + ei) ≡
φ(s), i = 1, . . . , n. The vectors Ai correspond to the linear factors of the
polynomials Pi(s + γ ),Qi(s + γ + ei). Notice that the function ϕ0(s) is
given by the product of a meromorphic function and a periodic function and
therefore does not need to give rise to a solution depending on a discrete
argument. Indeed, ϕ0(s) may have poles or zeros at some points of the lattice.
We shall show in this section how to choose the periodic factor φ(s) in order
to obtain a solution to (3) depending on a discrete argument.

We assume throughout this paper that the polynomials Pi(s),Qi(s) satisfy
the compatibility conditions (5). In the case when s ∈ Zn these conditions
remain necessary for the solvability of (3) on a set where the coefficients of
the equations (3) do not vanish (see also Remark 1.5). Yet, in this case they are
neither sufficient for (3) to be solvable nor guarantee uniqueness of its solution.
The reason for this is that under natural assumptions (given in Theorem 1.3)
on the polynomials Pi(s),Qi(s) a solution to (3) can be defined to be zero
outside some subset of the lattice Zn. This cut-off function can be shown to
satisfy the system (3) and therefore provides a solution of a new type. This
essential difference between the case when s ∈ Zn and the case of a continuous
argument is illustrated by the following example.

Example 1.2. Consider the following system of the Horn type

(7)



x1

(
x1

∂

∂x1
+ x2

∂

∂x2
− 1

)
y(x) =

(
x1

∂

∂x1

)
y(x),

x2

(
x1

∂

∂x1
+ x2

∂

∂x2
− 1

)
y(x) =

(
x2

∂

∂x2

)
y(x).

Let γ = 0 and consider the corresponding system of difference equations

(8)

{
ϕ(s + e1)(s1 + 1) = ϕ(s)(s1 + s2 − 1),

ϕ(s + e2)(s2 + 1) = ϕ(s)(s1 + s2 − 1).

This system of difference equations is easily seen to satisfy the compatibility
conditions (5). By Theorem 1.1 its general solution is given by the product of
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a periodic function φ(s) and the function

ϕ1(s) = �(s1 + s2 − 1)/(�(s1 + 1)�(s2 + 1)).

Thus, for s varying over C2, a solution to (8) is given by a function which
is different from zero almost everywhere. Yet, the only way of construct-
ing a nontrivial solution to (8) in the case when s is considered as a dis-
crete argument varying over Z2, is to set ϕ(s) to be zero everywhere ex-
cept for the finite set consisting of three points (0, 0), (1, 0), (0, 1). Choosing
φ(s) = (−1)s1+s2 sin(π(s1+s2−1))/π and using the Euler completion formula
�(z)�(1−z) = π/sin(πz)we obtain a solutionϕ2(s) to the system (8) which is
well-defined on this set: ϕ2(s) = (−1)s1+s2/(�(2−s1−s2)�(s1+1)�(s2+1)).
Thus the solution ϕ(s) to (8) for s ∈ Z2 is given by ϕ(0, 0) = ϕ2(0, 0) = 1,
ϕ(1, 0) = ϕ2(1, 0) = −1, ϕ(0, 1) = ϕ2(0, 1) = −1, and ϕ(s) = 0 on the
rest of Z2. Theorem 1.3 which will be proved later in this section yields that
no other choice of the function ϕ(s) is possible and therefore the only solu-
tion to the system (7), which can be represented as a series (2), is given by
y(x) = c(1 − x1 − x2). Here c is an arbitrary constant. Moreover, the function
y(x) = 1 − x1 − x2 gives a basis in the space of holomorphic solutions to (7).

Let ϕ(s) be a solution to (3) for s ∈ Zn. We define the support of ϕ(s) to be
the subset of the lattice Zn where ϕ(s) is different from zero. The support S of a
solution to (3) is called irreducible if there exists no solution to (3) supported in
a proper nonempty subset of S. A set S ⊂ Zn is called Zn-convex if the inclusion
{λs(0) + (1 − λ)s(1) : λ ∈ [0, 1]} ∩ Zn ⊂ S holds for any s(0), s(1) ∈ S. A
setS ⊂ Zn is said to be Zn-connected if any two points ofS can be connected by a
polygonal line with unit sides and vertices in S. Any irreducible support is a Zn-
connected set. If the conditions (4) are satisfied then any Zn-connected support
is irreducible. A formal series xγ

∑
s∈Zn ϕ(s)x

s is called a formal solution to
the system (1) if the function ϕ(s) satisfies the equations (3) at each point of
the lattice Zn. The following Theorem gives necessary and sufficient conditions
for a solution to the system (3) supported in some set S ⊂ Zn to exist.

Theorem 1.3. For S ⊂ Zn define

S
′
i = {s ∈ S : s + ei /∈ S}, S

′′
i = {s /∈ S : s + ei ∈ S}, i = 1, . . . , n.

Suppose that the conditions (4) are satisfied on S. Then there exists a solution
to the system (3) supported in S if and only if the following conditions are
fulfilled:

Pi(s + γ )|S ′
i
= 0, Qi(s + γ + ei)|S ′′

i
= 0, i = 1, . . . , n,(9)

Pi(s + γ )|S\S ′
i
	= 0, Qi(s + γ + ei)|S 	= 0, i = 1, . . . , n.(10)
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If, in addition, the constants ci in (6) satisfy the condition that ci − cj /∈ Z
for i 	= j then all irreducible supports of solutions to (3) are Zn-convex sets.

Remark 1.4. Without loss of generality we may assume that the set S is Zn-
connected. For otherwise we may divide the set S into two subsets which are
not connected through the equations (3) and consider these subsets separately.

Remark 1.5. In the case of a discrete argument the conditions (5) may be
violated for a solvable system (3) if there exists a sufficiently small subset of
the lattice satisfying the conditions of Theorem 1.3. For instance, let n = 2
and consider the system of difference equations

(11)

{
ϕ(s + e1)s1 = ϕ(s)(s1 + s2 − 2)(s1 + s2 − 3),

ϕ(s + e2)s2 = ϕ(s)(s1 + s2 − 2).

The function ϕ(s) which equals 1 at the point (1, 1) and zero on the rest of the
lattice solves the system (11) though the compatibility conditions (5) are not
satisfied in this example.

Proof of Theorem 1.3. Necessity. Let ϕ(s) be a solution to (3), S =
suppϕ. Let s(0) ∈ S ′

i . Since ϕ(s(0)) 	= 0 and ϕ(s(0) + ei) = 0, it follows from
the ith equation of (3) that Pi(s(0) + γ ) = 0. Analogously, if s(0) ∈ S

′′
i then

ϕ(s(0)) = 0, ϕ(s(0) + ei) 	= 0, which yields Qi(s
(0) + γ + ei) = 0. This

proves the necessity of the conditions (9) for the system (3) to be solvable. To
show the necessity of (10) we assume that Pi(s(0) + γ ) = 0 for s(0) ∈ S. Then
the ith equation of (3) together with (4) gives ϕ(s(0) + ei) = 0, which means
that s(0) ∈ S ′

i . Next, if Qi(s
(0) + γ + ei) = 0 then it follows from (3) and (4)

that ϕ(s(0)) = 0, that is, s(0) /∈ S.
Sufficiency. We shall construct a functionϕS(s) satisfying (3) and supported

in S. By Remark 1.4 we may assume that the set S is Zn-connected. Choose
an arbitrary point s(0) ∈ S and set ϕS(s(0)) = 1. The equations (3) may
be viewed as recurrent relations which allow one to compute the value of
ϕS(s

(0) ± ei) for any i = 1, . . . , n unless Pi(s(0) + γ ) = 0 or Qi(s
(0) +

γ + ei) = 0. Repeating this argument, we can compute the value of ϕS(s)
at any point s(1) ∈ S which may be connected with s(0) by a polygonal line
with unit segments and vertices in S. By our assumption on the set S we can
define ϕS(s) for any s ∈ S since by (10) the polynomial Qi(s + γ + ei) does
not vanish on S for any i = 1, . . . , n and since the polynomial Pi(s + γ )

vanishes on S
′
i only. The function ϕS(s) is well-defined since the compatibility

conditions (5) are fulfilled. (These conditions imply that the value of ϕS(s) at
a point s(1) ∈ S obtained by iterating the equations (3) does not depend on the
path connecting s(0) and s(1).)
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Let us define ϕS(s) to be zero outside S. The function ϕS(s) satisfies the
equations (3) on Zn \ (⋃n

i=1(S
′
i ∪ S ′′

i )
)

by the construction. This follows since
ϕ(s) = ϕ(s + ei) = 0 on Zn \ (

S ∪ (⋃n
i=1 S

′′
i

))
, for any i = 1, . . . , n, and

since ϕ(s) was defined through the equations (3) on S \ (⋃n
i=1 S

′
i

)
. The condi-

tions (9) yield that these equations are also satisfied on
⋃n
i=1(S

′
i ∪ S ′′

i ), which
shows that the conditions (9),(10) are sufficient for a solution to (3) supported
in S to exist.

Suppose now that S ⊂ Zn is the irreducible support of some solution to (3).
The conditions (4) imply that S is a Zn-connected set. Let s(0), s(1) ∈ S and letL
be a polygonal line with unit sides and vertices in S connecting s(0) and s(1).
Without loss of generality we may assume that s(0)1 −s(1)1 > 0. Suppose S is not
Zn-convex. Then there exists a point s(2) ∈ S

′
1 ∪ S ′′

1 such that any hyperplane
〈B, s + γ 〉 − d = 0 with B1 	= 0 through the point s(2) intersects L. Suppose
that s(2) ∈ S ′′

1. The condition (9) givesQ1(s
(2)+γ +e1) = 0. The construction

of the function (6) (see [10]) yields that there exists i0 ∈ {1, . . . , q} such that
〈Ai0 , s(2) + γ + e1〉 − ci0 = 0. It follows from Lemma 1 in [10] that the
vector Ai0 can be chosen so that Ai01 > 0. Since ci − cj /∈ Z for i 	= j

by the assumption, it follows from (9) and (5) that the polynomial Q1(s) is

divisible by the product Q̃1(s) = ∏Ai01−1
k=0 (〈Ai0 , s〉 + k − ci0). Thus the set

Zn ∩ L ∩ {s : Q1(s + γ + e1) = 0} is nonempty which is impossible by (10).
Similar arguments show that s(2) ∈ S

′
1 is also impossible which proves Zn-

convexity of an irreducible support. The proof is complete.

Theorem 1.3 yields the existence of a solution to (3) supported in a set S ⊂
Zn which satisfies the conditions (4), (5), (9) and (10). Let us now explain how
one can construct this solution explicitly under some additional assumptions. It
suffices to consider the case when S is Zn-connected. We show how the periodic
function φ(s) in (6) can be chosen in order to make ϕ0(s) well-defined on S.
Since S is assumed to be Zn-connected it follows by (4) and Theorem 1.3 that S
is Zn-convex. Let S̃ denote the convex hull of the set S. Assume that none of the
polynomials P1(s + γ ), . . . , Pn(s + γ ),Q1(s + γ + e1), . . . ,Qn(s + γ + en)

vanishes in the interior of the convex set S̃. Let Ai1 , . . . , Air ∈ {A1, . . . , Aq}
be the vectors introduced in (6) which are characterized by the property that
the set S̃ lies in the half-space defined by 〈Aij , s+ γ 〉− cij ≤ 0, j = 1, . . . , r .
Choose

(12) φ(s) =
r∏

j=1

(
(−1)(〈Aij ,s+γ 〉−cij ) 1

π
sin π(〈Aij , s + γ 〉 − cij )

)εj
,

where εj = 1 for 1 ≤ ij ≤ p and εj = −1 for p < ij ≤ q. Since Aj ∈ Zn

it follows that φ(s) defined in (12) is periodic in s1, . . . , sn with the period 1.
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Applying the Euler completion formula �(z)�(1 − z) = π/ sin πz we see
that the function ϕ0(s) in (6) with the periodic factor φ(s) given by (12) is
well-defined on S. Let ϕS(s) be equal to ϕ0(s) for s ∈ S and let it be zero oth-
erwise. Then the equations (3) are satisfied everywhere in Zn\(

S ∪ (⋃n
i=1 S

′′
i

))
since ϕS(s) = ϕS(s+ei) = 0 on this set, for any i = 1, . . . , n. These equations
are also satisfied on S \⋃n

i=1 S
′
i by the construction of ϕS(s). Finally, the equa-

tions (3) are satisfied on
⋃n
i=1(S

′
i ∪ S ′′

i ) by (9) and (10). Thus the constructed
function ϕS(s) is indeed a solution to (3). The formulas (6) and (12) are used
in examples 2 and 3 for constructing explicit solutions to some systems of the
Horn type.

Notice that the number of linearly independent solutions to the system (1)
in the class of series (2) can be smaller than the number of irreducible supports
of solutions to the associated system of difference equations (3). A simple
example is given by the ordinary differential equation x

(
x d
dx

− a
)
y(x) =(

x d
dx

− b
)
y(x), where a, b ∈ Z, a < b. There are two disjoint subsets of

the lattice Z which satisfy the conditions of Theorem 1.3, namely S1 = {s ∈
Z, s ≥ b} and S2 = {s ∈ Z, s ≤ a}. Yet, the corresponding solutions y1(x) =∑∞

n=b
�(n−a)
�(n−b+1) x

n and y2(x) = (−1)b−a
∑a

n=−∞
�(b−n)
�(a+1−n)x

n are essentially the
same since they represent the same analytic function in the domains {|x| < 1}
and {|x| > 1} respectively. For more examples of this type see section 3.

Theorem 1.3 will be used in section 3 for constructing an explicit basis
in the space of holomorphic solutions to the Horn system in the case when
degQi > degPi and the polynomial Qi(s) depends on si only, i = 1, . . . , n.
In the next section we compute the dimension of the space of holomorphic
solutions to (1) at a generic point.

2. The D-module associated with the Horn system

Let Gi denote the differential operator xiPi
(
x ∂
∂x

) −Qi

(
x ∂
∂x

)
, i = 1, . . . , n.

Let D be the Weyl algebra in n variables [3], and define M = D/
∑n

i=1 DGi

to be the left D-module associated with the system (1). Let R = C[z1, . . . , zn]
and R[x] = R[x1, . . . , xn] = C[x1, . . . , xn, z1, . . . , zn]. We make R[x] into a
left D-module by defining the action of ∂j on R[x] by

(13) ∂j = ∂

∂xj
+ zj .

Let ) : D → R[x] be the D-linear map defined by

(14) )(x
a1
1 . . . xann ∂

b1
1 . . . ∂bnn ) = x

a1
1 . . . xann z

b1
1 . . . z

bn
n .

It is easily checked that ) is an isomorphism of D-modules. In this section
we establish some properties of linear operators acting on R[x]. We aim to
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construct a commutative family of D-linear operators Wi : R[x] → R[x],
i = 1, . . . , n which satisfy the equality )(Gi) = Wi(1). The crucial point
which requires additional assumptions on the parameters of the system (1)
is the commutativity of the family {Wi}ni=1 which is needed for computing
the dimension (as a C-vector space) of the module R[x]/

∑n
i=1 WiR[x] at a

fixed point x(0). We construct the operators Wi and show that they commute
with one another under some additional assumptions on the polynomialsQi(s)

(Lemma 2.5). However, no additional assumptions on the polynomials Pi(s)
are needed as long as the compatibility conditions (5) are fulfilled.

Following the spirit of Adolphson [1] we define operators Di : R[x] →
R[x] by setting

(15) Di = zi
∂

∂zi
+ xizi, i = 1, . . . , n.

It was pointed out in [1] that the operators (15) form a commutative family
of D-linear operators. Let D denote the vector (D1, . . . , Dn). For any i =
1, . . . , n we define operator ∇i : R[x] → R[x] by ∇i = z−1

i Di . This operator
commutes with the operators ∂j since both Di and the multiplication by z−1

i

commute with ∂j . Moreover, the operator ∇i commutes with ∇j for all 1 ≤
i, j ≤ n and withDj for i 	= j . In the case i = j we have ∇iDi = ∇i +Di∇i .

Remark 2.1. A power of the operator xi ∂
∂xi

admits the following expansion:(
xi

∂
∂xi

)k = ∑k
j=1 Sj,kx

j

i
∂j

∂x
j

i

, where Sj,k are the Stirling numbers of the second

kind (see [2], page 89). This allows one to determine the constants h(i)α in the
expansion of the operator xiPi

(
x ∂
∂x

) −Qi

(
x ∂
∂x

) = ∑
α h

(i)
α x

β(i)α ∂ |α|
∂xα

.

The following lemma (which can be applied to a more general family of
differential operators than {Gi}ni=1) gives D-linear operators Wi : R[x] →
R[x] which satisfy )(Gi) = Wi(1).

Lemma 2.2. Let m1, . . . , mn ∈ N0 and let V (i)
α , |α| ≤ mi be polynomials

in n variables. Consider the family of generalized hypergeometric operators

G̃i =
∑

|α|≤mi

xαV (i)
α

(
x
∂

∂x

)
, i = 1, . . . , n.

Let us define operators W̃i, i = 1, . . . , n by

W̃i =
∑

|α|≤mi

V (i)
α (D)∇α.

Then W̃i is a D-linear operator on R[x] satisfying )(G̃i) = W̃i(1).
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Proof. The D-linearity of W̃i follows since the operators Di and ∇i are
D-linear, for all i, j = 1, . . . , n. Thus we need to show that for any α, β ∈ Nn0

(16) (D
α1
1 . . . Dαn

n ∇β1
1 . . .∇βn

n )(1) = )

(
xβ

(
x1

∂

∂x1

)α1

. . .

(
xn

∂

∂xn

)αn)

and that

(17) (D
α1
1 . . . Dαn

n )(1) = )

((
x1

∂

∂x1

)α1

. . .

(
xn

∂

∂xn

)αn)
.

The equation (16) follows from (17) since Di∇j (1) = Di(xj ) = xjDi(1) and
)(xjF ) = xj)(F ) for any differential operator F ∈ D . For proving (17) we
notice that Dαi

i (1) can be written in the form D
αi
i (1) = ∑αi

k=1 ck,αi x
k
i z
k
i . Since

Di(1) = xizi and

Dk+1
i (1) = c1,kxizi +

k∑
j=2

(jcj,k + cj−1,k)x
j

i z
j

i + xk+1
i zk+1

i

it follows that the constants cj,k are the Stirling numbers Sj,k of the second kind
as in Remark 2.1. Indeed, they are determined by the same recurrent relation
with the same initial condition as Sj,k . Thus we get Dαi

i (1) = ∑αi
k=1 Sk,αi x

k
i z
k
i

and Remark 2.1 gives Dαi
i (1) = )

((
xi

∂
∂xi

)αi ). The equality (17) follows now
from the identities

D
α1
1 . . . Dαn

n (1) =
n∏
i=1

D
αi
i (1),

)

((
x1

∂

∂x1

)α1

. . .

(
xn

∂

∂xn

)αn)
=

n∏
i=1

)

((
xi
∂

∂xi

)αi)
,

which hold for any α ∈ Nn0. The proof is complete.

Thanks to Lemma 2.2 we may define operators

Wi = Pi(D)∇i −Qi(D)

such that for any i = 1, . . . , n,Wi is a D-linear operator satisfying the identity
)(Gi) = Wi(1).

Remark 2.3. Let Fi = ∑
α c

(i)
α x

β(i)α
(
∂
∂x

)α
, i = 1, . . . , n be a family of

differential operators such that β(i)α ≥ α for every α which is present in the
sum. Hereα, β(i)α ∈ Nn0. The existence of a family of D-linear operators {W̃i}ni=1
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satisfying)(Fi) = W̃i(1) (which follows from Lemma 2.2) can be also proved
in the following way. Let xkzq ∈ R[x] be an arbitrary monomial satisfying
qi ≤ ki , i = 1, . . . , n. For each j = 1, . . . , n define

Tj :=
( qj−1∏
k=0

(Dj − k)

)
(∇j )kj−qj .

Notice that the operators T1, . . . , Tn commute. Let T be the product of T1, . . . ,

Tn, then T (1) = xkzq . Thus the existence of the desired family of operators
follows by D-linearity of Tj . The identity

(Dj − (qj − 1)) . . . (Dj − 1)Dj (x
µ

j z
λ
j )

=
qj−1∑
k=0

(
qj

k

)
λ(λ− 1) . . . (λ− (qj − 1 − k))x

µ+k
j zλ+kj + x

µ+qj
j z

λ+qj
j ,

which can be easily verified by induction, allows one to compute the action of
the operator Tj on an arbitrary element of R[x].

It follows by the D-linearity of Wi that
n∑
i=1
WiR[x] and R[x]/

n∑
i=1
WiR[x]

can be considered as left D-modules. The next argument which is due to Ad-
olphson [1] shows that the D-module M , associated with the Horn system (1),
is isomorphic to R[x]/

∑n
i=1 WiR[x].

Theorem 2.4. The following isomorphism holds true:

(18) M � R[x]

/( n∑
j=1

WjR[x]

)
.

Proof. It follows byD-linearity of the operatorsWi that the sum
∑n

j=1 DGj
belongs to the kernel of the map

(19) D → R[x]

/( n∑
j=1

WjR[x]

)
,

induced by the isomorphism of D-modules ) : D → R[x]. To show that this
sum is equal to the kernel it suffices to prove that for anyb = (b1, . . . , bn) ∈ Nn0,
and any ub(x) ∈ C[x] there exists ξ ∈ DWj such that )(ξ) = Wj

(
ub(x)z

b
)
.

Let us define ξ by ξ = ub(x)
∏n
i=1

(
∂
∂xi

)bi
Gj . Using D-linearity ofWj and the
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equality )(Gi) = Wi(1) we obtain

)

(
ub(x)

n∏
i=1

(
∂

∂xi

)bi
Gj

)
= ub(x)

n∏
i=1

∂
bi
i )(Gj )

= ub(x)

n∏
i=1

(
∂

∂xi
+ zi

)bi
Wj (1)

= Wj

(
ub(x)

n∏
i=1

(
∂

∂xi
+ zi

)bi
(1)

)

= Wj

(
ub(x)z

b
)
.

This shows that
∑n

j=1 DGj coincides with the kernel of the map (19) and
completes the proof of the Theorem.

In the general case the operatorsWi = Pi(D)∇i −Qi(D) do not commute
sinceDi does not commute with ∇i . However, this family of operators may be
shown to be commutative under some assumptions on the polynomials Qi(s)

in the case when the polynomials Pi(s),Qi(s) satisfy the compatibility con-
ditions (5). The following Lemma holds.

Lemma 2.5. The operators Wi = Pi(D)∇i − Qi(D) commute with one
another if and only if the polynomials Pi(s),Qi(s) satisfy the compatibility
conditions (5) and for each i = 1, . . . , n the polynomial Qi(s1, . . . , sn) de-
pends on si only.

Proof. Since ∇i = z−1
i + Diz

−1
i it follows that ∇iDi = ∇i + Di∇i and

that ∇i commutes with Dj for i 	= j . Hence for any α = (α1, . . . , αn) ∈ Nn0

(20) ∇iD
α1
1 . . . Dαn

n = D
α1
1 . . . (Di + 1)αi . . . Dαn

n ∇i .

Let Et
i denote the operator which increases the ith argument by t , that is,

Et
i f (x) = f (x + tei). It follows from (20) that

(21) ∇iPj (D) = (E1
i Pj )(D)∇i .

Using (21) we compute the commutator of the operators Wi,Wj :

(22)

WiWj −WjWi = (
Pi(D)(E

1
i Pj )(D)− Pj (D)(E

1
j Pi)(D)

)∇i∇j
+ (

(E1
j Qi)(D)−Qi(D)

)
Pj (D)∇j

+ (
Qj(D)− (E1

i Qj )(D)
)
Pi(D)∇i .

Let us define the grade g(xαzβ) of an element xαzβ of the ringR[x] to be α−β.
Notice that g(Di(x

αzβ)) = α−β and that g(∇i (x
αzβ)) = α−β+ ei , for any
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α, β ∈ Nn0. The result of the action of the operator in the right-hand side of (22)
on xαzβ consists of three terms whose grades are α− β + ei + ej , α− β + ej
and α − β + ei . Thus the operators Wi,Wj commute if and only if

(23) Qi(D) = (E1
j Qi)(D), i, j = 1, . . . , n, i 	= j,

and

(24) Pi(D)(E
1
i Pj )(D) = Pj (D)(E

1
j Pi)(D), i, j = 1, . . . , n.

The condition (23) is satisfied if and only if for each i = 1, . . . , n the polyno-
mialQi(s) depends on si only. Indeed, a polynomial is periodic with respect to
one of its arguments if and only if it does not depend on this argument. Under
this assumption on the polynomialsQi(s) the compatibility conditions (5) can
be written in the form

Pi(s + ej )Pj (s) = Pj (s + ei)Pi(s), i, j = 1, . . . , n

and they are therefore equivalent to (24). Thus the family of the operators
{Wi}ni=1 is commutative if and only if the polynomials Pi(s),Qi(s) satisfy the
compatibility conditions (5) and for each i = 1, . . . , n the polynomial Qi(s)

depends on si only. The proof is complete.

For x(0) ∈ Cn let Ôx(0) be the D-module of formal power series centered
at x(0). Let Cx(0) denote the set of complex numbers C considered as a C[x1, . . . ,

xn]-module via the isomorphism C � C[x1, . . . , xn]/(x1 −x(0)1 , . . . , xn−x(0)n ).
We use the following isomorphism (see Proposition 2.5.26 in [4] or [1], §4)
between the space of formal solutions to M at x(0) and the dual space of
Cx(0) ⊗C[x] M

(25) HomD (M , Ôx(0) ) � HomC
(
Cx(0) ⊗C[x] M , C

)
.

This isomorphism holds for any finitely generated D-module. Using (18) and
fixing the point x = x(0) we arrive at the isomorphism

(26) Cx(0) ⊗C[x]

(
R[x]

/ n∑
i=1

WiR[x]

)
� R

/ n∑
i=1

Wi,x(0)R,

whereWi,x(0) are obtained from the operatorsWi by setting x = x(0). Combin-
ing (25) with (26) we see that

HomD (M , Ôx(0) ) � HomC

(
R

/ n∑
i=1

Wi,x(0)R, C
)
.
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Thus the following Lemma holds true.

Lemma 2.6. The number of linearly independent formal power series solu-
tions to the system (1) at the point x = x(0) is equal to dimC R

/ ∑n
i=1 Wi,x(0)R.

The following Lemma is motivated by the proof of Theorem 5.4 in [1].

Lemma 2.7. Let Li : R → R, i = 1, . . . , n be a commutative family
of linear operators such that there exists a regular sequence of homogeneous
polynomials f1, . . . , fn inR with the propertyLi(u) = fiu+ũ, where deg ũ <
deg(fiu). ThenR

/ ∑n
i=1 LiR andR/(f1, . . . , fn) are isomorphic as C-vector

spaces. Here (f1, . . . , fn) is the ideal generated by f1, . . . , fn.

Proof. Let {uα}α∈9 represent a C-basis in R/(f1, . . . , fn) consisting of
homogeneous polynomials. Let u ∈ R, deg u = k, and let X denote the
set of all linear combinations of {uα}α∈9. We use induction on k to show that
u ∈ X+∑n

i=1 LiR. Since u = ∑n
i=1 fivi+

∑
α cαuα for some v1, . . . , vn ∈ R

and cα ∈ C it follows that

u−
n∑
i=1

Li(vi) = u−
n∑
i=1

fivi −
n∑
i=1

ṽi =
∑
α

cαuα −
n∑
i=1

ṽi ,

where deg
(∑n

i=1 ṽi
)
< k. By induction

∑n
i=1 ṽi ∈ X + ∑n

i=1 LiR which
shows that u ∈ X + ∑n

i=1 LiR. Thus {uα}α∈9 represents a generating set for
the quotient R/

∑n
i=1 LiR.

Let us show that {uα}α∈9 represent a set of linearly independent elements in
R/

∑n
i=1 LiR. Let w ∈ X and suppose that w = ∑n

i=1 Livi for some vi ∈ R.
We show by induction on k = maxi=1,...,n deg(fivi) that w = 0. Let vi =
v

′
i + v

′′
i , where deg(fiv

′
i ) = k and deg(fiv

′′
i ) < k. Let wk be the homogeneous

part ofw of degree k. Since {uα}α∈9 are homogeneous it follows thatwk ∈ X.
Using the equality w = ∑n

i=1 Livi we obtain wk = ∑n
i=1 fiv

′
i . Since {uα}α∈9

represent a basis in R/(f1, . . . , fn) we have X ∩ ∑n
i=1 LiRi = {0}. This

shows that
∑n

i=1 fiv
′
i = 0. By the regularity of the sequence (f1, . . . , fn) there

exists a skew-symmetric set {ηij }ni,j=1 of homogeneous polynomials such that

v
′
i = ∑n

j=1 ηijfj . Let us consider ṽi = vi − ∑n
j=1 Lj(ηij ). Since the family

of the operators {Li}ni=1 is commutative it follows that
∑n

i,j=1 LiLj (ηij ) = 0
and hence

w =
n∑
i=1

Li(vi) =
n∑
i=1

Li

(
ṽi +

n∑
j=1

Lj(ηij )

)
=

n∑
i=1

Li(ṽi).

Sincefi
∑n

j=1 Lj(ηij ) andfi
∑n

j=1 ηijfj are equal up to the terms of degree less
than k it follows that deg fiṽi < k. By induction on k we conclude thatw = 0,
which completes the proof of the Lemma.
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For any differential operator P ∈ D , P = ∑
|α|≤m cα(x)

(
∂
∂x

)α
its principal

symbol σ(P )(x, z) ∈ R[x] is defined by σ(P )(x, z) = ∑
|α|=m cα(x)zα . Let

Hi(x, z) = σ(Gi)(x, z) be the principal symbols of the differential operators
which define the Horn system (1). Let J ⊂ D be the left ideal generated by
G1, . . . ,Gn. By the definition (see [3], Chapter 5, §2) the characteristic variety
char(M ) of the Horn system is given by

char(M ) = {(x, z) ∈ C2n : σ(P )(x, z) = 0, for all P ∈ J }.
Let us define the set UM ⊂ Cn by UM = {x ∈ Cn : ∃ z 	= 0 such that (x, z) ∈
char(M )}. Theorem 7.1 in [3, Chapter 5] yields that for x(0) /∈ UM

HomD (M , Ôx(0) ) � HomD (M ,Ox(0) ).

It follows from [14, pages 148,146] that the C-dimension of the factor of
the ring R with respect to the ideal generated by the regular sequence of
homogeneous polynomialsH1(x

(0), z), . . . , Hn(x
(0), z) is equal to the product∏n

i=1 degHi(x
(0), z). Since a sequence of n homogeneous polynomials in n

variables is regular if and only if their common zero is the origin, it follows
that x(0) /∈ UM as long as the sequenceH1(x

(0), z), . . . , Hn(x
(0), z) is regular.

Using Lemmas 2.5, 2.6 and 2.7 we arrive at the following Theorem.

Theorem 2.8. Suppose that the polynomials Pi(s),Qi(s) satisfy the com-
patibility conditions (5) and that for any i = 1, . . . , n the polynomial Qi(s)

depends on si only. If the principal symbols H1(x, z), . . . , Hn(x, z) of the
differential operatorsG1, . . . ,Gn form a regular sequence at x(0) then the di-
mension of the space of holomorphic solutions to (1) at the point x(0) is equal
to

∏n
i=1 degHi(x

(0), z).

In the next section we, using Theorem 2.8, construct an explicit basis in the
space of holomorphic solutions to the Horn system in the case when degQi >

degPi , i = 1, . . . , n.

3. Explicit basis in the solution space of some hypergeometric systems

Suppose that the polynomials Pi(s),Qi(s) which determine the Horn sys-
tem (1) satisfy the following conditions: for any i = 1, . . . , n the polyno-
mial Qi(s) depends on the variable si only and degQi > degPi . In this
section we will show how to construct an explicit basis in the solution space of
such a system of partial differential equations under some additional assump-
tions which are always satisfied if the parameters of the system under study
are sufficiently general.
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Under the above conditions the polynomials Qi(s) can be represented in
the form

Qi(s) =
di∏
j=1

(si − αij ), i = 1, . . . , n, αij ∈ C.

By the Ore-Sato theorem [12] the general solution to the system of difference
equations associated with (1) can be written in the form

ϕ(s) = t
s1
1 . . . t

sn
n

∏p

i=1 �(〈Ai, s〉 − ci)∏n
i=1

∏di
j=1 �(si − αij + 1)

φ(s),

where p ∈ N0, di = degQi , ti , ci ∈ C, Ai ∈ Zn and φ(s) is an arbitrary
periodic function with the period 1 in each variable. The following Theorem
holds true.

Theorem 3.1. Suppose that the following conditions are fulfilled.
1. For any i = 1, . . . , n the polynomial Qi(s) depends on the variable si

only and degQi > degPi .
2. The difference αij − αik is never equal to a real integer number, for any

i = 1, . . . , n and j 	= k.
3. For any multi-index I = (i1, . . . , in) with ik ∈ {1, . . . , dk} the product∏p

i=1(〈Ai, s〉 − ci) never vanishes on the shifted lattice Zn + γI , where γI =
(α1i1 , . . . , αnin ).

Then the family consisting of
∏n
i=1 di functions

(27) yI (x) = xγI
∑
s∈Nn0

t s+γI
∏p

i=1 �(〈Ai, s + γI 〉 − ci)∏n
k=1

∏dk
j=1 �(sk + αkik − αkj + 1)

xs

is a basis in the space of holomorphic solutions to the system (1) at any point
x ∈ (C∗)n = (C \ {0})n.

Proof. It follows from Theorem 1.3 and the assumptions 2,3 of The-
orem 3.1 that the series (27) formally satisfies the Horn system (1). Since
degQi(s) > degPi(s), i = 1, . . . , n it follows by the construction of the
function (6) (see [10]) that all the components of the vector � = ∑p

i=1 Ai −
(d1, . . . , dn) are negative. Thus for any multi-index I the intersection of the
half-space Re〈�, s〉 ≥ 0 with the shifted positive octant Rn+ + γI is a bounded
set. Using the Stirling formula we conclude that the series (27) converges
everywhere in (C∗)n for any multi-index I (see also §2.4 in [11]). The set
{x ∈ Cn : x1 . . . xn = 0} is special since (27) can contain terms with negative
powers of x.
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The series (27) corresponding to different multi-indices I, J are linearly in-
dependent since by the second assumption of Theorem 3.1 their initial monomi-
als xγI , xγJ are different. Finally, the conditions of Theorem 2.8 are satisfied in
our setting since the first assumption of Theorem 3.1 yields that the sequence
of principal symbols H1(x

(0), z), . . . , Hn(x
(0), z) ∈ R of hypergeometric dif-

ferential operators defining the Horn system is regular for x(0) ∈ (C∗)n. Indeed,

in our caseHi(x
(0), z) = (x

(0)
i )

di
z
di
i . Hence by Theorem 2.8 the number of lin-

early independent holomorphic solutions to the system under study at a generic
point equals

∏n
i=1 di . In this case UM = {x(0) ∈ Cn : x(0)1 . . . x(0)n = 0}. Thus

the series (27) span the space of holomorphic solutions to the system (1) at
any point x(0) ∈ (C∗)n. The proof is complete.

Remark 3.2. The fact that the dimension of the solution space of (1) at
a generic point is equal to the product of the degrees of the polynomials
Q1(s), . . . ,Qn(s) in the case when degQi > degPi , i = 1, . . . , n follows
also from Theorem 5.1.1 in [9]. Theorem 3.1 gives an explicit description
of the solutions to the Horn system under two additional assumptions 2 and 3
which are always satisfied if the parameters of the given system are sufficiently
general.

In the theory developed by Gelfand, Kapranov and Zelevinsky the condi-
tions 2 and 3 of Theorem 3.1 correspond to the so-called nonresonant case
(see [6], §8.1). Thus the result on the structure of solutions to the Horn system
can be formulated as follows.

Corollary 3.3. Let x(0) ∈ (C∗)n and suppose that for any i = 1, . . . , n the
polynomial Qi(s) depends on the variable si only and that degQi > degPi .
If the parameters of the system (1) are nonresonant then there exists a basis in
the space of holomorphic solutions to (1) near x(0) whose elements are given
by series of the form (2).

Let us now consider some examples. We begin with a simple example of a
system of the first order.

Example 3.4. Consider the following system of the Horn type

(28)



x1

(
x1

∂

∂x1
+ x2

∂

∂x2
+ 2

)
y(x) =

(
x1

∂

∂x1

)
y(x),

x2

(
x1

∂

∂x1
+ x2

∂

∂x2
+ 2

)
y(x) =

(
x2

∂

∂x2

)
y(x).

The principal symbols H1(x, z),H2(x, z) ∈ R[x] of the differential operators
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defining the system (28) are as follows

H1(x, z) = (x2
1 − x1)z1 + x1x2z2, H2(x, z) = x1x2z1 + (x2

2 − x2)z2.

By Theorem 2.8 the dimension of the solution space of (28) at a generic
point x ∈ C2 is equal to dimC C[z1, z2]/(H1(x, z),H2(x, z)). This dimension
is equal to 1 whenever the determinant

∣∣∣∣ x2
1 − x1 x1x2

x1x2 x2
2 − x2

∣∣∣∣ = x1x2(1 − x1 − x2)

is nonzero. Thus the dimension of the solution space of (28) at a generic point
equals 1.

Let us find the solution to (28). We may choose γ = 0 in this example.
The system of difference equations which corresponds to the system (28) is as
follows

(29)

{
ϕ(s + e1)(s1 + 1) =ϕ(s)(s1 + s2 + 2),

ϕ(s + e2)(s2 + 1) =ϕ(s)(s1 + s2 + 2).

Let us consider (29) for s being a continuous argument varying over C2. By
Theorem 1.1 the general solution to (29) is given by

(30) ϕ(s) = �(s1 + s2 + 2)

�(s1 + 1)�(s2 + 1)
φ(s),

where φ(s) is an arbitrary periodic function with the period 1 in s1 and s2. (It
is straightforward to check that (30) is indeed a solution to (29); Theorem 1.1
yields that this solution is general since any two solutions differ at most in
periodic factors.) We use (30) for constructing all solutions to (29) in the case
when s ∈ Z2. There exist three Z2-connected subsets of the lattice Z2 which
satisfy the conditions of Theorem 1.3, namely

S1 = {(s1, s2) ∈ Z2 : s1 ≥ 0, s2 ≥ 0},
S2 = {(s1, s2) ∈ Z2 : s1 ≥ 0, s1 + s2 + 2 ≤ 0},
S3 = {(s1, s2) ∈ Z2 : s2 ≥ 0, s1 + s2 + 2 ≤ 0}.

These irreducible supports of solutions to (29) are shown in Figure 1.
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Figure 1.

However, the power series which correspond to these irreducible supports give
the same solution to (28) since they represent the same meromorphic function
in different domains. Indeed, choosing φ(s) ≡ 1 on S1 we obtain a solution
to (28):

(31) y1(x) =
∑
s1,s2≥0

�(s1 + s2 + 2)

�(s1 + 1)�(s2 + 1)
x
s1
1 x

s2
2 = 1

(1 − x1 − x2)
2 .

We have to choose the periodic function φ(s) in a nontrivial way (as it was
explained in section 1) in order to check that the series which correspond
to S2, S3 converge to the same function. Choosing φ(s) = ((−1)s1 sin π(s1 +
s2))/ sin π(s2 + 1) and using the Euler completion formula �(z)�(1 − z) =
π/ sin πz we obtain the series

y2(x) =
∑
s1≥0,

s1+s2+2≤0

(−1)s1�(−s2)

�(s1 + 1)�(−s1 − s2 − 1)
x
s1
1 x

s2
2 = 1

(1 − x1 − x2)
2 .

Analogously, choosing φ(s) = ((−1)s2 sin π(s1 +s2))/ sin π(s1 +1)we arrive
at the series

y3(x) =
∑
s2≥0,

s1+s2+2≤0

(−1)s2�(−s1)

�(s2 + 1)�(−s1 − s2 − 1)
x
s1
1 x

s2
2 = 1

(1 − x1 − x2)
2 .

Thus the series which correspond to the irreducible supports S1, S2, S3 consti-
tute analytic continuations of one another.
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It is easy to check that the space of holomorphic solutions to (28) at a
point x ∈ C2 such that 1 − x1 − x2 	= 0 is indeed spanned by the func-
tion (1 − x1 − x2)

−2. The equations (28) yield that y
′
x1

= y
′
x2

and hence
y(x1, x2) = u(x1 + x2) for some differentiable function u(t). Solving the
corresponding ordinary differential equation of the first order we conclude
that any holomorphic solution to (28) is a multiple of the function (31).

Example 3.5. Let us consider the following system of hypergeometric
differential equations of the Horn type

(32)




x1

(
x1

∂

∂x1
+ x2

∂

∂x2
− 4

)(
x1

∂

∂x1
+ 1

)
y(x)

=
(
x1

∂

∂x1
− 3

)(
x1

∂

∂x1
− 1

)
y(x),

x2

(
x1

∂

∂x1
+ x2

∂

∂x2
− 4

)(
x2

∂

∂x2
+ 2

)
y(x)

=
(
x2

∂

∂x2
− 3

)(
x2

∂

∂x2
− 1

)
y(x).

The principal symbols H1(x, z),H2(x, z) ∈ R[x] of the differential operators
defining the system (32) are as follows

H1(x, z) = x2
1z1((x1 −1)z1 +x2z2), H2(x, z) = x2

2z2(x1z1 +(x2 −1)z2).

By Theorem 2.8 the dimension of the solution space of the system (32) is equal
to 4 everywhere except for the set {(x1, x2) ∈ C2 : x1x2(1 − x1)(1 − x2)(1 −
x1 − x2) = 0} on which the sequence H1(x, z),H2(x, z) is not regular. To
obtain the solutions to (32) we let γ = 0 and consider the associated system
of difference equations

(33)

{
ϕ(s + e1)s1(s1 − 2) =ϕ(s)(s1 + s2 − 4)(s1 + 1),

ϕ(s + e2)s2(s2 − 2) =ϕ(s)(s1 + s2 − 4)(s2 + 2).

Let us consider (33) for s being a continuous argument varying over C2. By
Theorem 1.1 the general solution to the system (33) is given by

(34) ϕ(s) = �(s1 + s2 − 4)

�(s1 − 2)�(s2 − 2)
s1s2(s2 + 1)φ(s),

where φ(s) is an arbitrary periodic function with the period 1 in s1 and s2.
In this example there exist six different Z2-connected subsets of the lattice Z2
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which satisfy the conditions of Theorem 1.3, namely

S1 = {(s1, s2) ∈ Z2 : s1 = 3, s2 = 1},
S2 = {(s1, s2) ∈ Z2 : s1 = 1, s2 = 3},
S3 = {(s1, s2) ∈ Z2 : 3 ≤ s1, 3 ≤ s2},
S4 = {(s1, s2) ∈ Z2 : s1 ≤ −1, s2 ≤ −2},
S5 = {(s1, s2) ∈ Z2 : s1 ≤ −1, 3 ≤ s2, s1 + s2 ≤ 4},
S6 = {(s1, s2) ∈ Z2 : 3 ≤ s1, s2 ≤ −2, s1 + s2 ≤ 4}.

These irreducible supports of solutions to (33) are displayed in Figure 2.

Figure 2.

Since two of the irreducible supports are finite and each one of them consists
of one point it follows that the given system has two monomial solutions:

y1(x) = x3
1x2, y2(x) = x1x

3
2 .

Choosing the periodic function φ(s) as it was explained in section 1 and com-
puting the sum of the series supported in S3 we obtain the third solution to the
system (32):

y3(x) = x3
1x

3
2(2x

3
1 + 10x2

1x2 + 5x1x
2
2 + x3

2

− 10x2
1 − 20x1x2 − 5x2

2 + 14x1 + 10x2 − 6)/(1 − x1 − x2)
5.
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The sums of the series supported in the sets S5 and S6 can be expressed through
y1(x), y2(x), y3(x). More precisely, the following linear relations hold:

y5(x) = 2y2(x)+ y3(x), y6(x) = y1(x)+ y3(x).

We choose φ(s) as in section 1 and compute the remaining solution to the
system under study which is given by the series supported in S4 :

y4(x) =
∑
s1,s2≥0

�(s1 + 4)�(s2 + 5)

�(s1 + s2 + 8)
(s1 + 1)(s2 + 1)(s2 + 2)x−s1−1

1 x
−s2−2
2 .

The sum of this series can be expressed through theAppel functionF3 (see [13],
section 1.3):

y4(x) = �(4)�(5)

�(8)

(
ξ1ξ

2
2
∂

∂ξ1

∂2

∂ξ 2
2

(
ξ1ξ

2
2F3[4, 5, 1, 1, 8, ξ1, ξ2]

))∣∣∣∣∣ ξ1=1/x1
ξ2=1/x2

.

The constructed solutions y1(x), y2(x), y3(x), y4(x) to the system (32) form
a basis in its solution space at any point x ∈ C2 such that x1x2(1 − x1)(1 −
x2)(1 − x1 − x2) 	= 0.

REFERENCES

1. Adolphson,A., Hypergeometric functions and rings generated by monomials, Duke Math. J. 73
(1994), 269–290.

2. Aigner, M., Combinatorial Theory, Springer-Verlag, 1979.
3. Björk, J. -E., Rings of Differential Operators, North. Holland Mathematical Library, 1979.
4. Björk, J. -E., Analytic D-Modules and Applications, Kluwer Academic Publishers, 1993.
5. Evgrafov, M. A., Series and Integral Representations, Progress in Science and Technology.

Current Problems of Mathematics. Fundamental Directions, Moscow, 1986. Vol. 13.
6. Gelfand, I. M. and Graev, M. I., GG-functions and their relation to general hypergeometric

functions, Russian Math. Surveys 52 (1997), 639–684.
7. Gelfand, I. M., Graev, M. I. and Retach, V. S., General hypergeometric systems of equations

and series of hypergeometric type, Russian Math. Surveys 47 (1992), 1–88.
8. Horn, J., Über hypergeometrische Funktionen zweier Veränderlichen, Math. Ann. 117 (1940),

384–414.
9. Hörmander, L., Linear Partial Differential Operators, Springer-Verlag, 1963.
10. Sadykov, T. M., On a multidimensional system of hypergeometric differential equations,

Siberian Math. J. 39 (1998), 986–997.
11. Sadykov, T. M., Systems of partial differential equations of hypergeometric type, Licentiate

of philosophy thesis. Stockholm University, (1999), ISBN 91-7153-872-0.
12. Sato, M., Theory of prehomogeneous vector spaces (algebraic part), Nagoya Math. J. 120

(1990), 1–34.
13. Srivastava, H. M. and Karlsson, P. W., Multiple Gaussian Hypergeometric Series, Ellis Hor-

wood Limited, 1985.



on the horn system of partial differential equations . . . 149

14. Tsikh, A. K., Multidimensional Residues and Their Applications, Transl. Math. Monographs
103 (1992).

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF STOCKHOLM
S-10691 STOCKHOLM
SWEDEN
E-mail: timur@matematik.su.se


