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A REDUCTION OF THE PROBLEM OF
CHARACTERIZING PERFECT SEMIGROUPS

TORBEN MAACK BISGAARD and NOBUHISA SAKAKIBARA

1. Introduction

Suppose (S,+, ∗) is an abelian semigroup equipped with an involution, that
is, an involutory automorphism, written s �→ s∗. Such a structure will be
called a ∗-semigroup, abbreviated “semigroup” when confusion is unlikely,
such as when applying an adjective which is defined only for ∗-semigroups
(e.g., “perfect semigroup”). Define S + S = { s + t | s, t ∈ S } and define

N︷ ︸︸ ︷
S + · · · + S similarly for arbitrary N ∈ N. A positive definite function on S is
a function ϕ: S + S → C such that

n∑
j,k=1

cj ckϕ(sj + s∗k ) ≥ 0

for every choice of n ∈ N, s1, . . . , sn ∈ S, and c1, . . . , cn ∈ C. Denote
by P(S) the set of all positive definite functions on S. A character on S
is a function σ : S → C, not identically zero, such that σ(s∗) = σ(s) and
σ(s + t) = σ(s)σ (t) for all s, t ∈ S. Denote by S∗ the set of all characters on
S. Denote by A (S∗) the least σ -ring of subsets of S∗ rendering the mapping
σ �→ σ(s): S∗ → C measurable for each s ∈ S. A function ϕ: S + S → C is a
moment function if there is a measure µ defined on A (S∗) such that

ϕ(s) =
∫
S∗
σ(s) dµ(σ)

for all s ∈ S + S, and a moment function ϕ is determinate if there is only
one such µ. (In writing an equation such as the preceding, it is understood
that µ should integrate the integrands.) The semigroup S is perfect if every
positive definite function on S is a determinate moment function. For positive
definite functions and (Radon) moment functions on semigroups, we refer to
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[1], especially Section 6.5 on semigroups called “perfect” in that book but now
called “Radon perfect”.

A ∗-semigroup H is ∗-archimedean if for all x, y ∈ H there exist z ∈ H

and n ∈ N such that n(x + x∗) = y + z. A ∗-archimedean component of
a ∗-semigroup S is a ∗-archimedean ∗-subsemigroup of S which is max-
imal for the inclusion ordering. Every ∗-semigroup is the disjoint union of
its ∗-archimedean components. It was shown in [2], Theorem 3.1, that a ∗-
semigroup S with zero is perfect if and only if H ∪ {0} is perfect for each
∗-archimedean componentH of S. We shall be concerned with extending this
result to semigroups without zero. It is not true that a ∗-semigroup S, even with
zero, is perfect if and only if each ∗-archimedean component of S is perfect.
For example, if H = Q ∩ [1,∞[ and S = H ∪ {0} then S is perfect ([4], Co-
rollary 2) andH is a ∗-archimedean component of S, yetH is not perfect ([6],
Remark 3.6). We shall define “quasi-perfect” semigroups in such a way that a
∗-semigroup S is quasi-perfect if and only if each ∗-archimedean component
of S is quasi-perfect.

2. Reduction to the ∗-archimedean case

Say that a ∗-semigroupH is determinate of order N ≥ 1 if whenever µ and ν
are measures on A (H ∗) such that

∫
H ∗
η(x) dµ(η) =

∫
H ∗
η(x) dν(η), x ∈

N︷ ︸︸ ︷
H + · · · +H

then µ = ν. An ideal of a ∗-semigroup X is a nonempty ∗-stable subset H
of X such that X + H ⊂ H . In particular, H + H ⊂ H , so H is again a
∗-semigroup.

Lemma 2.1. Every ideal of a ∗-semigroup which is determinate of order 1
has the same property.

Proof. Suppose X is a ∗-semigroup which is determinate of order 1 and
H is an ideal of X; we have to show that H is determinate of order 1. The
following observation, which does not use determinacy, will be of use later on.
For each η ∈ H ∗ we can define η̃ ∈ X∗ by choosing y ∈ H such that η(y) �= 0
(which is possible by the definition of a character) and setting

η̃(x) = η(x + y)

η(y)
, x ∈ X.

We leave it as an exercise to verify that the definition is independent of the
choice of y and that the function η̃ so defined is indeed a character onX. Note
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that η̃ extends η. Now the mapping η �→ η̃ is a one-to-one correspondence
betweenH ∗ and the set of those ξ ∈ X∗ such that ξ |H �= 0, the inverse of this
mapping being the mapping taking ξ ∈ X∗ (with ξ |H �= 0) to ξ |H . To see
this, first note that η = η̃|H for η ∈ H ∗. Secondly, suppose ξ ∈ X∗ is such that
η := ξ |H �= 0; we have to show ξ = η̃. Choose y ∈ H such that η(y) �= 0.
For arbitrary x ∈ X we have ξ(x) = ξ(x+y)/ξ(y) = η(x+y)/η(y) = η̃(x).

Now to see thatH is determinate of order 1, suppose µ and ν are measures
on A (H ∗) such that∫

H ∗
η(x) dµ(η) =

∫
H ∗
η(x) dν(η), x ∈ H ;

we have to show µ = ν. Let µ̃ and ν̃ be the images of µ and ν, respectively,
under the mapping η �→ η̃:H ∗ → X∗. Since η = η̃|H for η ∈ H ∗ then∫

X∗
ξ(x) dµ̃(ξ) =

∫
X∗
ξ(x) dν̃(ξ), x ∈ H.

If x ∈ X and y ∈ H then x + y ∈ H and ξ(x + y) = ξ(x)ξ(y) for ξ ∈ X∗, so∫
X∗
ξ(x)ξ(y) dµ̃(ξ) =

∫
X∗
ξ(x)ξ(y) dν̃(ξ).

This being so for all x ∈ X, since X is determinate of order 1 it follows
that ξ(y) dµ̃(ξ) = ξ(y) dν̃(ξ). (The property in the definition of determinacy
extends to complex measures, cf. [1], 6.5.2.) Hence, definingDy = { ξ ∈ X∗ |
ξ(y) �= 0 }, we have µ̃|Dy = ν̃|Dy . Equivalently, defining Gy = { η ∈ H ∗ |
η(y) �= 0 }, we have µ|Gy = ν|Gy . Since every set in A (H ∗) is contained in
the union of countably many Gy , it follows that µ = ν, as desired.

Lemma 2.2. For a ∗-semigroup H , the following two conditions are equi-
valent:

(i) H is determinate of every order N ≥ 1

(ii) H is determinate of some order N ≥ 1.

Proof. We have to show that if M and N are positive integers such that
H is determinate of order M then H is determinate of order N . This is trivial
if M ≥ N , so suppose M < N . Since H is determinate of order M then

the semigroup X =
M︷ ︸︸ ︷

H + · · · +H is determinate of order 1. By Lemma 2.1

it follows that the semigroup Y =
N︷ ︸︸ ︷

H + · · · +H (which is an ideal of X)
is determinate of order 1, that is, H is determinate of order N , as desired.
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(We used twice the fact that for X as above, determinacy of H of order M is
equivalent to determinacy ofX of order 1. This is because the correspondence
between X∗ and a subset of H ∗ from the proof of Lemma 2.1 (with the roles
ofX andH interchanged) is in this case a one-to-one correspondence between
X∗ and all of H ∗.)

Say that H is determinate if the equivalent conditions of Lemma 2.2 are
satisfied. Say that H is quasi-perfect of order N ≥ 2 if H is determinate and
for each ϕ ∈ P(H) there is some (hence, a unique) measure µ on A (H ∗)
such that

ϕ(x) =
∫
H ∗
η(x) dµ(η), x ∈

N︷ ︸︸ ︷
H + · · · +H .

Then H is perfect if and only if H is quasi-perfect of order 2.

Theorem 2.3. For a ∗-semigroup H , possibly without zero, the following
three conditions are equivalent :

(i) H is quasi-perfect of every order greater than or equal to 3

(ii) H is quasi-perfect of some order greater than or equal to 3

(iii) H is quasi-perfect of order 3.

Proof. (i) ⇒ (ii): Trivial.
(ii) ⇒ (iii): SupposeH is quasi-perfect of orderN ≥ 3. We shall show that

H is quasi-perfect of orderM for 3 ≤ M ≤ N by backwards induction onM .
Suppose 3 ≤ M < N and that we have shown thatH is quasi-perfect of order
M + 1. Suppose ϕ ∈ P(H). Since H is quasi-perfect of order M + 1, there
is a unique measure µ on A (H ∗) such that

(1) ϕ(x) =
∫
H ∗
η(x) dµ(η)

for x ∈
M+1︷ ︸︸ ︷

H + · · · +H . Clearly there is at most one measure with the corres-

ponding property for x in the larger set

M︷ ︸︸ ︷
H + · · · +H . Thus we only have

to show that (1) extends to all x ∈
M︷ ︸︸ ︷

H + · · · +H . Suppose h ∈ H . For

x1, . . . , xn ∈
M−1︷ ︸︸ ︷

H + · · · +H and c1, . . . , cn ∈ C we have by the Cauchy-
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Schwarz inequality

∣∣∣∣
n∑

j=1

cjϕ(h+ xj )

∣∣∣∣
2

≤ ϕ(h+ h∗)
n∑

j,k=1

cj ckϕ(xj + x∗
k )

= ϕ(h+ h∗)
∫
H ∗

∣∣∣∣
n∑

j=1

cjη(xj )

∣∣∣∣
2

dµ(η).

We used the fact that for j, k = 1, . . . , n we have

xj + x∗
k ∈

M−1︷ ︸︸ ︷
H + · · · +H +

M−1︷ ︸︸ ︷
H + · · · +H =

2M−2︷ ︸︸ ︷
H + · · · +H ⊂

M+1︷ ︸︸ ︷
H + · · · +H

since 2M − 2 ≥ M + 1 because of M ≥ 3. The above inequality shows that
the mapping (

η �→
n∑

j=1

cjη(xj )

)
�→

n∑
j=1

cjϕ(h+ xj )

is a well-defined bounded linear form on a linear subspace of L2(µ). Extend
this linear form to a bounded linear form Lh on all of L2(µ). Then there is
a unique ψh ∈ L2(µ) such that Lh(f ) = ∫

fψh dµ for all f ∈ L2(µ). In
particular,

(2) ϕ(h+ x) =
∫
H ∗
η(x)ψh(η) dµ(η)

for x ∈
M−1︷ ︸︸ ︷

H + · · · +H . For x ∈
M︷ ︸︸ ︷

H + · · · +H we have by (1) and (2),∫
H ∗
η(h)η(x) dµ(η) =

∫
H ∗
η(x)ψh(η) dµ(η).

SinceH is determinate (by definition) it follows thatψh(η)dµ(η)=η(h)dµ(η),
so (2) reduces to

ϕ(h+ x) =
∫
H ∗
η(h)η(x) dµ(η).

This is the desired representation since each y ∈
M︷ ︸︸ ︷

H + · · · +H can be written

as y = h+ x with h ∈ H and x ∈
M−1︷ ︸︸ ︷

H + · · · +H .
(iii) ⇒ (i): Trivial.
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We call a ∗-semigroupH quasi-perfect if the equivalent conditions of The-
orem 2.3 are satisfied. In [4], Theorem, it was shown that if S is a (Radon)
perfect semigroup with zero and if T is a ∗-subsemigroup of S containing
0 and such that T \ {0} is an ideal of S then T is likewise (Radon) perfect.
The following result seems to be the closest analogue of this for semigroups
without zero. The proof, like the proof of Theorem 2.3, is strongly inspired by
the argument in [4].

Theorem 2.4. If X is a quasi-perfect semigroup and H is an ideal of X
then H is quasi-perfect.

Proof. Suppose ϕ ∈ P(H). For h, k ∈ H and n = 0, 1, 2, 3 define
ϕh,k,n ∈ P(X) by

ϕh,k,n(x) = ϕ(h+h∗+x)+inϕ(h+k∗+x)+i−nϕ(k+h∗+x)+ϕ(k+k∗+x)
for x ∈ X + X. Since X is quasi-perfect, there is a unique measure λh,k,n on
A (X∗) such that

ϕh,k,n(x) =
∫
X∗
ξ(x) dλh,k,n(ξ)

for x ∈ X + X + X. We now introduce a subring A0(X
∗) of A (X∗) which

generates the latter as a σ -ring, as follows. For x ∈ X and n ∈ N define
Gx,n = {

ξ ∈ X∗ ∣∣ |ξ(x)| > 1/n
}
. Then let A0(X

∗) be the set of those
elements of A (X∗) which are contained in the union of finitely many Gx,n.
Clearly A0(X

∗) is a subring of A (X∗). This subring generates A (X∗) as a
σ -ring since for each A ∈ A (X∗) there is a countable subset Y ofX such that
for each ξ ∈ A there is some y ∈ Y such that ξ(y) �= 0. This is because the set
of all subsetsA ofX∗ with the property just described is a σ -ring of subsets of
X∗ which renders the mapping ξ �→ ξ(x) measurable for each x ∈ X, hence
contains A (X∗) by the definition of A (X∗). Since A0(X

∗) generates A (X∗),
every measure µ on A0(X

∗) which is finite in the sense that µ(A) < ∞ for
all A ∈ A0(X

∗) extends to a unique measure on A (X∗). Thus measures on
A (X∗) can be identified with their restrictions to A0(X

∗). If µ is a measure

on A (X∗) which integrates the function ξ �→ ξ(x) for all x ∈
N︷ ︸︸ ︷

X + · · · +X

for some N ∈ N then µ|A0(X
∗) is finite since for x ∈ X and n ∈ N we have

µ(Gx,n)

nN
≤

∫
Gx,n

|ξ(x)|N dµ(ξ) ≤
∫
X∗

|ξ(x)|N dµ(ξ)

=
∫
X∗

|ξ(Nx)| dµ(ξ) < ∞.
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If we now define

λh,k = 1

4

3∑
n=0

i−nλh,k,n

(as a set function on A0(X
∗)) then λh,k is the unique complex measure on

A (X∗) such that

ϕ(h+ k∗ + x) =
∫
X∗
ξ(x) dλh,k(ξ)

for x ∈ X+X+X. We see that for each y ∈ H +H there is a unique complex
measure λy on A (X∗) such that

(3) ϕ(x + y) =
∫
X∗
ξ(x) dλy(ξ)

for x ∈ X + X + X. Indeed, any y ∈ H + H can be written as y = h + k∗
with h, k ∈ H , and then we have to define λy = λh,k . This definition of
λy is independent of the choice of h and k since if h1, h2, k1, k2 ∈ H and
h1 + k∗

1 = h2 + k∗
2 then λh1,k1 = λh2,k2 since these two measures represent the

same function on X +X +X. If y, z ∈ H +H then∫
X∗
ξ(x)ξ(y) dλz(ξ) = ϕ(x + y + z) =

∫
X∗
ξ(x)ξ(z) dλy(ξ)

for x ∈ X +X +X, and by the quasi-perfectness of X it follows that

(4) ξ(y) dλz(ξ) = ξ(z) dλy(ξ).

For h ∈ H write Gh = { ξ ∈ X∗ | ξ(h) �= 0 }. If for y ∈ H + H we define a
measure κy on Gy by

dκy(ξ) = ξ(y)−1 dλy(ξ)|Gy

then (4) shows that for y, z ∈ H +H we have

κy |(Gy ∩Gz) = κz|(Gy ∩Gz).

Hence there is a unique measure κ on the set

G =
⋃
h∈H

Gh = {
ξ ∈ X∗ ∣∣ ξ |H �= 0

}

such that
κy = κ|Gy
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for all y ∈ H+H . More precisely, κ is defined on the σ -ring A∗(G) consisting
of those elements of A (X∗) which are contained in the union of countably
many Gh. We claim that

(5) dλy(ξ)|G = ξ(y) dκ(ξ)

for y ∈ H +H where |G denotes the operation of restriction of a measure to
the σ -ring A∗(G). SinceG is the union of the setsGz, z ∈ H+H , it suffices to
verify dλy(ξ)|Gz = ξ(y) dκ(ξ)|Gz for z ∈ H +H . But the right-hand side is
equal to ξ(y)ξ(z)−1 dλz(ξ)|Gz, so the desired equality follows from (4). This
proves (5). For x ∈ H +H +H and y ∈ H +H , since characters outside G
vanish on H , by (3) and (5) we have

ϕ(x + y) =
∫
X∗
ξ(x) dλy(ξ) =

∫
G

ξ(x) dλy(ξ) =
∫
G

ξ(x)ξ(y) dκ(ξ).

Thus, for x ∈ H +H +H +H +H we have

ϕ(x) =
∫
G

ξ(x) dκ(ξ).

Now κ is uniquely determined by this property. To see this, note that if
κ1 and κ2 are two measures with this property then ϕ(3h + 3h∗ + x) =∫
G

|ξ(h)|6ξ(x) dκi(ξ) for h ∈ H , x ∈ X, and i = 1, 2, so by the quasi-
perfectness ofX it follows that |ξ(h)|6 dκ1(ξ) = |ξ(h)|6dκ2(ξ), hence κ1|Gh=
κ2|Gh. Since every measurable subset ofG is contained in the union of count-
ably many Gh, it follows that κ1 = κ2.

Now the mapping ξ �→ ξ |H :G → H ∗ is a bijection, cf. the proof of
Lemma 2.1. We leave it as an exercise to verify that the mapping ξ �→ ξ |H is an
isomorphism between the measurable spaces

(
G,A∗(G)

)
and

(
H ∗,A (H ∗)

)
.

Now if µ is the image measure of κ under the mapping ξ �→ ξ |H then
ϕ(x) = ∫

H ∗ η(x) dµ(η) for x ∈ H + H + H + H + H , and µ is uniquely
determined by this property (since κ is unique). Thus H is quasi-perfect of
order 5, that is, H is quasi-perfect.

It is not true that every ideal of a perfect semigroup is perfect. For example,
if H = Q ∩ [1,∞[ and X = H ∪ {0} then X is perfect and H is an ideal of
X, yet H is not perfect.

Corollary 2.5. A ∗-semigroup H is quasi-perfect if and only if the ∗-
semigroup X = H ∪ {0} obtained by adjoining to H a zero external to H is
perfect.

Proof. If X is perfect then H is quasi-perfect by Theorem 2.4 since H
is an ideal of X. Conversely, if H is quasi-perfect then the perfectness of
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X follows just as in the proof of [6], Theorem 3.2, that perfectness of H
implies perfectness of H ∪ {0}, only the argument with the Cauchy-Schwarz
inequality has to be applied twice, first to get from the integral representation
onH +H +H +H (⊂ H +H +H ) to the integral representation onH +H
and a second time to get it on all of H .

Corollary 2.6. Every ∗-homomorphic image of a quasi-perfect ∗-semi-
group is quasi-perfect.

Proof. Suppose h is a ∗-homomorphism of a quasi-perfect ∗-semigroup
H1 onto some ∗-semigroup H2; we have to show that H2 is quasi-perfect. For
i = 1, 2 let Si = Hi ∪ {0} be the ∗-semigroup with zero obtained by adjoining
to Hi a zero external to Hi . By Corollary 2.5, S1 is perfect. Extending h to a
∗-homomorphism of S1 onto S2 by defining h(0) = 0, S2 is a ∗-homomorphic
image of the perfect ∗-semigroup S1, hence perfect by [3], Theorem 1. By
Corollary 2.5 it follows that H2 is quasi-perfect.

Suppose (Si)i∈I is a family of ∗-semigroups with zero. The direct sum
S = ⊕

i∈I Si is the set of all families (si) ∈ ∏
i∈I Si such that si �= 0 for only

finitely many i ∈ I . Addition and involution in S are defined componentwise.
It is known that if each Si is perfect, so is S ([3], Theorem 3). Now suppose
(Hi)i∈I is a family of ∗-semigroups not necessarily having zeros. The free sum
H of the family (Hi) is defined as follows. For i ∈ I let Si = Hi ∪ {0} be
the ∗-semigroup with zero obtained by adjoining to Hi a zero external to Hi .
Define S = ⊕

i∈I Si . Then H = S \ {0}.
Corollary 2.7. The free sum of an arbitrary family of quasi-perfect ∗-

semigroups is quasi-perfect.

Proof. With notation as above, for i ∈ I , from the quasi-perfectness ofHi

it follows that Si is perfect (Corollary 2.5). By the result from [3] cited above
it follows that S is perfect. By Corollary 2.5 it follows thatH is quasi-perfect.

A face of a ∗-semigroupX is a ∗-subsemigroupH ofX such that if x, y ∈ X
and x + y ∈ H then x, y ∈ H .

Corollary 2.8. Suppose H is a face of a ∗-semigroup X. Then X is
quasi-perfect if and only if both H and X \H are quasi-perfect.

Proof. This is clear from Theorem 2.4, Corollary 2.6, Corollary 2.7, and
[5], Theorem 2.1.

Corollary 2.9. Suppose H is a ∗-semigroup and S = H ∪ {0}. Un-
der the assumption that H is quasi-perfect, the following two conditions are
equivalent:
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(i) H is perfect

(ii) if ϕ ∈ P(H) and h, k ∈ H then the measure µh,k on S∗ defined as in
[6], (3.1), satisfies µh,k({1{0}}) = 0.

Proof. This is clear from [6], Proposition 3.5.

A ∗-semigroup H is ∗-divisible if for each x ∈ H there exist y ∈ H and
m, n ∈ N0 with m + n ≥ 2 such that x = my + ny∗. It is known that every
∗-divisible ∗-semigroup with zero is perfect ([3], Theorem 4).

Corollary 2.10. Every ∗-divisible ∗-semigroup is perfect.

Proof. Suppose H is a ∗-divisible ∗-semigroup. The ∗-semigroup S =
H ∪{0} is a ∗-divisible ∗-semigroup with zero, hence perfect. By Corollary 2.5
it follows that H is quasi-perfect. But the ∗-divisibility of H implies that
H = H +H , so H is perfect.

For a ∗-semigroup S we denote by J (S) the set of all ∗-archimedean
components of S. For every nonempty subset H of S there is a least face
of S containing H , viz., the intersection of all faces of S containing H , the
set of such faces being nonempty since S itself is such a face. If H is a ∗-
subsemigroup of S then the least face X of S containing H is the set of those
x ∈ S such that x+y ∈ H for some y ∈ S. IfH is a ∗-archimedean component
of S then X is the set of those x ∈ S such that x + H ⊂ H . In particular,
X +H ⊂ H .

Theorem 2.11. A ∗-semigroup S is quasi-perfect if and only if each ∗-
archimedean component of S is quasi-perfect.

Proof. First suppose S is quasi-perfect and H ∈ J (S). Let X be the
least face of S containing H . By Corollary 2.8, X is quasi-perfect. Moreover,
X +H ⊂ H . By Theorem 2.4 it follows that H is quasi-perfect. Conversely,
suppose eachH ∈ J (S) is quasi-perfect. Then forH ∈ J (S) the semigroup
H ∪{0} is perfect (Corollary 2.5). By [3], Theorem 3, it follows that the direct
sum R = ⊕

H∈J (S)(H ∪ {0}) is perfect. Now S ∪ {0} is perfect, being the
image of R under the ∗-homomorphism (sH )H∈J (S) �→ ∑

H∈J (S) sH ([3],
Theorem 1). By Corollary 2.5, it follows that S is quasi-perfect.

3. Reduction to the rational case

A ∗-semigroup S is rational if S is isomorphic to a subsemigroup of a rational
vector space carrying the identical involution. The condition is equivalent to
saying that S carries the identical involution, is cancellative, and the group
S− S is torsion-free. For an arbitrary ∗-semigroup S, denote by S the greatest
rational ∗-homomorphic image of S, that is, the pair (S, s �→ s) consisting of
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a rational semigroup S and a ∗-homomorphism s �→ s of S onto S such that
for every rational semigroup T and every ∗-homomorphism f : S → T there is
a unique homomorphism h: S → T such that f (s) = h(s) for all s ∈ S. (This
property is what we mean by “greatest”.) To see that such a pair (S, s �→ s)

exists, let ∼ be the least congruence relation in S such that s∗ ∼ s for all s ∈ S,
define T = S/∼, and let f : S → T be the quotient mapping. Then T is the
greatest identical-involution ∗-homomorphic image of S. Now let (G, g) be
the pair—unique up to isomorphism—consisting of an abelian group G and
a homomorphism g: T → G such that for every abelian group H and every
homomorphism h: T → H there is a unique homomorphism k:G → H such
that h = k ◦ g. This construction is well-known from algebra. The semigroup
g(T ) generates G as a group, and for x, y ∈ T we have g(x) = g(y) if and
only if a+ x = a+ y for some a ∈ T . Finally, letH beGmodulo the torsion
ofG and denote by φ:G → H the quotient mapping. Then S can be identified
with φ ◦ g ◦ f (S), at the same time identifying the mapping s �→ s with the
mapping φ ◦ g ◦ f .

Theorem 3.1. A ∗-semigroup S is quasi-perfect if and only if H ∪ {0} is
perfect for each ∗-archimedean component H of S.

Proof. See [2] for the definition of the concept “Stieltjes perfect”. We have
the chain of bi-implications:

S is quasi-perfect ⇔ H is quasi-perfect for all H ∈ J (S)

⇔ H ∪ {0} is perfect for all H ∈ J (S)

⇔ H ∪ {0} is Stieltjes perfect for all H ∈ J (S)

⇔ H ∪ {0} is perfect for all H ∈ J (S).

The first bi-implication is by Theorem 2.11, the second by Corollary 2.5, and
the last two by [2].
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