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A SMOOTHLY BOUNDED DOMAIN IN A COMPLEX
SURFACE WITH A COMPACT QUOTIENT

WING SUM CHEUNG, SIQI FU, STEVEN G. KRANTZ, and BUN WONG∗

Abstract

We study the classification of smoothly bounded domains in complex manifolds that cover compact
sets. We prove that a smoothly bounded domain in a hyperbolic complex surface that covers a
compact set is either biholomorphic to the ball or covered by the bidisc.

1. Introduction

One of the important problems in several complex variables is to study the inter-
play between the geometry of a domain and the structure of its automorphism
group. It is known that a smoothly bounded domain in Cn that covers a compact
set is biholomorphic to the ball. A theorem of Frankel [7] says that a bounded
convex domain that covers a compact complex manifold is biholomorphic to
a bounded symmetric domain. We refer readers to the recent survey [13] and
references therein for the development in related subjects.

Let M be an n-dimensional complex manifold. Let D ⊂⊂ M be a sub-
domain with smooth boundary (i.e., M \ D is non-empty and there exists a
neighborhoodN ofD and a real-valued function r ∈ C∞(N) such that dr �= 0
on bD and D = {z ∈ N, r(z) < 0}). Let Aut(D) be the group of automorph-
isms of D. In this paper, we study the following problem: Characterize those
D with the property that the quotient D/Aut(D) is compact (as a topological
space). When M admits a C2-smooth strictly plurisubharmonic function, the
boundary bD has a strictly pseudoconvex point (at which the strictly plur-
isubharmonic function attains its maximum value). It then follows from the
method in [28] that (under the stated hypothesis) D must be biholomorphic to
the ball.

The situation becomes more intricate if the condition on M is dropped.
Here is a simple example: Let M = � × N , where � is the unit disc and N

is a compact Riemann surface (without boundary) of genus ≥ 2. Then M is a
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hyperbolic complex manifold which does not admit any strictly plurisubhar-
monic function. LetD = (

1
2�

)×N . ThenD is a relatively compact subdomain
of M with smooth boundary and compact quotient but is not biholomorphic
(indeed, not homeomorphic) to a ball. This example shows that a relatively
compact subdomain of a hyperbolic complex manifold with smooth boundary
and compact quotient is not necessary biholomorphic to a Euclidean ball. It is
because of examples like this that the result of the present paper is not just a
straightforward generalization of the Euclidean case; see also the bifurcation
of the proof of the main theorem in Section 3 and 4.

In this paper, we shall prove the following result:

Main Theorem. Let M be a hyperbolic complex surface. Let D ⊂⊂ M

be a subdomain with smooth boundary. If D/Aut(D) is compact, then either

(i) D is biholomorphic to a ball

or else

(ii) The universal covering of D is biholomorphic to a bidisc.

This result is of interest from the viewpoint of the uniformization problem
for complex manifolds. It also opens up questions regarding the classifica-
tion of smooth domains with non-compact automorphism group in a complex
manifold. The proof of the theorem relies on the results and techniques in [8],
[9].

To conclude the introduction, we mention the following immediate applic-
ation of the main theorem and of a theorem of Yang [30]:

Theorem. Let M be a hyperbolic complex surface and let D ⊂⊂ M be
a subdomain with smooth boundary. Suppose there exists a discrete subgroup
� ⊂ Aut(D) acting freely on D such that D/� is a compact Kähler manifold
with negative bisectional curvature. Then D is biholomorphic to the ball.

It would be interesting to know whether there are other versions of the Main
Theorem in which curvature plays a more prominent role in the hypotheses
(perhaps replacing the assumption of hyperbolicity).

2. Preliminaries

Let � denote the unit disc in C and �n the unit n-polydisc in Cn. Let Bn be the
unit ball in Cn. Let M be a complex manifold of dimension n and let p ∈ M .
Let Tp(M) be the holomorphic tangent space of M at p and let X ∈ Tp(M).
Let H(M1,M2) be the family of holomorphic mappings from the complex
manifold M1 to the complex manifold M2. The Kobayashi-Royden pseudo-
metric is defined by

FK
M (p,X) = inf

{
1/λ; f ∈ H(�,D), f (0) = z, f ′(0) = λX, λ > 0

}
.
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We will use dKM(p, q) to denote the induced Kobayashi pseudo-distance of M .
A complex manifoldM is called (Kobayashi) hyperbolic if dKM is indeed a (non-
degenerate) distance. It is complete hyperbolic if dKM is a complete distance.
We refer readers to [16], [17], [18], and [14] for properties of the Kobayashi
metric.

Let D0 be a bounded domain in Cn and let z0 ∈ D0. Let {w1, w2, . . . , wn}
be local complex coordinates near p ∈ M . The Eisenman-Kobayashi volume
form of M at p with respect to the pair (D0, z0) is defined by

V E
M(p) = EM(p)

(√−1

2

)n

dw1 ∧ dw1 ∧ . . . ∧ dwn ∧ dwn,

where EM(p) = inf{|Jf (z0)|−2; f ∈ H(D0,M), f (z0) = p}. Here Jf (z0)

denotes the complex Jacobian determinant of f at z0. The Carathéodory
volume form with respect to (D0, z0) is defined by

V C
M(p) = CM(p)

(√−1

2

)n

dw1 ∧ dw1 ∧ . . . ∧ dwn ∧ dwn,

where CM(p) = sup{|Jf (p)|2; f ∈ H(M,D0), f (p) = z0}. Both of these
volume forms are discussed in [5], [27], [10], [11], and [18].

These two volume forms are biholomorphically invariant. In fact, the fol-
lowing properties are well-known.

Lemma 2.1. Let M1 and M2 be complex manifolds.

(1) If F ∈ H(M1,M2), then F ∗(VM2) ≤ VM1 holds for either of the volume
forms V ;

(2) If F :M1 → M2 is a covering map, then F ∗(V E
M2

) = V E
M1

;

(3) For any n-dimensional complex manifold M , it holds that V E
M ≥ V C

M .
Moreover, if V E

M(p) = V C
M(p) �= 0 for some p ∈ M , then M is biholo-

morphic to D0.

The second part of the last property can be found in Graham andWu [10]; see
also [27] and [23]. Similar results for complete hyperbolic manifolds appeared
first in [27]. The other properties follow directly from the definitions of the
volume forms. In this paper, we will use only the invariant volume forms
defined with respect to (i.e., with the role of (D0, Z0) played by) either (�n, 0)
or (Bn, 0). We refer readers to [5], [10], [11] for information on these invariant
volume forms.

Let D be a subdomain of a complex manifold M . It is easy to see that
D/Aut(D) is compact (as a topological space) if and only if there exists a
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compact subset K of D such that Aut(D) · K = D (cf. [19]). The set K will
be called a fundamental set for Aut(D).

The following result is folklore. We sketch the proof for completeness. We
refer readers to [12], Chapter IX, for various notions of pseudoconvexity on
complex manifolds.

Lemma 2.2. Let D be a subdomain of a hyperbolic complex manifold M .
Assume that D/Aut(D) is compact. Then D is complete hyperbolic. In par-
ticular, if the boundary bD is smooth, then D is Levi pseudoconvex.

Proof. Let {pj } be a Cauchy sequence with respect to dKD , the Kobayashi
distance of D. Let K be a fundamental set for Aut(D). Then there exists a
sequence {gj } ⊂ Aut(D) such that gj (pj ) ∈ K . Passing to a subsequence,
we may assume that gj (pj ) → q ∈ K . Let ε > 0 be so small that

{
z ∈

D, dKD (z, q) ≤ ε
}

is a relatively compact subset of D. Since dKD (gj (pk), q) ≤
dKD (gj (pk), gj (pj )) + dKD (gj (pj ), q) = dKD (pk, pj ) + dKD (gj (pj ), q), there
exists a positive integer N such that dKD (gN(pk), q) ≤ ε for all k ≥ N .
Therefore there exists a subsequence {gN(pkl )} of {gN(pk)} and a point q ′ ∈ D

such that dKD
(
pkl , g

−1
N (q ′)

) = dKD (gN(pkl ), q
′) → 0 as l → ∞. Hence {pk}

also converges to g−1
N (q ′). Thus D is complete hyperbolic.

For the second assertion, let p ∈ bD. Choose a complex coordinate (U, φ)
at p such that φ(U) = Bn and φ(p) = 0. Then U ∩ D, hence φ(U ∩ D), is
taut in the sense of H. Wu [29]. Therefore, φ(U ∩ D) ⊂ Cn is pseudoconvex
([29], Theorem F). It then follows that bD is Levi pseudoconvex near p when
bD is smooth (cf. [18], Chapter 3).

Lemma 2.3 (Montel). Let D be a relatively compact subset of a hyperbolic
complex manifold M . Let N be a complex manifold. Then for any sequence
{fj } ⊂ H(N,D), there exists a subsequence {fjk } that converges local uni-
formly to a holomorphic mapping f :N → D.

We refer the reader to [29] for a detailed treatment of this lemma and
of normal families of holomorphic mappings between complex manifolds.
Lemma 2.3 is a generalization of the classical Montel theorem. The proof
is essentially the same as the classical one (cf. [1], §5.5): the hyperbolicity
of M implies that {fj } is equicontinuous ([29], [24]), then a diagonalization
argument concludes the proof.

We will also need the following version of a classical result of H. Cartan
(cf. [20], Theorem 5.4). The proof is again essentially the same as the classical
one. Nonetheless, we sketch the proof here for the reader’s convenience.

Lemma 2.4 (H. Cartan). Let D be a relatively compact subdomain of a
hyperbolic complex manifold M . Suppose that a sequence {fj } ⊂ Aut(D)



86 wing sum cheung, siqi fu, steven g. krantz, and bun wong

converges local uniformly on D to f :D → D. Then either f ∈ Aut(D) or
f (D) ⊂ bD.

Proof. Assume that q = f (p) ∈ D for some p ∈ D. Then there exist
neighborhoods U of p and V of q such that U,V ⊂ D and fj (U) ⊂ V for
sufficiently large j . Let gj = f −1

j . It follows from Montel’s theorem (Lemma
2.3) that, after passing to a subsequence, {gj } converges local uniformly to g

on D. It is easy to see that g(f (z)) = lim gj (fj (z)) = z for z ∈ U . Since
the Jacobian determinant Jfj converges local uniformly on D to Jf �≡ 0, it
follows from the Hurwitz’s theorem that Jf �= 0 on D. Therefore, f is locally
biholomorphic. Thus f (D) ⊂ D. Furthermore, g(f (z)) = z on D. Similarly,
f (g(z)) = z. Thus f ∈ Aut(D).

We end this section with the following simple lemma.

Lemma 2.5. Let π : M̃ → M be a covering map of complex manifolds. Let
D be a subdomain of M . If M̃ is simply connected and D is a retract of M
(i.e., there exists a continuous map R:M → D such that R|D is the identity
map), then π−1(D) is simply connected.

Proof. Let γ̃ be a closed path inπ−1(D). Let G̃ = G̃(s, t) be the homotopy
of γ̃ with γ̃ (0) in M̃ . Let G = R ◦ π ◦ G̃. It follows from the covering
homotopy theorem (see [26]) that G has a unique lifting Ĝ to π−1(D) such
that Ĝ(s, 0) = γ̃ (s). Therefore, γ̃ is homotopic to a constant path in π−1(D).

3. Proof of the Main Theorem, Part I

In this section, we prove the main theorem when the boundarybD ofD contains
a strictly pseudoconvex point. In fact, we have

Proposition 3.1. Let D be a relatively compact subdomain of an n-
dimensional hyperbolic complex manifold M . If D/Aut(D) is compact and
bD is smooth and strictly pseudoconvex near a point p ∈ bD, then D is
biholomorphic to Bn.

Proof. The proof uses the ideas in [27] and follows similar lines. We only
indicate the major steps here. Let {pj } ⊂ D be a sequence converging to
the point p. Let {gj } be a sequence in Aut(D) such that g−1

j (pj ) ∈ K , the
fundamental set of Aut(D). Passing to a subsequence, we may assume that
g−1
j (pj ) → q ∈ K . It then follows that dKM(gj (q), p) ≤ dKD (gj (q), pj ) +
dKM(pj , p) = dKD (q, g

−1
j (pj )) + dKM(pj , p) → 0 as j → ∞. Therefore

gj (q) → p.
Since bD can be approximated by a biholomorphic image of Bn to the third

order at p, it follows from the preceding paragraph and the arguments in [27]
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that V C
D (q)/V E

D (q) = 1, where the Eisenman-Kobayashi and Carathéodory
volume forms are defined with respect to (Bn, 0). Therefore, by Lemma 2.1(3),
D is biholomorphic to Bn.

We have therefore established the main theorem in this case.

4. Proof of the Main Theorem, Part II

In this section, we prove the main theorem in the case when the boundary bD

of D does not contain any strictly pseudoconvex point. Recall that, when the
domain D sits in the complex Euclidean space, then the boundary bD always
has a strongly pseudoconvex—indeed a strongly convex—point (see [18]). It is
the recognition of this possible failure that gives us our handle on the situation
in a general complex manifold.

In this case, it follows from Lemma 2.2 that bD is Levi pseudoconvex. Since
the boundary bD does not contain any strictly pseudoconvex point, it must be
Levi flat, i.e., the Levi form vanishes identically on bD. (The assumption that
the domainD sits in a complex manifold of dimension 2 comes into play here.)
The proof of this case is analogous to proofs appearing in [8], [9]. Since there
are some essential modifications, we provide the details below.

Throughout this section, the invariant volume forms are defined with respect
to (�2, 0).

Let r = r(z) be a defining function for bD (i.e., there exists a neighborhood
N of D such that r ∈ C∞(N), dr �= 0 on bD, and D = {z ∈ N, r(z) < 0}).
By choosing ε1 > ε2 > 0 sufficiently small, we may be sure that the domains
Dj = {z ∈ D, r(z) < −εj }, j = 1, 2, satisfy

(1) D2 ⊃⊃ D1 ⊃⊃ K (where K is the fundamental set for Aut(D));

and

(2) Both D1 and D2 are retracts of D.

Let π : D̃ → D be the universal covering of D. Set D̃j = π−1(Dj ), j =
1, 2. By Lemma 2.5, the domains D̃j , j = 1, 2, are simply connected.

Let {pk}∞k=1 be a sequence in D converging to a point p ∈ bD. Then there
exists {gk} ⊂ Aut(D) such that g−1

k (pk) ∈ K , the fundamental set for Aut(D).
Passing to a subsequence, we may assume that {g−1

k (pk)} converges to a point
q in K . As in the proof of Part I, qk = gk(q) converges to p. By Lemmas 2.3
and 2.4, we may further assume that {gk} converges local uniformly on D to a
holomorphic map g:D → bD.

Let V = g(D2). It follows from (the proof of) Lemma 4.1 in [9] (see also
Lemma 3.3 in [8]) that V is a hyperbolic, locally closed open Riemann surface
in M . (The hyperbolicity of V follows from that of M .) Since every open
Riemann surface is Stein (cf. [21], Theorem 3.10.13) and every holomorphic
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line bundle over an open Riemann surface is trivial (cf. [6], Theorem 30.3),
it follows from [4] and [25], Corollary 1 that there exists a biholomorphic
mapping / from an open neighborhood W of V to an open neighborhood U

of V × {0} in V × C such that /(z) = (z, 0) for z ∈ V . We may assume that
U ⊆ V × �.

Let π1:� → V be the universal covering of V . Let π2:�× C → V × C be
defined by π2(z, w) = (π1(z), w). Define 1 = π−1

2 (/(W ∩ D)). Then

1 = {(z′, w′) ∈ � × C;π2(z
′, w′) ∈ U, r̃(z′, w′) < 0}

where r̃(z′, w′) = r(/−1(π2(z
′, w′)). It is easy to see that b1 is smooth and

Levi flat in a neighborhood of � × {0}.
Let q̃ ∈ π−1(q) and p′ ∈ π−1

2 (/(p)). After a unitary transformation,
we may assume that p′ = (0, 0). Since π2 is locally one-to-one, there exist
unique liftings q ′

k of /(qk) for sufficiently large k such that q ′
k → p′. Since

D̃1 is simply-connected and gk ◦ π(D̃1) = gk(D1) ⊆ W ∩ D for sufficiently
large k, there exist unique liftings g̃k and g̃: D̃1 → 1 of / ◦ gk ◦ π and
/ ◦ g ◦ π respectively such that g̃k(q) = q ′

k and g̃(q) = p′. Let D̂1 be a
relatively compact subdomain of D̃1 such that π(D̂1) ⊃ K . Choose δ ∈ (0, 1)
sufficiently closed to 1 such that g̃(D̂1) ⊂⊂ �δ × {0}. Let ε > 0 and Uδε =
�δ × �ε . Then g̃k(D̂1) ⊂ 1 ∩ Uδε for sufficiently large k. It follows from
Lemma 2.1 that, for sufficiently large k,

V C

D̂1
(q̃) ≥ g̃∗

k

(
V C
1∩Uδε

)
(q ′

k)

and

V E

D̃
(q̃) = π∗(V E

D

)
(q) = g∗

k ◦ π∗(V E
D

)
(qk)

≤ /∗ ◦ g∗
k ◦ π∗(V E

π2(1∩Uδε)

)
(qk) = g̃∗

k

(
V E
1∩Uδε

)
(q ′

k).

The last equation follows from π2 ◦ g̃∗
k = / ◦ gk ◦ π and Lemma 2.1 (2).

Therefore, after choosing a complex coordinate of D̃ near q̃, we have

V C

D̂1
(q̃)

V E

D̃
(q̃)

≥ C1∩Uδε
(q ′

k)

E1∩Uδε
(q ′

k)
.

Using Theorem 8 in [3], we can prove thatV C

D̂1
(q̃)/V E

D̃
(q̃) ≥ 1 (see the proof of

Lemma 4.2 in [9] for details). Exhausting D̃1 by D̂1, we haveV C

D̃1
(q̃)/V E

D̃
(q̃) ≥

1. Letting ε1 → 0, since D1 and D̃1 exhaust D and D̃ respectively, we have
V C

D̃
(q̃)/V E

D̃
(q̃) ≥ 1. Therefore V C

D̃
(q̃) = V E

D̃
(q̃). Hence D̃ is biholomorphic

to the bidisc.
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5. Concluding remarks

(1) The main theorem remains true if the boundary bD of the domain D is
piecewise smooth. The proof is essentially the same: if one of the regular
boundary points is strictly pseudoconvex, then the proof is the same as that of
Part I; if none of the regular boundary points is strictly pseudoconvex, then the
proof reduces to that of Part II (note that by Lemma 3.2 in [9] the variety V in
Part II lies on a single defining hypersurface). A related result of Pinchuk [22]
states that any bounded homogeneous domain in Cn with piecewise smooth
boundary is biholomorphic to a product of balls.

(2) It was proved in [9] that a simply-connected domain D in C2 with
generic piecewise smooth, Levi flat boundary and non-compact automorphism
group is biholomorphic to the bidisc. This result was proved earlier by K.-
T. Kim [15] for the case when the domain D is convex. (See [28] for related
results.) Combining the arguments in this paper with those in [9], one can
prove the following generalization: LetM be a hyperbolic complex surface and
D ⊂⊂ M a subdomain with a generic piecewise smooth, Levi flat boundary.
If Aut(D) is non-compact, then the universal covering of D is biholomorphic
to the bidisc. The proof of this generalization goes as follows: when one of the
singular boundary points of the domain D is a boundary accumulation point,
it follows from the same lines of the arguments in Section 5 of [9] that the
domain D is biholomorphic to the bidisc; otherwise, the proof is the same as
that of Part II in the present paper.
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