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SMALL EIGENVALUES OF LARGE HANKEL
MATRICES: THE INDETERMINATE CASE

CHRISTIAN BERG, YANG CHEN and MOURAD E. H. ISMAIL∗

Abstract
In this paper we characterize the indeterminate case by the eigenvalues of the Hankel matrices
being bounded below by a strictly positive constant. An explicit lower bound is given in terms
of the orthonormal polynomials and we find expressions for this lower bound in a number of
indeterminate moment problems.

1. Introduction

Let α be a positive measure on R with infinite support and finite moments of
all orders

(1.1) sn = sn(α) =
∫

R
xndα(x).

With α we associate the infinite Hankel matrix H∞ = {Hjk},
(1.2) Hjk = sj+k.
Let HN be the (N+1)× (N+1)matrix whose entries areHjk , 0 ≤ j , k ≤ N .
Since HN is positive definite, then all its eigenvalues are positive. The largeN
asymptotics of the smallest eigenvalue, denoted as λN , of the Hankel matrix
HN has been studied in papers by Szegő [11], Widom and Wilf [13], Chen and
Lawrence [6]. See also the monograph by Wilf [14]. All the cases considered
by these authors are determinate moment problems, and it was shown in each
case that λN → 0, and asymptotic results were obtained about how fast λN
tends to zero.

The smallest eigenvalue can be obtained from the classical Rayleigh quo-
tient:

(1.3) λN = min

{ N∑
j=0

N∑
k=0

sj+kvj vk :
N∑
k=0

v2
j = 1, vj ∈ R, 0 ≤ j ≤ N

}
.
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It follows that λN is a decreasing function of N .
The main result of this paper is Theorem 1.1, which we state next.

Theorem 1.1. The moment problem associated with the moments (1.1) is
determinate if and only if limN→∞ λN = 0.

We shall compare this result with a theorem of Hamburger [8, Satz XXXI],
cf. [1, p. 83] or [10, p. 70].

Let µN be the minimum of the Hankel form HN on the hyperplane v0 = 1,
i.e.

(1.4) µN = min

{ N∑
j=0

N∑
k=0

sj+kvj vk : v0 = 1, vj ∈ R, 0 ≤ j ≤ N
}
,

and let µ′
N be the corresponding minimum for the moment sequence s ′n =

sn+2, n ≥ 0, i.e.

µ′
N = min

{ N∑
j=0

N∑
k=0

sj+k+2v
′
j v

′
k : v′

0 = 1, v′
j ∈ R, 0 ≤ j ≤ N

}

= min

{N+1∑
j=0

N+1∑
k=0

sj+kvj vk : v0 = 0, v1 = 1, vj ∈ R, 0 ≤ j ≤ N + 1

}
.

The theorem of Hamburger can be stated that the moment problem is determ-
inate if and only if at least one of the limits limN→∞ µN , limN→∞ µ′

N are
zero.

It is clear from (1.3), (1.4) that µN ≥ λN and similarly µ′
N ≥ λN+1. From

these inequalities and Hamburger’s theorem, we obtain the “only if” statement
in Theorem 1.1. The “if” statement will be proved by finding a positive lower
bound for the eigenvalues λN in the indeterminate case, cf. Theorem 1.2 below.

We think that Theorem 1.1 has the advantage over the theorem of Hamburger
that it involves only the moment sequence (sn) and not the shifted sequence
(sn+2). In section 2 we give another proof of the “only if” statement to make
the proof of Theorem 1.1 independent of Hamburger’s theorem.

If

(1.5) πN(x) :=
N∑
j=0

vjx
j , vj ∈ R

then a simple calculation shows that

(1.6)
∑

0≤j, k≤N
sj+kvj vk =

∫
E

π2
N(x) dα(x),
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and

(1.7)
N∑
k=0

v2
k =

∫ 2π

0

∣∣πN(
eiθ

)∣∣2 dθ

2π
.

We could also study the reciprocal of λN given by

(1.8)
1

λN
= max

{∫ 2π

0

∣∣πN(
eiθ

)∣∣2 dθ

2π
: πN,

∫
E

π2
N(x)dα(x) = 1

}
.

Let {pk} denote the orthonormal polynomials with respect to α, normalized so
that pk has positive leading coefficient.

We recall that the moment problem is indeterminate, cf. [1], [10], if and
only if there exists a non-real number z0 such that

(1.9)
∞∑
k=0

|pk(z0)|2 <∞.

In the indeterminate case the series in (1.9) actually converges for all z0 in C,
uniformly on compact sets. In the determinate case the series in (1.9) diverges
for all non-real z0 and also for all real numbers except the at most countably
many points, where α has a positive mass.

If we expand the polynomial (1.5) as a linear combination of the orthonormal
system

πN(x) =
N∑
j=0

cjpj (x),

then ∫ 2π

0

∣∣πN(
eiθ

)∣∣2 dθ

2π
=

∑
0≤j, k≤N

cj ck

∫ 2π

0
pj

(
eiθ

)
pk

(
e−iθ) dθ

2π

=
∑

0≤j, k≤N
Kjkcj ck,

where we have defined

(1.10) Kjk =
∫ 2π

0
pj

(
eiθ

)
pk

(
e−iθ) dθ

2π
.

Thus

(1.11)
1

λN
= max

{ ∑
0≤j, k≤N

Kjkcj ck : cj ,
N∑
j=0

c2
j = 1

}
.
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Since the eigenvalues of the matrix (Kjk)0≤j,k≤N are positive, and their sum
is its trace, then

(1.12)
1

λN
≤

N∑
k=0

Kkk =
∫ 2π

0

N∑
k=0

∣∣pk(eiθ
)∣∣2 dθ

2π
.

Thus in the case of indeterminacy,

(1.13)
1

λN
≤

∫ 2π

0

∞∑
k=0

∣∣pk(eiθ )∣∣2 dθ

2π
<∞,

which shows that

(1.14) lim
N→∞ λN ≥

(∫ 2π

0

1

ρ(eiθ )

dθ

2π

)−1

,

where

(1.15) ρ(z) =
( ∞∑
k=0

|pk(z)|2
)−1

.

We recall that for z ∈ C \ R the number ρ(z)/|z− z| is the radius of the Weyl
circle at z.

The above argument establishes the following result:

Theorem 1.2. In the indeterminate case the smallest eigenvalue λN of the
Hankel matrix HN is bounded below by the harmonic mean of the function ρ
along the unit circle.

We shall conclude this paper with examples, where we have calculated or
estimated the quantity

(1.16) ρ0 =
∫ 2π

0

∞∑
k=0

∣∣pk(eiθ
)∣∣2 dθ

2π
.

This will be done for the moment problems associated with the Stieltjes-Wigert
polynomials, cf. [4], [12], the Al-Salam-Carlitz polynomials [2], the symmet-
rized version of polynomials of Berg-Valent ([3]) leading to a Freud-like weight
[5], and the q−1-Hermite polynomials of Ismail and Masson [9].

If we introduce the coefficients of the orthonormal polynomials as

(1.17) pk(x) =
k∑
j=0

βk,j x
j
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then ∫ 2π

0

∣∣pk(eiθ )∣∣2 dθ

2π
=

k∑
j=0

β2
k,j ,

and therefore

(1.18) ρ0 =
∞∑
k=0

k∑
j=0

β2
k,j .

Another possibility for calculating ρ0 is to use the entire functions B,D
from the Nevanlinna matrix since it is well known that [1, p. 123]

(1.19)
∞∑
k=0

|pk(z)|2 = B(z)D(z)−D(z)B(z)
z− z .

It follows that

(1.20)
∞∑
k=0

∣∣pk(eiθ )∣∣2 = Im
{
B(eiθ )D(e−iθ )

}/
sin θ.

2. Indeterminate Moment Problems

In this section we shall give a proof of Theorem 1.1 which is independent of
Hamburger’s result. We have already established that if limN→∞ λN = 0, then
the problem is determinate. We shall next prove that if λN ≥ γ for allN , where
γ > 0, then the problem is indeterminate. Since 1/λN ≤ 1/γ for all N , and
1/λN is the biggest eigenvalue of the positive definite matrix (Kjk)0≤j,k≤N ,
we get

(2.1)
∑

0≤j,k≤N
Kjkcj ck ≤ 1

γ

N∑
j=0

|cj |2,

for all vectors (c0, . . . , cN) ∈ CN+1. If we consider an arbitrary complex
polynomial p of degree ≤ N written as p(x) = ∑N

k=0 ckpk(x), the inequality
(2.1) can be formulated

(2.2)
∫ 2π

0

∣∣p(eiθ )∣∣2 dθ

2π
≤ 1

γ

∫
|p(x)|2 dα(x).
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Let now z0 be an arbitrary non-real number in the open unit disc. By the
Cauchy integral formula

p(z0) = 1

2π

∫ 2π

0

p(eiθ )

eiθ − z0
eiθ dθ,

and therefore

(2.3) |p(z0)|2 ≤
∫ 2π

0

∣∣p(
eiθ

)∣∣2 dθ

2π

∫ 2π

0

1

|eiθ − z0|2
dθ

2π
.

Combined with (2.2) we see that there is a constant K such that for all
complex polynomials p

(2.4) |p(z0)|2 ≤ K
∫

|p(x)|2 dα(x),

where K = 1/(γ (1 − |z0|2)).
This inequality implies indeterminacy in the following way. Applying it to

the polynomial

p(x) =
N∑
k=0

pk(z0)pk(x),

we get

(2.5)
N∑
k=0

|pk(z0)|2 ≤ K,

and since N is arbitrary, indeterminacy follows.

Remark. We see that the infinite positive definite matrix K∞ = {Kj,k} is
bounded on "2 if and only if λN ≥ γ for all N for some γ > 0. Furthermore
K∞ is of trace class if and only if ρ0 < ∞. The result of Theorem 1.1 can
be reformulated to say that boundedness implies trace class for this family of
operators.

3. Examples

We shall follow the notation and terminology for q-special functions as those
in Gasper and Rahman [7].

Example 3.1 (The Stieltjes-Wigert Polynomials). These polynomials are
orthonormal with respect to the weight function

(3.1) ω(x) = k√
π

exp
(−k2(log x)2

)
, x > 0,
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where k > 0 is a positive parameter, cf. [4], [12]. They are given by

(3.2) pn(x) = (−1)nq
n
2 + 1

4 (q; q)− 1
2

n

n∑
k=0

(
n

k

)
q

qk
2(−q 1

2 x
)k
,

where we have defined q = exp{−(2k2)−1}.
It follows by (1.18) that

(3.3)

ρ0 =
∞∑
n=0

qn+ 1
2

(q; q)n
n∑
k=0

qk(2k+1)

(
n

k

)2

q

=
∞∑
k=0

q2k2+k+ 1
2

∞∑
n=k

qn

(q; q)n
(
n

k

)2

q

.

Putting n = k + j , the inner sum is

∞∑
j=0

qk+j

(q; q)2k
(q; q)k+j
(q; q)2j

= qk

(q; q)k 2φ1(q
k+1, 0; q; q, q)

and hence

(3.4) ρ0 =
∞∑
k=0

q2(k+ 1
2 )

2

(q; q)k 2φ1(0, q
k+1; q; q, q).

We can obtain another expression for ρ0. We apply the transformation [7,
(III.5)]

(3.5) 2φ1(a, b; c; q, z) = (abz/c; q)∞
(bz/c; q)∞ 3φ2(a, c/b, 0; c, cq/bz; q, q)

to see that

(3.6)
∞∑
n=k

qn

(q; q)n
(
n

k

)2

q

= 1

(q; q)∞
k∑
j=0

qk+j

(q; q)2j
.

We then find

(3.7) ρ0 = 1

(q; q)∞
∞∑
k=0

q2(k+ 1
2 )

2
k∑
j=0

qj

(q; q)2j
.

A formula more general than (3.6) is

∞∑
n=k

ωn

(q; q)n
(
n

k

)2

q

= 1

(ω; q)∞
k∑
j=0

(ω; q)jω2k−j

(q; q)j (q; q)2k−j
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and is stated in [2]. This more general identity also follows from (3.5) and the
simple observation

(q−k; q)j
(q1−k/ω; q)j = (q; q)k (ω; q)k−j

(ω; q)k (q; q)k−j (ω/q)
j .

We have numerically computed the smallest eigenvalue of the Hankel matrix of
various dimensions with the Stieltjes-Wigert weight from which we extrapolate
to determine the smallest eigenvalue s = limN→∞ λN of the infinite Hankel
matrix for different values of q. This is then compared with the numerically
computed lower bound l = 1/ρ0. For q = 1

2 we have s = 0.3605 . . . , l =
0.3435 . . .. The percentage error 100(s − l)/s is plotted for various values of
q and is shown in figure 1.

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
q

0.0

1.0

2.0
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%
 e

rr
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Figure 1. Percentage error plotted for various values of q.

Example 3.2 (Al-Salam-Carlitz polynomials). TheAl-Salam-Carlitz poly-
nomials were introduced in [2]. We consider the indeterminate polynomials
V (a)n (x; q), where 0 < q < 1 and q < a < 1/q, cf. [3]. For the corresponding
orthonormal polynomials {pk} we have by [3, (4.24)]

(3.8)
∞∑
k=0

∣∣pk(eiθ
)∣∣2

= (qeiθ , qe−iθ ; q)∞
(aq, q, q; q)∞ 3φ2(e

iθ , e−iθ , aq; qeiθ , qe−iθ ; q, q/a).
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Therefore
(3.9)

ρ0 =
∫ 2π

0

∞∑
k=0

∣∣pk(eiθ
)∣∣2 dθ

2π
= 1

(aq, q, q; q)∞
∞∑
n=0

In
(aq; q)n
(q; q)n

(q
a

)n
,

where

(3.10)

In =
∫ 2π

0

(eiθ , e−iθ ; q)∞
(1 − qneiθ )(1 − qne−iθ )

dθ

2π

=
∫

|z|=1

(z, 1/z; q)∞
(1 − qnz)(1 − qn/z)

dz

2πiz
.

Recall the Jacobi triple product identity [7],

(3.11) j (z) := (q, z, 1/z; q)∞ =
∞∑

k=−∞
ckz

k,

with

(3.12) ck = (−1)k
[
qk(k+1)/2 + qk(k−1)/2

]
.

Note that ck = c−k .
Using the partial fraction decomposition

qn

1 − qnz − q−n

1 − q−nz
= 1 − q2n

(1 − qnz)(z− qn)
we find by the residue theorem and the Jacobi triple product identity (3.11)
that for n ≥ 1, In is given by

(1 − q2n)(q; q)∞ In
= qn Res

(
j (z)

1 − qnz , z = 0

)
− q−n Res

(
j (z)

1 − q−nz
, z = 0

)

= qn
∞∑
k=0

qnkc−k−1 − q−n
∞∑
k=0

q−nkc−k−1

=
∞∑
k=1

(
qnk − q−nk) ck,
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while for n = 0, I0 is

(q; q)∞I0 =
∫

|z|=1

j (z)

(1 − z)(z− 1)

dz

2πi
= −Res

(
j (z)

(1 − z)2 , z = 0

)

= −
∞∑
k=0

(k + 1)c−k−1 =
∞∑
k=0

(−1)kqk(k+1)/2.

The conclusion is

I0 = 1

(q; q)∞
∞∑
k=0

(−1)kqk(k+1)/2,(3.13)

In = 1

(1 − q2n)(q; q)∞
∞∑
k=1

ck
(
qnk − q−nk) , n ≥ 1

The above formulas can be further simplified. Using the Jacobi triple product
identity (3.11) we find for integer values of n

∞∑
k=−∞

(−1)kqnkq(
k

2) = 0,

hence

(3.14)
∞∑
k=0

(−1)kqnk q(
k

2) = −
∞∑
k=1

(−1)kq−nk q(
k+1

2 ), n = 0,±1, . . . .

This analysis implies

(3.15) (q; q)∞(1 − q2n) In = 2
∞∑
k=1

(−1)k q(
k

2)
[
qnk − q−nk] .

Thus we have established the representation for n ≥ 1

(3.16) In = 2q−n

(q; q)∞
∞∑
k=1

(−1)k−1 q(
k

2)
sin(nkτ)

sin(nτ)
, q = e−iτ .

It is clear that I0 is the limiting case of In as n→ 0. The representation (3.16)
indicates that In is a theta function evaluated at the special point nτ , hence we
do not expect to find a closed form expression for In.

Example 3.3 (Freud-like weight). In [3] Berg-Valent found the Nevan-
linna matrix in the case of the indeterminate moment problem corresponding
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to a birth and death process with quartic rates. Later Chen and Ismail, cf.
[5], considered the corresponding symmetrized moment problem, found the
Nevanlinna matrix and observed that there are solutions which behave as the
Freud weight exp(−√|x| ). In particular they found the entire functions

(3.17) B(z) = −δ0
(
K0

√
z/2

)
, D(z) = 4

π
δ2

(
K0

√
z/2

)
,

where

δl(z) =
∞∑
n=0

(−1)n

(4n+ l)!z
4n+l , l = 0, 1, 2, 3,(3.18)

K0 = -(1/4)-(5/4)√
π

.(3.19)

Note that

δ0(z) = 1

2

[
cosh

(
z
√
i
) + cos

(
z
√
i
)]
,(3.20)

δ2(z) = 1

2i

[
cosh

(
z
√
i
) − cos

(
z
√
i
)]
.(3.21)

If ω := exp(iπ/4) = (1 + i)/√2, then a simple calculation shows that
(3.22)

B(x)D(y)−D(x)B(y) = −2i

π

[
cos

(
ω3K0

√
x/2

)
cos

(
ωK0

√
y/2

)

− cos
(
ω3K0

√
y/2

)
cos

(
ωK0

√
x/2

)]
.

If x = eiθ , and y = e−iθ , then we linearize the products of cosines and find
that the right-hand side of (3.22) is

−i
π

{
cos

[
K0

(
ω3eiθ/2 + ωe−iθ/2)/√

2
] + cos

[
K0

(
ω3eiθ/2 − ωe−iθ/2)/√

2
]

− cos
[
K0

(
ω3e−iθ/2 + ωeiθ/2)/√

2
] − cos

[
K0

(
ω3e−iθ/2 − ωeiθ/2)/√

2
]}
.

We now combine the first and third terms, then combine the second and fourth
terms and apply the addition theorem for trigonometric functions. We then see
that the above is

2i

π

{
sinh[K0 cos(θ/2)] sinh[K0 sin(θ/2)]

+ sin[K0 cos(θ/2)] sin[K0 sin(θ/2)]
}
.
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Thus we have proved that

(3.23)
B

(
eiθ

)
D

(
e−iθ) − B (

e−iθ)D (
eiθ

)
eiθ − e−iθ

= 1

π sin θ

{
sinh[K0 cos(θ/2)] sinh[K0 sin(θ/2)]

+ sin[K0 cos(θ/2)] sin[K0 sin(θ/2)]
}
.

Thus in the case under consideration, after some straightforward calculations
and the evaluation of a beta integral, we obtain

(3.24)

ρ0 =
∫ 2π

0

∞∑
n=0

∣∣pn(eiθ )∣∣2 dθ

2π

= K2
0

π

∑
m, n≥0,m+n even

(K0/2)2m+2n

(2m+ 1)(2n+ 1)m! n! (m+ n)! .

Example 3.4 (q−1-Hermite polynomials). Ismail and Masson [9] proved
that for this moment problem the functions B and D are given by

B(sinh ξ) = − (qe
2ξ , qe−2ξ ; q2)∞
(q, q; q2)∞

,(3.25)

D(sinh ξ) = sinh ξ

(q; q)∞ (q2e2ξ , q2e−2ξ ; q2)∞,(3.26)

[9, (5.32)], [9, (5.36)]; respectively. Ismail and Masson also showed that [9,
(6.25)]

(3.27) B(sinh ξ)D(sinh η)− B(sinh η)D(sinh ξ)

= −eη
2(q; q)∞

∞∏
n=0

[
1 − 2e−ηqn sinh ξ − e−2ηq2n

]

· [
1 + 2eηqn+1 sinh ξ − e2ηq2n+2

]
.

We rewrite the infinite product as

∞∏
n=0

anbn = a0

∞∏
n=1

anbn−1,
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and with sinh ξ = eiθ and sinh η = e−iθ we get the following representation
(3.28)
B(eiθ )D(e−iθ )− B(e−iθ )D(eiθ )

eiθ − e−iθ

= 1

(q; q)∞
∞∏
n=1

[
1 + 4qn − 2q2n + 4q3n + q4n − 8q2n cos(2θ)

]

= 1

(q; q)∞
∞∏
n=1

[
(1 + qn)4 − 16q2n cos2 θ

]
.

Writing the infinite product as a power series in cos2 θ and using∫ π

−π
cos2k θ

dθ

2π
= 2−2k

(
2k

k

)
,

we evaluate the integral of (3.28) with respect to dθ/2π as

(3.29) ρ0 = (−q; q)4∞
(q; q)∞

∞∑
k=0

(
2k

k

) ∑
1≤n1<···<nk

(−2)2kq2(n1+···+nk)

[(1 + qn1) . . . (1 + qnk )]4 .

The formula (3.28) can be transformed further by putting cos2 ψ = − cos θ
and p2 = q, because then

∞∏
n=1

[
(1 + qn)2 + 4qn cos θ

] =
∞∏
n=1

[
1 + p4n − 2p2n cos(2ψ)

]

can be expressed by means of the theta function ϑ1(p;ψ). We find

(3.30)
∞∏
n=1

[
(1 + qn)2 + 4qn cos θ

] = 1

(q; q)∞
∞∑
n=0

(−1)nq(
n+1

2 )U2n(cosψ),

where
U2n(cosψ) = sin(2n+ 1)ψ

sinψ

is the Chebyshev polynomium of the second kind given by

(3.31) U2n(x) =
n∑
k=0

(
2n+ 1

2k + 1

)
(−1)kx2(n−k)(1 − x2)k.

Similarly putting cos2 ϕ = cos θ we find

(3.32)
∞∏
n=1

[
(1 + qn)2 − 4qn cos θ

] = 1

(q; q)∞
∞∑
n=0

(−1)nq(
n+1

2 )U2n(cosϕ).
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If we letU ∗
n be the polynomial of degree n such thatU2n(x) = U ∗

n (x
2), we get

(3.33)
B(eiθ )D(e−iθ )− B(e−iθ )D(eiθ )

eiθ − e−iθ

= 1

(q; q)2∞
∞∑

n,m=0

(−1)mq(
n+1

2 )+(m+1
2 )U ∗

n (− cos θ)U ∗
m(cos θ).

For non-negative integers k, l, r we have
(3.34)

C(k, l, r) := 1

2π

∫ 2π

0
(1 + cos θ)k(1 − cos θ)l cosr θ dθ

= 2k+l

π
(−1)rB

(
k + 1

2
, l + 1

2

)
2F1

(
k + 1

2
,−r; k + l + 1; 2

)
,

which gives

(3.35)
1

2π

∫ 2π

0
U ∗
n (− cos θ)U ∗

m(cos θ) dθ

=
n∑
k=0

m∑
l=0

(
2n+ 1

2k + 1

)(
2m+ 1

2l + 1

)
(−1)n+lC(k, l, n+m− k − l).

Putting these formulas together we get a 5-fold sum for ρ0.
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11. Szegő, G., On some Hermitian forms associated with two given curves of the complex plane,
Collected papers (volume 2), 666–678. Birkhaüser, Boston, Basel, Stuttgart, 1982.
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