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DUBROVIN EQUATIONS AND INTEGRABLE
SYSTEMS ON HYPERELLIPTIC CURVES

FRITZ GESZTESY and HELGE HOLDEN∗

Abstract

We introduce the most general version of Dubrovin-type equations for divisors on a hyperelliptic
curve K� of arbitrary genus � ∈ N, and provide a new argument for linearizing the corresponding
completely integrable flows. Detailed applications to completely integrable systems, including
the KdV, AKNS, Toda, and the combined sine-Gordon and mKdV hierarchies, are made. These
investigations uncover a new principle for 1 + 1-dimensional integrable soliton equations in
the sense that the Dubrovin equations, combined with appropriate trace formulas, encode all
hierarchies of soliton equations associated with hyperelliptic curves. In other words, completely
integrable hierarchies of soliton equations determine Dubrovin equations and associated trace
formulas and, vice versa, Dubrovin-type equations combined with trace formulas permit the
construction of hierarchies of soliton equations.

1. Introduction

The purpose of this paper is to re-examine Dubrovin equations for divisors
on hyperelliptic Riemann surfaces and to underscore their exceptional role in
connection with completely integrable hierarchies of soliton equations.

Starting from four representative hierarchies, the Korteweg-deVries (KdV),
Ablowitz-Kaup-Newell-Segur (AKNS), Toda lattice (Tl), and the combined
sine-Gordon and mKdV (sGmKdV) hierarchy, we derive a new argument for
linearizing the corresponding completely integrable flows. As a result of these
investigations we show that a proper combination of Dubrovin equations and
trace formulas involving auxiliary divisors on hyperelliptic curves encodes
all information on the underlying completely integrable hierarchy of soliton
equations.

In Section 2 we briefly review some basic facts on hyperelliptic curves and
establish the notation used throughout this paper. Section 3 provides a “crash
course” into the four different hierarchies closely following the detailed ac-
counts in [11], [28], [29], [30], and [31]. In particular, we outline an elementary
polynomial, recursive approach to these hierarchies, as originally developed
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by S. I. Al’ber [1], [2] in the KdV context, and introduce the corresponding
divisors on K� associated with their algebro-geometric solutions. Section 4
relates the polynomial recursion relation approach with elementary symmetric
functions (and functions derived from them) ofµ1(x, tr ), . . . , µ�(x, tr ), where
µj(x, tr ) are certain analogs of Dirichlet-type eigenvalues of the correspond-
ing Lax operator. In Section 5 we study Dubrovin equations and, based on
the results of Section 4, provide a new proof of the fundamental fact that a
change of coordinates effected by the Abel map straightens out the flows on
the Jacobi variety J (K�) of K�. Section 6 illustrates our results by deriving
connections between the KdV and sG equations, and AKNS and Toda hier-
archies, respectively. These connections establish the fundamental role played
by the Dubrovin equations as the common underlying principle for hierarchies
of soliton equations. In particular, our formalism establishes an isomorphism
between the class of algebro-geometric solutions of these integrable systems.
Finally, Appendix A collects some useful results in connection with Lagrange
interpolation formulas.

We emphasize that our results are not necessarily restricted to hyperelliptic
curves. In particular, the approach of this paper applies to Boussinesq-type
curves using the polynomial recursion formalism for the Boussinesq hierarchy
developed in [19], [20].

Depending perhaps a bit on one’s taste, the results of this paper may at first
sight appear somewhat discouraging as they clearly shift the emphasis from
individual hierarchies of soliton equations toward Dubrovin-type equations.
On the positive side, however, they establish the Dubrovin equations as a
universal object underlying all hierarchies.

We note that our approach to completely integrable soliton equations is close
in spirit to that developed by M. S. Al’ber and S. I. Al’ber in a series of papers
(see, e.g., [1]–[7] and the references therein). While their approach focuses
on algebraically integrable systems and hence on a Hamiltonian formalism
with associated action and angle variables, our approach concentrates on how
a combination of elementary symmetric functions of µ1(x, t1), . . . , µ�(x, tr )

and certain trace formulas generate completely integrable hierarchies of soliton
equations and their algebro-geometric solutions.

Finally, we stress that the use of elementary symmetric functions and hence
of trace formulas in terms of Dirichlet eigenvalues has a long history in the con-
text of integrable equations. In fact, as early as 1975, Flaschka [25] character-
ized the real-valued periodic potentials q with finitely many stability intervals
of the associated Schrödinger operator−d2/dx2+q inL2(R; dx) as stationary
solutions of the KdV hierarchy using (regularized) trace relations for Dirichlet
eigenvalues associated with q and the underlying periodicity interval.
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2. Hyperelliptic curves

Fix N ∈ N0. We briefly review hyperelliptic Riemann surfaces of the type,

(2.1) FN(z, y) = y2 − RN+1(z) = 0, RN+1(z) =
N∏
m=0

(z− Em),

{Em}m=0,...,N ⊂ C, Em 
= Em′ for m 
= m′.
The material of this section is standard and can be found, for instance, in [24].
The curve (2.1) is compactified by adding one point P∞ at infinity ifN is even,
and two points P∞+ and P∞− , P∞+ 
= P∞− , if N is odd.

One then introduces an appropriate set of1 
N + 1�/2 nonintersecting cuts
Cj joiningEm(j) andEm′(j) and C∞ joiningEN and∞ ifN is even. We denote

(2.2) C =
⋃

j∈J∪{∞}
Cj , Cj ∩ Ck = ∅, j 
= k,

where J ⊆ {1, . . . , 
N + 1�/2}. Defining the cut plane

(2.3) � = C \ C ,

and then introduces the holomorphic function

(2.4) RN+1(·)1/2:�→ C, z �→
( N∏
m=0

(z− Em)
)1/2

on � with an appropriate choice of the square root branch in (2.4). Next one
defines
(2.5)

M� =
{
(z, σRN+1(z)

1/2) | z ∈ C, σ ∈ {±1}} ∪ { {P∞} for N even,

{P∞+ , P∞−} for N odd,

by extending RN+1(·)1/2 to C . The hyperelliptic curve K� is then the set M�

with its natural complex structure obtained upon gluing the two sheets of M�

crosswise along the cuts. Finite points P on K� are denoted by P = (z, y),
where y(·) denotes the meromorphic function on K� satisfying FN(z, y) =
y2 − RN+1(z) = 0; K� has genus � = 
N + 1�/2.

A basis of � linearly independent holomorphic differentials on K� is given
by z�−1 dz/y for � = 1, . . . , �, and one introduces

(2.6) dωj (P ) =
�∑
�=1

cj,�
z�−1 dz

y
, j = 1, . . . , �,

1 
x� = sup{y ∈ Z | y ≤ x}.
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with normalization,

(2.7)
∫
aj

dωk = δj,k, j, k = 1, . . . , �,

where {aj , bj }�j=1 is a homology basis for K�.
Defining the matrix τ = (τj,k) by

(2.8) τj,k =
∫
bj

dωk, j, k = 1, . . . , �,

one infers Im(τ ) > 0 and τj,k = τk,j .
We fix a base point P0 on K� and define the Abel map AP0

by

(2.9) AP0
(P ) =

(∫ P

P0

dω1, . . . ,

∫ P

P0

dω�

)
(mod L�), P ∈ K�,

with period lattice

(2.10) L� = {n+ τm | n,m ∈ Z�}.
Similarly, one introduces

(2.11) αP0
: Div(K�)→ J (K�), D �→ αP0

(D) =
∑
P∈K�

D(P )AP0
(P ),

where Div(K�) and J (K�) = C�/L� denote the set of divisors on K� and the
Jacobi variety of K�, respectively.

In connection with divisors on K� we shall employ the following (additive)
notation,

(2.12) DQ0Q = DQ0 + DQ, DQ = DQ1 + · · · + DQn, etc.,

for Q = (Q1, . . . ,Qn) ∈ σnK�,

where for anyQ ∈ K�,

(2.13) DQ: K� → N0, P �→ DQ(P ) =
{

1 for P = Q,

0 for P ∈ K� \ {Q},
and σnK� denotes the nth symmetric product of K�.
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3. The hierarchies

We give a brief presentation of the KdV, AKNS, sGmKdV, and Toda hierarch-
ies based on a polynomial, recursive approach. The material of this section
originated with work of S. I. Al’ber [1], [2] (see also [3]–[7]). It has been
further developed in [11], [28], [29], [30], and [31] and we closely follow the
latter sources. Common to all these hierarchies is that one can naturally asso-
ciate with each one of them a hyperelliptic curve as described in the previous
section.

In the following all coefficients of differential expressions are assumed to
be smooth (or meromorphic) with respect to x ∈ R (or x ∈ C) and C1(R) with
respect to t�.

The KdV hierarchy. The Lax pair consists of a second-order linear differ-
ential expression L of Schrödinger-type,

(3.1) L(t�) = − d2

dx2
+ V (x, t�), (x, t�) ∈ R2,

and a differential expression P2�+1(t�) of order 2� + 1 defined recursively as
follows. Let {fj }j∈N0 be given by

(3.2) f0 = 1, fj,x = −1

4
fj−1,xxx + Vfj−1,x + 1

2
Vxfj−1, j ∈ N.

Next, one defines

(3.3) P2�+1(t�) =
�∑
j=0

(
fj (t�)

d

dx
− 1

2
fj,x(t�)

)
L(t�)

�−j , � ∈ N0,

and using the definition of fj in (3.2), one finds that the commutator of L(t�)
and P2�+1(t�) is in fact a multiplication operator. Indeed, the Lax commutator
representation reads

(3.4) Lt�(t�)− [P2�+1(t�), L(t�)] = Vt� − 2f�+1,x(x, t�) = KdV�(V ) = 0.

Next define the polynomial2 of degree � in z

(3.5) F�(z, x, t�) =
�∑
j=0

f�−j (x, t�)zj =
�∏
j=1

(z− µj(x, t�))

2 The zeros µj (x, t�) of F� turn out to be eigenvalues associated with L(t�) and a Dirichlet
boundary condition at the point x ∈ R.
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implying

(3.6) −2Vt� = F�,xxx − 4(V − z)F�,x − 2VxF�.

In the special stationary case, defined by Vt� = 0, this integrates to

(3.7)
1

2
F�,xxF� − 1

4
F 2

�,x − (V − z)F 2
� = R2�+1(z).

Here R2�+1 is a monic polynomial of degree 2�+ 1 with zeros {E0, . . . , E2�}.
Hence,

(3.8) R2�+1(z) =
2�∏
m=0

(z− Em), {Em}m=0,...,2� ⊂ C.

The hyperelliptic curve K� is defined in terms of the stationary KdV hier-
archy obtained by considering a t�-independent function V = V (x), resulting
in

(3.9) [P2�+1, L] = 2f�+1,x = 0.

The classical Burchnall-Chaundy theorem [12], [13], [14] (see also [39], [42])
states that commuting differential operators are algebraically related. In the
present context one finds

(3.10) P 2
2�+1 = R2�+1(L)

and thus the hyperelliptic curve K� of genus � is of the type y2 = R2�+1(z),
with N = 2� even when compared to Section 2.

For later purpose we quote the following asymptotic high-energy expan-
sion3 (see [26], [31], [40])

(3.11)
iF�(z, x, t�)

2R2�+1(z)1/2
=
z→∞

i

2z1/2

∞∑
j=0

f̂j (x, t�)z
−j ,

where f̂j denotes the homogeneous coefficients fj in (3.2) with all integration
constants put equal to zero.

We also introduce the following fundamental meromorphic function
φ(·, x, t�) on K�,

(3.12) φ(P, x, t�) = iy + 1
2F�,x(z, x, t�)

F�(z, x, t�)
= −H�+1(z, x, t�)

iy − 1
2F�,x(z, x, t�)

3 For an appropriate choice of the sign of the square roots in (3.11), the left-hand side of (3.11)
equals the diagonal Green’s function of L(t�).
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(the second equality in (3.12) serving as a definition of the polynomial H�+1

of degree � + 1 with respect to z), and the time-dependent Baker-Akhiezer
function ψ(·, x, x0, t�, t0,�) on K� \ {P∞},
(3.13)

ψ(P, x, x0, t�, t0,�) = exp

(∫ t�

t0,�

ds
(
F�(z, x0, s)φ(P, x0, s)− 1

2F�,x(z, x0, s)
)

+
∫ x

x0

dx ′ φ(P, x ′, t�)
)
.

The divisor (φ(·, x, t�)) of φ(·, x, t�) is given by

(3.14) (φ(·, x, t�)) = Dν̂0(x,t�)ν̂(x,t�) − DP∞µ̂(x,t�),

where µ̂(x, t�) = (µ̂1(x, t�), . . . , µ̂�(x, t�)) ∈ σ �K�,

(3.15) µ̂j (x, t�) =
(
µj(x, t�),− 1

2F�,x(µj (x, t�), x, t�)
)
, j = 1, . . . , �

denote the Dirichlet divisors2 and ν̂0(x, t�)ν̂(x, t�)=(ν̂0(x, t�), . . . , ν̂�(x, t�))∈
σ �+1K�,

(3.16) ν̂�(x, t�) =
(
ν�(x, t�),

1
2F�,x(ν�(x, t�), x, t�)

)
, � = 0, . . . , �

abbreviate the Neumann divisors4 derived from the zeros of H�+1(z, x, t�),

(3.17) H�+1(z, x, t�) =
�∏
�=0

(z− ν�(x, t�)).

The importance of φ in connection with divisors on hyperelliptic curves was
recognized by Jacobi [33] and applied to the KdV case by Mumford [38], Sect.
IIIa.1 and McKean [36] (see also [23], [39]).

The AKNS hierarchy. The Lax pair consists of a Dirac-type matrix-valued
differential expression

(3.18) M(t�) = i


d

dx
−q(x, t�)

p(x, t�) − d

dx

 , (x, t�) ∈ R2,

and a matrix-valued differential operatorQ�+1(t�) of order �+ 1, �∈N0. To de-
fineQ�+1(t�) one proceeds as follows. Define

{
f�(x, t�)

}
�∈N0

,
{
g�(x, t�)

}
�∈N0

,

4 The zeros ν�(x, t�) of H�+1 turn out to be eigenvalues associated with L(t�) and a Neumann
boundary condition at the point x ∈ R.
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and
{
h�(x, t�)

}
�∈N0

recursively by,

(3.19)

f0 = −iq,

f�+1 = i

2
f�,x − iqg�+1,

g0 = 1,

g�+1,x = pf� + qh�,

h0 = ip,

h�+1 = − i
2
h�,x + ipg�+1, � ∈ N0.

The 2× 2 matrixQ�+1(t�) is then defined by
(3.20)

Q�+1(t�) = i
�+1∑
�=0

(−g�+1−�(t�) f�−�(t�)

−h�−�(t�) g�+1−�(t�)

)
M(t�)

�,
� ∈ N0,

f−1 = h−1 = 0,

and one verifies that the commutator ofQ�+1(t�) andM(t�) becomes

(3.21) [Q�+1(t�),M(t�)] =
( 0 −2if�+1(t�)

2ih�+1(t�) 0

)
.

Consequently, the Lax commutator representation for the AKNS hierarchy
reads (� ∈ N0)

(3.22)

d

dt�
M(t�)− [Q�+1(t�),M(t�)] =

(
pt�(x, t�)− 2h�+1(x, t�)

qt�(x, t�)− 2f�+1(x, t�)

)
= AKNS�(p, q) = 0.

Next, define polynomials F�, G�+1, and H� with respect to z ∈ C,

(3.23)

F�(z, x, t�) =
�∑
�=0

f�−�(x, t�)z� = −iq(x, t�)
�∏
j=1

(z− µj(x, t�)),

G�+1(z, x, t�) =
�+1∑
�=0

g�+1−�(x, t�)z�,

H�(z, x, t�) =
�∑
�=0

h�−�(x, t�)z� = ip(x, t�)
�∏
j=1

(z− νj (x, t�)).
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In the special stationary case, where pt� = qt� = 0, one infers from the
recursion (3.19) that

(
G2

�+1 − F�H�

)
x
= 0 and hence

(3.24) G2
�+1 − F�H� = R2�+2(z),

whereR2�+2 is a monic polynomial of degree 2�+2 with zeros {E0, . . . ,E2�+1}.
Thus,

(3.25) R2�+2(z) =
2�+1∏
m=0

(z− Em), {Em}m=0,...,2�+1 ⊂ C.

The stationary case determines the hyperelliptic curve K� of genus � of
the type y2 = R2�+1(z), with N = 2� + 1 when compared to Section 2. If
p = p(x) and q = q(x) are stationary solutions of the AKNS equation,

(3.26) [Q�+1,M] = 0, that is, f�+1 = h�+1 = 0,

Burchnall-Chaundy’s theorem implies that

(3.27) Q2
�+1 + R2�+2(M) = 0.

By studying the Green’s matrix of M one finds the following asymptotic
high-energy expansion [30],

(3.28)

F�(z, x, t�)

R2�+2(z)1/2
=
z→∞

1

z

∞∑
k=0

f̂k(x, t�)z
−k,

H�(z, x, t�)

R2�+2(z)1/2
=
z→∞

1

z

∞∑
k=0

ĥk(x, t�)z
−k

for an appropriate determination of the square roots in (3.28). Here f̂j and
ĥj denote the homogeneous quantities with vanishing integration constants in
(3.19).

We also record the meromorphic function φ(·, x, t�) on K�,

(3.29) φ(P, x, t�) = y +G�+1(z, x, t�)

F�(z, x, t�)
= −H�(z, x, t�)

y −G�+1(z, x, t�)
,

and the Baker-Akhiezer vector on K� \ {P∞±},

(3.30) 4(P, x, x0, t�, t0,�) =
(
ψ1(P, x, x0, t�, t0,�)

ψ2(P, x, x0, t�, t0,�)

)
,
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ψ1(P, x, x0, t�, t0,�) = exp

(∫ x

x0

dx ′(−iz+ q(x ′, t�)φ(P, x ′, t�))

+ i
∫ t�

t0,�

ds(F�(z, x0, s)φ(P, x0, s)−G�+1(z, x0, s))

)
,

(3.31) ψ2(P, x, x0, t�, t0,�) = φ(P, x, t�)ψ1(P, x, x0, t�, t0,�).

The divisor (φ(·, x, t�)) of φ(·, x, t�) is given by

(3.32) (φ(·, x, t�)) = DP∞+ ν̂(x,t�) − DP∞− µ̂(x,t�),

where µ̂(x, t�) = (µ̂1(x, t�), . . . , µ̂�(x, t�)) ∈ σ �K�,

(3.33) µ̂j (x, t�) = (µj (x, t�),G�+1(µj (x, t�), x, t�)), j = 1, . . . , �

and ν̂(x, t�) = (ν̂1(x, t�), . . . , ν̂�(x, t�)) ∈ σ �K�,

(3.34) ν̂j (x, t�) = (νj (x, t�),−G�+1(νj (x, t�), x, t�)), j = 1, . . . , �.

The Toda hierarchy. Let (S±f )(n) = f ±(n) = f (n ± 1), n ∈ Z denote
the shift operation on the lattice Z. The equations in the Toda hierarchy are
continuous in time and discrete in the space variable. The Lax pair consists of
the second-order difference operator

(3.35) L(t�) = a(t�)S+ + a−(t�)S− − b(t�), t� ∈ R

and a difference operator P2�+2(t�) of order 2�+ 1, � ∈ N0

(3.36)

P2�+2(t�) = −L(t�)�+1 +
�∑
j=0

(
gj (t�)+ 2a(t�)fj (t�)S

+)L(t�)�−j + f�+1(t�).

Here {fj (n, t�)}j∈N0 and {gj (n, t�)}j∈N0 satisfy the recursion relations,

(3.37)

f0 = 1, g0 = −c1,

2fj+1 + gj + g−j + 2bfj = 0, j ∈ N0,

gj+1 − g−j+1 + 2
(
a2f +j − (a−)2f −j

)+ b(gj − g−j ) = 0, j ∈ N0.

The Lax commutator representation of the Toda hierarchy then reads
(3.38)
Lt�(t�)−[P2�+2(t�), L(t�)] = Tl�(a, b)1S

+−Tl�(a, b)2+Tl�(a
−, b−)1S−= 0,
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where
(3.39)

Tl�(a, b)1 = at� + a(g+� + g� + f +�+1 + f�+1 + 2b+f +� ) = 0,

Tl�(a, b)2 = bt� + 2
(
b(g� + f�+1)+ a2f +� − (a−)2f −� + b2f�

) = 0.

This is equivalent to

(3.40) Tl�(a, b) = (Tl�(a, b)1,Tl�(a, b)2)
t = 0, � ∈ N0.

Next, define

F�(z, n, t�) =
�∑
j=0

zjf�−j (n, t�) =
�∏
j=1

(z− µj(n, t�)),(3.41)

G�+1(z, n, t�) = −z�+1 +
�∑
j=0

zjg�−j (n, t�)+ f�+1(n, t�).(3.42)

In the special stationary case, defined by at� = bt� = 0, the recursion formulas
(3.37) then imply

(3.43) G�+1 − 4a2F�F
+
� = G−�+1 − 4(a−)2F−� F� = R2�+2(z),

where R2�+2(z) is a lattice constant. By inspection, R2�+2(z) is a polynomial
in z of degree 2�+ 2 with zeros {E0, . . . , E2�+1}, that is,

(3.44) R2�+2(z) =
2�+1∏
m=0

(z− Em), {Em}m=0,...,2�+1 ⊂ C.

Consider now the stationary hierarchy where a = a(n) and b = b(n) satisfy
[P2�+2, L] = 0, or

(3.45)
g+� + g� + f +�+1 + f�+1 + 2b+f +� = 0,

b(g� + f�+1)+ a2f +� − (a−)2f −� + b2f� = 0.

Burchnall-Chaundy’s theorem then states that

(3.46) P 2
2�+2 = R2�+2(L).

Hence the hyperelliptic curve K� of genus � reads y2 = R2�+2(z), and thus
N = 2�+ 1 is odd in the terminology of Section 2.
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Studying the diagonal Green’s function of L(t�) yields the high-energy
expansion [11]

(3.47)
F�(z, n, t�)

R2�+2(z)1/2
=
z→∞

∞∑
j=0

f̂j (n, t�)z
−j−1 for |z| > ‖L‖,

with an appropriate choice of the radical in (3.47). Here f̂j and similarly ĝj ,
denote the homogeneous coefficients fj and gj with vanishing integration
(actually, summation) constants in (3.37).

Furthermore, define the meromorphic function φ(·, n, t�) on K� by

(3.48) φ(P, n, t�) = −G�+1(z, n, t�)+ y
2a(n, t�)F�(z, n, t�)

= −2a(n, t�)F�(z, n+ 1, t�)

G�+1(z, n, t�)+ y ,

using relation (3.43). With the help of φ(·, n, t�) one defines another mero-
morphic functionψ(·, n, n0, t�, t0,�) on K� \{P∞±}, the Baker-Akhiezer func-
tion, by

(3.49) ψ(P, n, n0, t�, t0,�)

= exp

(∫ t

t0,�

ds
(
2a(n0, s)F�(z, n0, s)φ(P, n0, s)+G�+1(z, n0, s)

))

×


∏n−1
m=n0

φ(P,m, t�) for n ≥ n0 + 1,

1 for n = n0,∏n0−1
m=n φ(P,m, t�)−1 for n ≤ n0 − 1.

The divisor (φ(·, n, t�)) of φ(·, n, t�) is given by

(3.50) (φ(·, n, t�)) = DP∞+ µ̂(n+1,t�) − DP∞− µ̂(n,t�),

where

µ̂(m, t�) = (µ̂1(m, t�), . . . , µ̂�(m, t�)) ∈ σ �K�, m ∈ Z,(3.51a)

µ̂j (n, t�) = (µj (n, t�),−G�+1(µj (n, t�), n, t�)), j = 1, . . . , �,(3.51b)

µ̂j (n+ 1, t�) = (µj (n+ 1, t�),G�+1(µj (n+ 1, t�), n, t�)),(3.51c)

j = 1, . . . , �.

The sGmKdV hierarchy. The combined sine-Gordon and mKdV hierarchy
is defined in terms of a zero curvature formalism as follows. Introduce the



dubrovin equations and integrable systems on hyperelliptic . . . 103

2× 2 matrices

(3.52) U(z, x, t�) = −i
( 1

2ux(x, t�) 1

z − 1
2ux(x, t�)

)
, (x, t�) ∈ R2,

and

(3.53) V�(z, x, t�) =
(−G�−1(z, x, t�)

1
z
F�(z, x, t�)

H�(z, x, t�) G�−1(z, x, t�)

)
,
(x, t�) ∈ R2,

� ∈ N0.

Then the zero curvature relation reads

(3.54) Ut� − V�,x + [U,V�] = 0, � ∈ N0,

resulting in the equations

uxt�(x, t�) = −2iG�−1,x(x, t�)− 2(H�(x, t�)− F�(x, t�)),(3.55a)

F�,x(x, t�) = −iux(x, t�)F�(x, t�)− 2izG�−1(x, t�),(3.55b)

H�,x(x, t�) = iux(x, t�)H�(x, t�)+ 2izG�−1(x, t�).(3.55c)

Making the following polynomial ansatz

F�(z, x, t�) =
�∑
j=0

f�−j (x, t�)zj =
�∏
j=1

(z− µj(x, t�)),(3.56a)

H�(z, x, t�) =
�∑
j=0

h�−j (x, t�)zj =
�∏
j=1

(z− νj (x, t�)),(3.56b)

G−1(z, x, t�) = 0, G�−1(z, x, t�) =
�−1∑
j=0

g�−1−j (x, t�)zj ,(3.56c)

one concludes5 (fj = fj (x, t�), etc.)
(3.57)
f� = αe−iu, h� = βeiu, α, β ∈ C, � ∈ N0.

f0 = 1, fj,x = −1

4
fj−1,xxx + w+fj−1,x + 1

2
w+,xfj−1, j = 1, . . . , �, � ∈ N,

h0 = 1, hj,x = −1

4
hj−1,xxx + w−hj−1,x + 1

2
w−,xhj−1, j = 1, . . . , �, � ∈ N,

5 One observes that the recursions (3.57) are identical with the KdV recursion replacing V by
w±.
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where

(3.58) w± = −1

4
(u2
x ± 2iuxx),

and
(3.59)

g−1 = 0, gj = i

2
(fj,x+iuxfj ) = i

2
(−hj,x+iuxhj ), j = 0, . . . , �−1, � ∈ N

(we refer to [28] for a detailed discussion).

Remark 3.1. The recursion for the sGmKdV hierarchy is anomalous com-
pared to the other hierarchies studied in this paper. For the KdV, AKNS as
well as the Tl hierarchies the functions fj (and gj and hj where applicable) are
defined by the same recursion formula for all j ∈ N irrespective of the given
genus �. However, for the sG hierarchy f� and h� are always given by (3.57)
for � ∈ N0. This raises a compatibility problem in the recursion formalism. A
proof of the solvability of the recursion can be found in [28], Appendix C.

The �th sGmKdV equation is then defined by

(3.60) sGmKdV�(u(x, t�)) = uxt�(x, t�)+ 2ig�−1,x(x, t�)

+ 2
(
βeiu(x,t�) − αe−iu(x,t�)) = 0, � ∈ N0.

One observes that α = β = i/4 and � = 0 yields the well-known sine-
Gordon equation in light-cone coordinates. Appropriate choices of α and β in
(3.60) include the sinh-Gordon hierarchy, the corresponding elliptic equations,
the Liouville model, as well as the modified KdV hierarchy (taking α = β =
0).

In the stationary case, where uxt� = 0, one finds

(3.61)
d

dx

(
zG�−1(z, x)

2 + F�(z, x)H�(z, x)

)
= 0

and hence

(3.62) zG�−1(z, x)
2 + F�(z, x)H�(z, x) = P2�(z),

where P2�(z) is x-independent. It is more convenient to define R2�+1(z) =
zP2�(z) so that (3.62) becomes

(3.63) z2G�−1(z, x)
2 + zF�(z, x)H�(z, x) = R2�+1(z),
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where R2�+1 is a monic polynomial in z of degree 2�+ 1 of the form

(3.64) R2�+1(z) =
2�∏
m=0

(z− Em), E0 = 0, E1, . . . , E2� ∈ C.

This polynomial defines the hyperelliptic curve K� of genus � by the relation
y2 − R2�+1(z) = 0 and hence N = 2� in the terminology of Section 2. K� is
compactified by adding a point P∞.

Remark 3.2. (i) One observes that the sGmKdV-curve is a special case of
the KdV curve with the additional constraint E0 = 0.

(ii) In the stationary case the choice of α and β is constrained by the relation

(3.65) αβ =
2�∏
j=1

Ej ,

as can be seen by inserting z = 0 in (3.63), using (3.57) and (3.64).

We now return to the time-dependent formalism. Letφ(·, x, t�) be the mero-
morphic function on K� given by

(3.66) φ(P, x, t�) = y − zG�−1(z, x, t�)

F�(z, x, t�)
= zH�(z, x, t�)

y + zG�−1(z, x, t�)
.

Hence the divisor (φ(·, x, t�)) of φ(·, x, t�) reads

(3.67) (φ(·, x, t�)) = DQ0ν(x,t�) − DP∞µ(x,t�),

with µ̂(x, t�)=(µ̂1(x, t�), . . . , µ̂�(x, t�)), ν̂(x, t�)=(ν̂1(x, t�), . . . , ν̂�(x, t�))∈
σ �K�,

(3.68a) µ̂j (x, tr )

= (µj (x, tr ),−µj(x, tr )G�−1(µj (x, tr ), x, tr )) ∈ K�, j = 1, . . . , �,

(3.68b) ν̂j (x, tr )

= (νj (x, tr ), νj (x, tr )G�−1(νj (x, tr ), x, tr )) ∈ K�, j = 1, . . . , �.

The time-dependent Baker-Akhiezer vector

(3.69) 4(P, x, x0, t�, t0,�) =
(
ψ1(P, x, x0, t�, t0,�)

ψ2(P, x, x0, t�, t0,�)

)
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is defined on K� \ {P∞} by

(3.70) ψ1(P, x, x0, t�, t0,�) = exp

(
− i

2

(
u(x, t�)− u(x0, t�)

)
+i
∫ x

x0

dx ′φ(P, x ′, t�)−
∫ t�

t0,�

ds
(
z−1F�(z, x0, s)φ(P, x0, s)+G�−1(z, x0, s)

))
,

(3.71) ψ2(P, x, x0, t�, t0,�) = −ψ1(P, x, x0, t�, t0,�)φ(P, x, t�).

Combining relations (3.56a), (3.56b), and (3.57) one concludes

(3.72)

u(x, t�) = i ln

(
(−1)�α−1

�∏
j=1

µj(x, t�)

)

= −i ln

(
(−1)�β−1

�∏
j=1

νj (x, t�)

)
.

We will also need the following asymptotic high-energy expansion

(3.73)
F�(z, x, t�)

R2�+1(z)1/2
=
z→∞

1

z1/2

∞∑
j=0

f̂j (x, t�)z
−j ,

with f̂j denoting the homogeneous coefficients fj in (3.57).

4. Symmetric functions

Let � ∈ N be fixed and define

Sk = {� = (�1, . . . , �k) ∈ Nk | �1 < · · · < �k ≤ �}, k ≤ �,(4.1a)

I
(j)

k = {� = (�1, . . . , �k) ∈ Sk | �m 
= j}, k ≤ �− 1, 1 ≤ j ≤ �.(4.1b)

Define

(4.2a) 40(µ) = 1, 4k(µ) = (−1)k
∑
�∈Sk

µ�1 · · ·µ�k , k ≤ �,

(4.2b) <
(j)

0 (µ) = 1, <
(j)

k (µ) = (−1)k
∑
�∈I

(j)

k

µ�1 · · ·µ�k , k ≤ �− 1,

<(j)� (µ) = 0, 1 ≤ j ≤ �
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where µ = (µ1, . . . , µ�) ∈ C�. One recognizes the simple pattern,

41(µ) = −
�∑
�=1

µ�, 42(µ) =
�∑

�1,�2=1
�1<�2

µ�1µ�2 , etc.,(4.3a)

<
(j)

1 (µ) = −
�∑
�=1
�
=j

µ�, <
(j)

2 (µ) =
�∑

�1,�2=1
�1,�2 
=j
�1<�2

µ�1µ�2 , etc.(4.3b)

LetE0, . . . , EN beN+1 complex numbers, whereN = 2� orN = 2�+1 de-
pending on the underlying hierarchy of soliton equations. For brevity we intro-
duce E = (E0, . . . , EN), assume z ∈ C such that |z| > max{|E0|, . . . , |EN |},
and recall

(4.4)

( N∏
m=0

(
1− Em

z

))−1/2

=
∞∑
k=0

ĉk(E)z
−k,

where

(4.5) ĉ0(E) = 1,

ĉk(E) =
k∑

j0,...,jN=0
j0+···+jN=k

(2j0)! . . . (2jN)!

22k(j0!)2 . . . (jN !)2
E
j0
0 . . . E

jN
N , k ∈ N.

The first few terms read

(4.6) ĉ0(E) = 1, ĉ1(E) = 1

2

N∑
j=0

Ej ,

ĉ2(E) = 1

4

N∑
j,k=0
j<k

EjEk + 3

8

N∑
j=0

E2
j , etc.

Similarly,

(4.7)

( N∏
m=0

(
1− Em

z

))1/2

=
∞∑
k=0

ck(E)z
−k,
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where

(4.8) c0(E) = 1, ck(E) = (−1)N+1

·
k∑

j0,...,jN=0
j0+···+jN=k

(2j0)! . . . (2jN)!

22k(j0!)2 . . . (jN !)2(2j0 − 1) . . . (2jN − 1)
E
j0
0 . . . E

jN
N , k ∈ N.

Explicitly, one obtains for the first few coefficients

(4.9) c0(E) = 1, c1(E) = −1

2

N∑
j=0

Ej ,

c2(E) = 1

4

N∑
j,k=0
j<k

EjEk − 1

8

N∑
j=0

E2
j , etc.

Next, assuming µj 
= µj ′ for j 
= j ′, introduce the �× � matrix U�(µ) by

(4.10) U1(µ) = 1, U�(µ) =
(

µ
j−1
k∏�

m
=k(µk − µm)
)�

j,k=1

.

Lemma 4.1. Suppose µj 
= µj ′ for j 
= j ′. Then

(4.11) U�(µ)
−1 =

(
<
(j)

�−k(µ)
)�

j,k=1
.

Proof. First we observe that we may write

(4.12) U�(µ) =
(
µ
j−1
k

F ′�(µk)

)�

j,k=1

.

Using Lagrange’s interpolation result, Theorem A.1 (replacing k by � − k in
(A.1)), proves the result.

Of crucial importance for our approach is the fact that we are able to express
fj and Fr in terms of elementary symmetric functions of µ1, . . . , µ�. The
expression is given below for the homogeneous case only, denoted by f̂j and
F̂r , where the integration constants c� for � ∈ N vanish. We start with f̂j .
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Lemma 4.2. Let ĉj (E) and cj (E) be defined as in (4.5) and (4.8). Then one
infers the following results for the KdV and the Toda hierarchies6,

(4.13) f̂j =
j∧ �∑
k=0

ĉj−k(E)4k(µ), 4j (µ) = fj =
j∑
k=0

cj−k(E)f̂k.

For the AKNS hierarchy one obtains

(4.14) f̂j = −iq
j∧ �∑
k=0

ĉj−k(E)4k(µ), ĥj = ip
j∧ �∑
k=0

ĉj−k(E)4k(ν),

(4.15)

−iq4j (µ) = fj =
j∑
k=0

cj−k(E)f̂k, ip4j (ν) = hj =
j∑
k=0

cj−k(E)ĥk,

where ν = (ν1, . . . , ν�).
In the sGmKdV case one has

(4.16) f̂j =
j∧ �∑
k=0

ĉj−k(E)4k(µ), ĥj =
j∧ �∑
k=0

ĉj−k(E)4k(ν),

(4.17) 4j (µ) = fj =
j∑
k=0

cj−k(E)f̂k, 4j (ν) = hj =
j∑
k=0

cj−k(E)ĥk,

and

(4.18) f̂� = 4�(µ) = f�, ĥ� = 4�(ν) = h�, � ∈ N0.

Proof. The proof is identical in all cases, and is based on the high-energy
expansion of the Green’s function of the corresponding linear operator L or
M in the Lax pair or zero curvature formulation of the hierarchy considered.
We provide the details for the KdV hierarchy only.

6 n ∧m = min{n,m}.
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Using (4.4) one finds

F�(z)

R2�+1(z)1/2
=
∏�
j=1(z− µj)
R2�+1(z)1/2

= 1

z1/2

∏�
j=1

(
1− µj

z

)∏2�
m=0

(
1− Em

z

)1/2

= 1

z1/2

( �∑
j=0

4j(µ)z
−j
)( ∞∑

m=0

cm(E)z
−m
)

= 1

z1/2

∞∑
m=0

z−m
m∧ �∑
k=0

cm−k(E)4k(µ).

Combining this result with the high-energy expansion (3.11) proves (4.13) for
f̂j . Next, multiplying (4.4) and (4.7), a comparison of coefficients of z−k yields

(4.19)
k∑
�=0

ĉk−�(E)c�(E) = δk,0, k ∈ N0.

Thus, one computes

(4.20)

j∑
m=0

cj−m(E)f̂m =
j∑
m=0

m∑
k=0

cj−m(E)ĉm−k(E)fk

=
j∑
k=0

j∑
p=k

cj−p(E)ĉp−k(E)fk

=
j∑
k=0

(j−k∑
m=0

cj−k−m(E)ĉm(E)
)
fk = fj ,

applying (4.19). Hence one obtains (4.13) forfj = 4j(µ) (cf. (3.5) and (4.2a)).

Remark 4.3. One observes that the right-hand side of (4.13) is defined for
all x ∈ R, but when one samples it at integer values x = n ∈ Z, it coincides with
f̂j (n) for the Toda lattice. Thus we have in some sense a continuous extension
of the Toda hierarchy (cf. also Lemma 5.6).

Next we introduce

(4.21) F̂r (z) =
r∑
�=0

f̂r−�z�
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in the KdV, Toda, and AKNS cases (and similarly Ĥr (z) = ∑r
�=0 ĥr−�z� in

the AKNS case) and

(4.22) F̂s(z) =
s∑
�=0

f̂s−�z�, s = 0, . . . , r − 1, F̂r (z) = f̂r + zF̂r−1(z)

with f̂r = α̃e−iu in the SGmKdV case.

Theorem 4.4. Let r ∈ N0. For both the KdV and the Tl case one derives7

(4.23) F̂r (µj ) =
r∑

p=(r−�)∨0

cp(E)<
(j)
r−p(µ).

For the AKNS hierarchy one infers
(4.24)

F̂r (µj ) = −iq
r∑

p=(r−�)∨0

cp(E)<
(j)
r−p(µ), Ĥr (νj ) = ip

r∑
p=(r−�)∨0

cp(E)<
(j)
r−p(ν).

For the sGmKdV hierarchy one concludes8

F̂r (µj )

µj
=

r−1∑
p=(r−1−�)∨0

cp(E)<
(j)

r−1−p(µ)−
α̃

α
<
(j)

�−1(µ),(4.25)

Ĥr (νj )

νj
=

r−1∑
p=(r−1−�)∨0

cp(E)<
(j)

r−1−p(ν)−
β̃

β
<
(j)

�−1(ν).(4.26)

Proof. It suffices to consider the KdV and sG cases. By definition

(4.27) F̂r (z) =
r∑
�=0

f̂r−�z� =
r∑
�=0

z�
(r−�)∧ �∑
m=0

4m(µ)cr−�−m(E).

Consider first the case r ≤ �. Then

(4.28) F̂r (z) =
r∑
p=0

cp(E)

r−p∑
�=0

z�4r−�−p(µ)

7 n ∨m = max{n,m}.
8 Since r is independent of �, one obtains f̂r = α̃e−iu, ĥr = β̃eiu with α̃, β̃ ∈ C independent

of α, β, and f̂q , ĥq , q = 1, . . . , r − 1 constructed according to (3.57) and (3.59).
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and hence

(4.29) F̂r (µj ) =
r∑
p=0

cp(E)<
(j)
r−p(µ),

using (A.10). In the case when r ≥ �+ 1 one finds
(4.30)

F̂r (z) =
�∑
m=0

4m(µ)

r−m∑
p=0

zr−m−pcp(E)

=
r−�∑
p=0

cp(E)

( �∑
�=0

4�(µ)z
�−�
)
zr−�−p +

r∑
p=r−�+1

cp(E)

r−p∑
�=0

4�(µ)z
r−p−�

= F�(z)

r−�∑
p=0

cp(E)z
r−�−p +

r∑
p=r−�+1

cp(E)

r−p∑
�=0

4�(µ)z
r−p−�

= F�(z)

r−�∑
p=0

cp(E)z
r−�−p +

r∑
p=r−�+1

cp(E)

r−p∑
m=0

4r−p−m(µ)zm.

Hence,

(4.31) F̂r (µj ) =
r∑

p=r−�+1

cp(E)<
(j)
r−p(µ),

by using (A.10) again.
In the sGmKdV case one first observes that F̂r (z) = zF̂r−1(z)+ f̂r implies

(4.32)

F̂r (µj )

µj
= F̂r−1(µj )+ f̂r

µj
=

r−1∑
p=(r−1−�)∨0

cp(E)<
(j)

r−1−p(µ)−
α̃

α
<
(j)

�−1(µ),

using f̂r = α̃e−iu and the trace relation (3.72).

5. Dubrovin equations and linearized flows

Dubrovin [21] made the fundamental observation that the Dirichlet divisors for
the KdV equation satisfy a first-order system of differential equations. Solving
this system can then be used to recover the function V by appealing to a trace
formula (cf. (5.22)).

Before stating the Dubrovin equations we need some notation. Let � ∈ N.
We start by constructing the hierarchies as explained in Section 3. In particular,
we construct the polynomialF� with its zerosµ = (µ1, . . . , µ�), and define the
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corresponding hyperelliptic curve K�. (In the AKNS case one also constructs
the polynomialH�.) Next, fix an r ∈ N0, and construct the polynomial Fr . The
integration constants in the definition of Fr are assumed to be independent of
those used to construct F�, and to emphasize this fact we denote it by F̃r and
the corresponding constants by c̃�. The Dubrovin equations give the evolution
ofµ = (µ1, . . . , µ�) in terms of the deformation (time) parameter tr according
to the rth equation in the hierarchy considered.

The KdV hierarchy. In our setting the Dubrovin equations for the KdV
hierarchy read [8], Sect. 3.5, [16], [18], Sect. 12.3, [27], [31], [34], Chs. 10,
12, [35], Ch. 4,

∂

∂x
µj (x, tr ) = −2i

y(µ̂j (x, tr ))∏�
�
=j (µj (x, tr )− µ�(x, tr ))

,(5.1a)

∂

∂tr
µj (x, tr ) = F̃r (µj (x, tr ), x, tr ) ∂

∂x
µj (x, tr )(5.1b)

= −2i
y(µ̂j (x, tr ))∏�

�
=j (µj (x, tr )− µ�(x, tr ))
F̃r (µj (x, tr ), x, tr )

for j = 1, . . . , �, with initial data on K� equal to µ̂(·, t0,r ) = µ̂(0)(·), where
µ̂ = (µ̂1, . . . , µ̂�) and
(5.2)

µ̂j (x, tr ) = (µj (x, tr ),− i
2
F�,x(µj (x, tr ), x, tr )) ∈ K�, j = 1, . . . , �.

We remark that (5.1a) is an immediate consequence of (3.5) and (3.15), while
(5.1b) follows from (3.15) and

(5.3) F�,tr = F̃rF�,x − F̃r,xF�

upon taking z = µj(x, tr ).
The AKNS hierarchy. In this case the Dubrovin equations for µ̂ = (µ̂1, . . . ,

µ̂�) are given by [15], [30],

(5.4a)
∂

∂x
µj (x, tr ) = −2i

y(µ̂j (x, tr ))∏�
�
=j (µj (x, tr )− µ�(x, tr ))

,

(5.4b)
∂

∂tr
µj (x, tr ) = − F̃r (µj (x, tr ), x, tr )

iq(x, tr )

∂

∂x
µj (x, tr )

= 2
y(µ̂j (x, tr ))

q(x, tr )
∏�
�
=j (µj (x, tr )− µ�(x, tr ))

F̃r (µj (x, tr ), x, tr )
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for j = 1, . . . , �, with initial data on K� equal to µ̂(·, t0,r ) = µ̂(0)(·), where

(5.5) µ̂j (x, tr ) = (µj (x, tr ),G�+1(µj (x, tr ), x, tr )) ∈ K�, j = 1, . . . , �.

For the corresponding evolution of ν̂ = (ν̂1, . . . , ν̂�) one has

(5.6a)
∂

∂x
νj (x, tr ) = −2i

y(ν̂j (x, tr ))∏�
�
=j (νj (x, tr )− ν�(x, tr ))

,

(5.6b)
∂

∂tr
νj (x, tr ) = H̃r (νj (x, tr ), x, tr ) ∂

∂x
νj (x, tr )

= −2
y(ν̂j (x, tr ))

p(x, tr )
∏�
�
=j (νj (x, tr )− ν�(x, tr ))

H̃r (νj (x, tr ), x, tr )

for j = 1, . . . , �, with initial data on K� equal to ν̂(·, t0,r ) = ν̂(0)(·), where

(5.7) ν̂j (x, tr ) = (νj (x, tr ),−G�+1(νj (x, tr ), x, tr )) ∈ K�, j = 1, . . . , �.

The Toda hierarchy. Here the Dubrovin equations for µ̂ = (µ̂1, . . . , µ̂�)

read [11], [17], [37], [41], Ch.4,

(5.8)
∂

∂tr
µj (n, tr ) = 2

y(µ̂j (n, tr ))∏�
�
=j (µj (n, tr )− µ�(n, tr ))

F̃r (µj (n, tr ), n, tr )

for j = 1, . . . , �, with initial data on K� equal to µ̂(·, t0,r ) = µ̂(0)(·), where
(5.9)
µ̂j (n, tr ) = (µj (n, tr ),−G�+1(µj (n, tr ), n, tr )) ∈ K�, j = 1, . . . , �.

We note that (5.4a) and (5.6a) formally coincide with (5.1a). The case
of the Toda hierarchy, however, is quite different since (5.8) concerns the
tr -dependence of µ̂(n, tr ) and no analogous first-order nonlinear difference
equation concerning the n-dependence of µ̂(n, tr ) (i.e., an analog of (5.1a) or
(5.4a)) appears to be known. In this context we refer the reader to Lemma 5.6,
where we continue this discussion.

The sGmKdV hierarchy. Finally, in the case of the sGmKdV hierarchy the
equations for µ read [28]

µj,x(x, tr ) = −2i
y(µ̂j (x, tr ))∏�

�=1
�
=j
(µj (x, tr )− µ�(x, tr )) ,(5.10a)
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µj,tr (x, tr ) = 2
F̃r (µj (x, tr ), x, tr )

µj (x, tr )

y(µ̂j (x, tr ))∏�
�=1
�
=j
(µj (x, tr )− µ�(x, tr ))(5.10b)

for j = 1, . . . , �, with initial data on K� equal to µ̂(·, t0,r ) = µ̂(0)(·), where
(5.11)
µ̂j (x, tr ) = (µj (x, tr ),−µj(x, tr )G�−1(µj (x, tr ), x, tr )) ∈ K�, j=1, . . . , �.

The corresponding equations for ν equal

νj,x(x, tr ) = −2i
y(ν̂j (x, tr ))∏�

�=1
�
=j
(νj (x, tr )− ν�(x, tr )) ,(5.12a)

νj,tr (x, tr ) = 2
H̃r (νj (x, tr ), x, tr )

νj (x, tr )

y(ν̂j (x, tr ))∏�
�=1
�
=j
(νj (x, tr )− ν�(x, tr ))(5.12b)

for j = 1, . . . , �, with initial data on K� equal to ν̂(·, t0,r ) = ν̂(0)(·), where
(5.13)
ν̂j (x, tr ) = (νj (x, tr ), νj (x, tr )G�−1(νj (x, tr ), x, tr )) ∈ K�, j = 1, . . . , �.

Next we will prove that theAbel map provides a clever change of coordinates
that linearizes the Dubrovin flows. This will turn out to be a consequence of
the fact that F̃r (µj ) can be expressed as a linear combination of the functions
<
(j)

k . Using Theorem 4.4 it is immediate that this is not only the case for the
KdV hierarchy, but also for all the other hierarchies discussed in this paper.

Theorem 5.1. Supposeµ = (µ1, . . . , µ�) satisfies the Dubrovin equations
(5.1) and assume that µj 
= µj ′ for j 
= j ′. Let r ∈ N0 and introduce

(5.14) F̃r (µj ) =
r∧ �∑
k=0

dr,k<
(j)

k (µ), dr,0, . . . , dr,r∧ � ∈ C.

Then the Abel map

(5.15) AP0
(µ̂j (x, tr )) = (AP0,1(µ̂j (x, tr )), . . . , AP0,�

(µ̂j (x, tr )))

linearizes the Dubrovin flows (5.1) in the sense that

(5.16)
∂

∂tr

�∑
j=1

AP0,k
(µ̂j (x, tr )) = −2i

�∑
�=1∨(�−r)

ck,�dr,�−�
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and hence9

(5.17) αP0

(
Dµ̂(x,tr )

) = αP0

(
Dµ̂(x0,t0,r )

)
− 2i(x − x0)ck,� − 2i(tr − t0,r )

�∑
�=1∨(�−r)

ck,�dr,�−�.

Proof. One computes,
(5.18)
∂

∂tr

�∑
j=1

AP0,k
(µ̂j (x, tr )) = ∂

∂tr

�∑
j=1

∫ µ̂j (x,tr )

P0

dωk

= ∂

∂tr

�∑
j=1

�∑
�=1

ck,�

∫ µ̂j (x,tr )

P0

z�−1 dz

y(P )

=
�∑
j=1

�∑
�=1

ck,�
µj (x, tr )

�−1

y(µ̂j (x, tr ))

∂

∂tr
µj (x, tr )

= −2i
�∑
j=1

�∑
�=1

ck,�
µj (x, tr )

�−1

y(µ̂j (x, tr ))

· y(µ̂j (x, tr ))∏�
m
=j (µj (x, tr )− µm(x, tr ))

F̃r (µj (x, tr ))

= −2i
�∑
j=1

�∑
�=1

ck,�U�(µ(x, tr ))�,j F̃r (µj (x, tr ))

= −2i
�∑

�=1∨(�−r)
ck,�dr,�−�,

using Lemma 4.1 in the final step. As for the x-variation, one observes that
the t0-derivative of µj coincides with the x-derivative in (5.1), and hence it is
a special case of (5.18) with F̃0 = 1. This proves the theorem.

Corollary 5.2. The Abel map linearizes the Dubrovin flows for the KdV,
AKNS, Tl, as well as the sGmKdV hierarchies.

9 The situation here resembles the one in classical mechanics where, by a canonical change to
cyclic coordinates, the momentum pj becomes a constant of motion and thus qj (t) = qj (t0) +
pj (t − t0) is linear in time.



dubrovin equations and integrable systems on hyperelliptic . . . 117

Proof. Theorem 4.4 shows that F̃r (µj ) (and H̃r (νj ) in the AKNS case)
indeed satisfies the assumption (5.14) of Theorem 5.1, and hence the key
calculation (5.18) carries over to the AKNS, Tl, and sGmKdV systems. The
special case r = 0 gives the x-variation in all but the sGmKdV case which,
however can easily be verified by explicit computation.

Remark 5.3. We provide a few more details in the AKNS case. Suppose µ
satisfies (5.4) and similarly, ν satifies (5.6), with µj 
= µj ′ and νj 
= νj ′ for
j 
= j ′. Let r ∈ N0 and introduce

(5.19) F̃r (µj ) = −iq
r∧ �∑
k=0

dr,k<
(j)

k (µ), H̃r (νj ) = ip
r∧ �∑
k=0

er,k<
(j)

k (ν).

Then (5.16) and (5.17) hold. In addition, one obtains the following results for
the analog of Neumann divisors ν(x, tr ).

(5.20)
∂

∂tr

�∑
j=1

AP0,k
(ν̂j (x, tr )) = −2i

�∑
�=1∨(�−r)

ck,�er,�−�

and hence

(5.21) αP0

(
Dν̂(x,tr )

) = αP0

(
Dν̂(x0,t0,r )

)
− 2i(x − x0)ck,�e0,0 − 2i(tr − t0,r )

�∑
�=1∨(�−r)

ck,�er,�−�.

Necessary and sufficient conditions on Lax pairs to linearize the flow t →
Lt on J (C), where {Lt } represents a dymamical system on the Jacobi variety
J (C), with C the underlying spectral curve, have been considered by Griffiths
[32]. While he considers Lax equations within a cohomological framework,
our approach is much more modest in scope but in turn reduces the linearization
problem to an elementary exercise in symmetric functions.

Solving these equations one can recover the solution of the integrable equa-
tion using trace formulas. For the KdV hierarchy one has the classical trace
formula

(5.22) V (x, tr ) =
2�∑
m=0

Em − 2
�∑
j=1

µj(x, tr ).

For the AKNS hierarchy one has

px(x, tr )

p(x, tr )
= i

2�+1∑
m=0

Em − 2i
�∑
j=1

νj (x, tr ),(5.23a)
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qx(x, tr )

q(x, tr )
= −i

2�+1∑
m=0

Em + 2i
�∑
j=1

µj(x, tr ),(5.23b)

while for the Toda hierarchy one obtains

(5.24a)

a(n, tr )
2 = −1

2

�∑
j=1

G�+1(µj (n, tr ), n, tr )∏�
k 
=j (µj (n, tr )− µk(n, tr ))

− 1

4
b(n, tr )

2

− 1

4

�∑
j=1

µj(n, tr )
2 + 1

8

2�+1∑
m=0

E2
m,

(5.24b) b(n, tr ) = −1

2

2�+1∑
m=0

Em +
�∑
j=1

µj(n, tr ).

The “trace” relation for the sGmKdV hierarchy (it would be more appropriate
to call this a “determinant” relation) was given in (3.72),
(5.25)

u(x, t�) = i ln

(
(−1)�α−1

�∏
j=1

µj(x, t�)

)
= −i ln

(
(−1)�β−1

�∏
j=1

νj (x, t�)

)
.

Remark 5.4. It is important to observe that if one postulates the Dubrovin
equations (5.1), and defines V using the trace formula (5.22), one could show
by a long and tedious calculation that V indeed satisfies the rth KdV equation
with the correct initial condition. The same applies, of course, to the AKNS,
Toda, and sGmKdV hierarchies.

Remark 5.5. For simplicity we assumed µj(x, tr ) 
= µj ′(x, tr ) for j 
= j ′
in Theorem 5.1. In the self-adjoint cases, where {Em}m=0,...,N ⊂ R, this con-
dition is automatically fulfilled for all (x, tr ) ∈ R2 since then all µj(x, tr ) are
separated from each other by spectral gaps of L(tr) or M(tr). In the general
nonself-adjoint case this is no longer true and collisions between the µj ’s be-
come possible. Nevertheless the Dubrovin equations, properly desingularized
near such collision points, stay meaningful as demonstrated in detail by Birnir
[9], [10] in the case of complex-valued KdV solutions. In particular, (5.17) (and
(5.21)) remain valid in the presence of such collisions due to the continuity of
αP0
(·).
We already mentioned in the paragraph following (5.9) that the Dubrovin

equations for the Toda hierarchy differ from the ones associated with the re-
maining soliton hierarchies in the sense that they do not seem to govern the
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n-dependence of µ̂(n, tr ). We now show how to use Theorem 5.1 to obtain a
first-order Dubrovin system for µ̂(x, tr ) in x, whose solution coincides with
µ̂(n, tr ) at the integer points x = n ∈ Z. Since the tr -dependence of µ̂ plays
no role for this argument, we ignore this dependence in the following result.

Lemma 5.6. Abbreviate A = (A1, . . . , A�) = AP∞−
(P∞+) and µ̂(n0) =

µ̂
(0), with µ̂ defined in (3.51b). Consider the Dubrovin-type system
(5.26a)
∂

∂x
µj (x)= 2y(µ̂j (x))∏�

�
=j (µj (x)− µ�(x))
�∑
m=1

<
(j)
�−m(µ(x))

�∑
n=1

c−1
m,nAn, j=1, . . . , �,

(5.26b) µ̂(n0) = µ̂(0),
with cm,n defined in (2.6). Denote the solution of (5.26) by µ̂

0
. Then µ̂ coincides

with µ̂
0

at integer values, that is,

(5.27) µ̂(n) = µ̂
0
(n), n ∈ Z.

Proof. First one recalls the well-known result (see, e.g., [11], Sect. 3)

(5.28) αP0
(Dµ̂(n))− αP0

(Dµ̂(n0)) = (n− n0)AP∞−
(P∞+) = (n− n0)A.

In order to complete the proof one only needs to establish that µ̂
0

satisfies

(5.29) αP0
(Dµ̂

0
(x))− αP0

(Dµ̂
0
(x0)) = (x − x0)AP∞−

(P∞+) = (x − x0)A,

that is, one needs to show

(5.30)
∂

∂x
αP0
(Dµ̂

0
(x)) = A.

But equation (5.30) follows immediately from (5.8) (identifying tr with x and
ignoring its n-dependence), (5.14), (5.18) (multiplied by i), and (5.26).

Thus, the solution µ̂
0
(x) of (5.26) provides a continuous interpolation for

µ̂(n). In fact, it was our attempt to prove a result like Lemma 5.6 which led us
to reconsider Dubrovin equations and ultimately resulted in Theorem 4.4, the
explicit connection between <(j)k (µ) and the polynomials F̂r (z, x) defining
the hierarchy in question. A first-order system of difference equations for µj
was recently derived in [43].

Toda systems as integrable discretizations of continuous systems are also
studied in [3].
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6. Examples

KdV and sG. Pick E0 = 0 and E1, . . . , E2� ∈ C, Em 
= Em′ for m 
= m′ and
solve

∂

∂x
µj (x, t�) = −2i

y(µ̂j (x, t�))∏�
�
=j (µj (x, t�)− µ�(x, t�))

,(6.1a)

∂

∂t�
µj(x, t�) = ∂

∂x
µj (x, t�)

1

16Q1/2

�∏
�
=j
µ�(x, t�), j = 1, . . . , �,(6.1b)

withQ =∏2�
m=1 Em and R2�+1(z) = z∏2�

m=1(z− Em). Define

u(x, t�) = i ln

(
Q−1/2

�∏
j=1

µj(x, t�)

)
,(6.2)

V (x, t�) =
2�∑
m=0

Em − 2
�∑
j=1

µj(x, t�).(6.3)

Then u and V satisfy the sG equation and �th KdV equation, respectively, that
is,

(6.4) 4ux,t� = sin(u), KdV�(V ) = 0

for the following choice of c̃�,
(6.5)

c̃0 = 1, c̃1 = (−1)�−1

16Q1/2
− c1(E), c̃� = −

�−1∑
p=0

c̃pc�−p(E), � = 2, . . . , �.

The isomorphism between algebro-geometric KdV� and sG equations is of
course well-known and has been discussed, for instance, in [5], [6].

AKNS and Tl. Pick E0, . . . , E2�+1 ∈ C, Em 
= Em′ for m 
= m′ and solve

(6.6a)
∂

∂x
µj (x, tr ) = −2i

y(µ̂j (x, tr ))∏�
�
=j (µj (x, tr )− µ�(x, tr ))

,

(6.6b)
∂

∂tr
µj (x, tr ) = − ∂

∂x
µj (x, tr )

r∑
n=(r−�)∨0

dn<
(j)
n (µ(x, tr )), j = 1, . . . , �
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and

(6.7a)
∂

∂x
νj (x, tr ) = −2i

y(ν̂j (x, tr ))∏�
�
=j (νj (x, tr )− ν�(x, tr ))

,

(6.7b)
∂

∂tr
νj (x, tr ) = − ∂

∂x
νj (x, tr )

r∑
n=(r−�)∨0

dn<
(j)
n (ν(x, tr )), j = 1, . . . , �,

where R2�+2(z) =∏2�+1
m=0 (z− Em) and dn ∈ C. Define

px(x, tr )

p(x, tr )
= i

2�+1∑
m=0

Em − 2i
�∑
j=1

νj (x, tr ),(6.8a)

qx(x, tr )

q(x, tr )
= −i

2�+1∑
m=0

Em + 2i
�∑
j=1

µj(x, tr )(6.8b)

and

(6.9a) a(n, tr )
2 = 1

2

�∑
j=1

y(µ̂j (n, tr ))∏�
k 
=j (µj (n, tr )− µk(n, tr ))

− 1

4
b(n, tr )

2 − 1

4

�∑
j=1

µj(n, tr )
2 + 1

8

2�+1∑
m=0

E2
m,

(6.9b) b(n, tr ) = −1

2

2�+1∑
m=0

Em +
�∑
j=1

µj(n, tr ).

Then (p, q) and (a, b) satisfy the rth AKNS equation and the rth Toda
lattice (Tl) equation, respectively, that is,

(6.10) AKNSr (p, q) = 0, Tlr (a, b) = 0

for the same choice of c�, � = 1, . . . , r in both equations (6.10) (depending
on the choice of dn in (6.6b), (6.7b)).

Remark 6.1. These examples provide interesting connections between the
KdV� and sG equation (where N is even and 0 ∈ {Em}m=0,...,N ), and AKNS
and Toda hierarchies (where N is odd), respectively, and illustrate the funda-
mental role of the Dubrovin equations as the common underlying principle for
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hierarchies of soliton equations. In particular, our approach establishes an iso-
morphism between the classes of algebro-geometric solutions of these pairs of
integrable systems. Indeed, once the hyperelliptic curve K� is fixed, algebro-
geometric solutions of the KdV� and sG (respectively, algebro-geometric
solutions of the rth AKNS and rth Tl equation) are just certain symmet-
ric functions (i.e., “trace” relations) of the solutions µ1(x, t�), . . . , µ�(x, t�)

(resp. µ1(x, tr ), . . . , µ�(x, tr ), ν1(x, tr ), . . . , ν�(x, tr )) of the corresponding
Dubrovin equations on K�. Analogous considerations apply to the nonlinear
Schrödinger equation and the (continuum) Heisenberg chain (see, e.g., [22]).

Appendix A. Lagrange interpolation formulas

In the following we suppress the (x, tr )-dependence as it will be of no import-
ance in this appendix.

Fix � ∈ N and recall that F�(z) = ∏�
j=1(z − µj) implies F ′�(µk) =∏�

j=1
j 
=k
(µk − µj) (with F ′� = ∂F�/∂z). The general form of Lagrange’s in-

terpolation theorem then reads as follows. (For convenience of the reader we
supply its proof even though the result is well-known.)

Theorem A.1. Assume that µ1, . . . , µ� are � distinct complex numbers.
Then

(A.1)
�∑
j=1

µm−1
j

F ′�(µj )
<
(j)

k (µ) = δm,�−k −4k+1(µ)δm,�+1,

m = 1, . . . , �+ 1, k = 0, . . . , �− 1.

Proof. LetCR be a circle with center at the origin and radiusR that contains
the zeros µj of the polynomial F� and which is oriented clockwise. Cauchy’s
theorem then yields

(A.2)
1

2πi

∮
CR

dζ
ζm−1

F�(ζ )(ζ − z) =
zm−1

F�(z)
+

�∑
k=1

µm−1
k

F ′�(µj )(µj − z)
,

z 
= µ1, . . . , µ�, m = 1, . . . , �+ 1.

However, by letting R→∞ one infers that
(A.3)

1

2πi

∮
CR

dζ
ζm−1

F�(ζ )(ζ − z) = lim
R→∞

Rm−1

F�(R)
= δm,�+1, m = 1, . . . , �+ 1,
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which implies

(A.4) zm−1 −
�∑
k=1

µm−1
k F�(z)

F ′�(µj )(z− µj)
= F�(z)δm,�+1.

Using the symmetric functions 4j one may write

(A.5) F�(z) =
�∑
j=0

z�−j4j (µ)

and

(A.6)
F�(z)

z− µj =
�−1∑
k=0

z�−1−k<(j)k (µ).

Expanding both sides of equation (A.4) in powers in z, using (A.5) on the
right-hand side and (A.6) on the left-hand side, proves (A.1).

For use in the main text we finally observe the following equalities. Adding
(A.5) to µj times (A.6) one finds

(A.7) F�(z)+ µj Fg(z)
z− µj =

�−1∑
k=0

z�−k−1
(
4k+1 + µj<(j)k

)+ z�.

However, one also has

(A.8) F�(z)+ µj F�(z)

z− µj = z
F�(z)

z− µj =
�−1∑
k=0

z�−k−1<
(j)

k+1 + z�,

using (A.6) and recalling <(j)� = 0. Thus, one concludes

(A.9) 4k+1(µ)+ µj<(j)k (µ) = <(j)k+1(µ), k = 0, . . . , �− 1.

Finally, we will show

(A.10)
k∑
�=0

µ�j4k−�(µ) = <(j)k (µ), k = 0, . . . , �,

by induction. Equation (A.10) clearly holds for k = 0; next assume that

(A.11)
k−1∑
�=0

µ�j4k−1−� = <(j)k−1
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holds. Then

(A.12)

k∑
�=0

µ�j4k−� = 4k + µj
k∑
�=1

µ�−1
j 4k−� = 4k + µj

k−1∑
�=0

µ�j4k−1−�

= 4k + µj<(j)k−1 = <(j)k ,
using first the induction hypothesis and then (A.9).
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