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REMARKS ON DETERMINANT LINE BUNDLES,
CHERN-SIMONS FORMS AND INVARIANTS

JOHAN L. DUPONT and FLEMMING LINDBLAD JOHANSEN∗

Abstract
We study generalized determinant line bundles for families of principal bundles and connections.
We explore the connections of this line bundle and give conditions for the uniqueness of such.
Furthermore we construct for families of bundles and connections over manifolds with boundary,
a generalized Chern-Simons invariant as a section of a determinant line bundle.

0. Introduction

Determinant line bundles were first constructed for families of Riemann sur-
faces by D. Quillen in [13]. This was generalized to higher dimensions by
J. M. Bismut and D. Freed (see e.g. [4], [10] and [11]), and in [8] it was used
by X. Dai and D. Freed to define a generalization of the Atiyah-Patodi-Singer
η-invariant for families of Riemannian manifolds with boundary as a section
of the inverse line bundle associated to the family of boundaries. All these
constructions were analytical ones involving kernel/cokernels of differential
operators.

In this paper we shall study a geometric construction of determinant line
bundles going back to T. R. Ramadas, I. M. Singer and J. Weitsman (see [14])
for the case of families of connections in trivial SU(2) bundles over closed
surfaces and for more general families of principal bundles to the work by
L. Bonora, P. Cotta-Ramusino, M. Rinaldi and J. Stasheff (see [1]; see also
Brylinski [2] and [3]).

The construction in section 1 requires a smooth, closed, even-dimensional
manifold X and a family of principal bundles over X, each with a connection,
which constitute a fibre bundle over Z. Together with an invariant polynomial
this enables us to calculate transition functions of a line bundle L over Z. In
section 2 we explore the connections of this line bundle. If the family Az of
connections can be extended into a connection in the Z-direction also, there is
a canonical connection of the line bundle. We describe these connections and
determine when they are independent of the extensions.
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Section 3 deals with generalizations of the Chern-Simons invariant. This
was originally defined by S. S. Chern and J. Simons in [7] (see also Cheeger-
Simons [6] or [9]) for a single connection in a principal bundle over a closed
manifold. In analogy with the construction by Freed and Dai of an η-invariant
section of the determinant line bundle mentioned above, we define, for a fam-
ily of bundles and connections over a family of manifolds with boundary, a
natural section cs (“Chern-Simons section”) of the inverse line bundle which is
an exponentiated version of a generalized Chern-Simons invariant. Finally in
Section 4 we make a calculation of the line bundle, its connection and Chern-
Simons section in the simplest possible case of flat connections over genus g
handle bodies. It appears that the connection in this case is flat and that the
section is parallel.

The authors would like to thank the referee for valuable comments and
corrections.

Notation. The sign convention in this paper has been chosen in accordance
with Bott and Tu (see [5]). If α is a form on X and β is a form on Y then
integration over the fibre in X × Y → X is defined as

(0.1)
∫
Y

α ∧ β =
(∫

Y

β

)
α.

This implies that differentiation commutes with integration over the fibre, i.e.
dX

∫
Y
α ∧ β = ∫

Y
(dXα) ∧ β.

1. Geometric Construction of a Determinant Line Bundle

First let us recall the construction of a line bundle as in [1] for the following
data.

Geometric Data 1.1.
(1) A smooth, closed, oriented manifold X of dimension 2k − 2

(2) A Lie group G, a principal G-bundle P → X and an invariant polyno-
mial P ∈ I k0 (G)

(3) A fixed connection A0 of P

(4) A fibre bundle P → E → Z, where each fibre has a connection and the
transition functions are gauge transformations homotopic to the identity

A few explanatory remarks here would seem to be in order:

i) The set of invariant polynomials of degree k, that is, of the G-invariant
symmetric, multilinear functions in k variables on the Lie algebra �, is
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denoted I k(G); the subset I k0 (G) of I k(G) consists of the polynomi-
als whose image under the Chern-Weil homomorphism is an integral
cohomology class. (See [7].)

ii) Note the following consequence of the geometric data 1.1. LetUi andUj
be open subsets of Z over which E is trivial. Let Ai(z) be the pull-back
of the connection of the fibre Ez to P via the trivialization

(1.2) Ui × P → E|Ui

and Aj(z) correspondingly. If gij denotes the transition function, then
on Ui ∩ Uj

Aj (z) = Ai(z)
gij (z)

is the gauge transformed connection of Ai(z) by gij (z).

Let G denote the group of gauge transformations of P . If G is not connected
it must be replaced by the connected component of the identity.

Theorem 1.3. The geometric data 1.1 define a complex line bundle L → Z

with a Hermitian metric.

For the proof we need the following preparations: For the geometric data 1.1
and a set of trivializations ϕi : Ui × P → E|Ui with transition functions gij
as above we wish to construct transition functions θij : Ui ∩ Uj → U(1) to
get a line bundle. Let

(1.4) g̃ij : Ui ∩ Uj × I → G

be a homotopy from gij to the identity such that g̃ij (z, 0) = id and g̃ij (z, 1) =
gij . g̃ij can be considered as a gauge transformation in the bundle P × I →
X × I .

In general, for two connections A0 and A1 in a principal bundle P → M

over a manifold M , let A be the convex combination

(1.5) A(p, s) = (1 − s)A0(p)+ sA1(p), p ∈ P, s ∈ [0, 1]

This is a connection in P × I → M × I . Let P ∈ I k0 (G) be an invariant
polynomial of degree k and let FA be the curvature of the connection A. Then
P(FA) is horizontal and the lift of a basic form, which will also be denoted by
P(FA). We define the differential (2k − 1)-form on M:

Definition 1.6.

T P (A0, A1) = 2π
∫ 1

s=0
P

(
FA

)
.
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Note that

(1.7) T P (A1, A0) = −T P (A0, A1).

In the following we apply this to the bundle P × I → X × I .

Lemma 1.8. The form T P
(
Ai,A

g̃ij
i

)
is closed.

Proof. Let i0(x, t) = (x, t, 0) and i1(x, t) = (x, t, 1) be the inclusions iν :
X×I → X×I×I , ν = 0, 1, and letAij (x, t, s) = (1−s)Ai(x)+sAi(x)

g̃ij (x,t).
We have the equation †

d

∫ 1

s=0
P(FAij

)−
∫ 1

s=0
dP (FAij

) = i∗0P(FAij
)− i∗1P(FAij

).

P is an invariant polynomial applied to a curvature form, so P(FAij
) is closed.

Hence
dT P

(
Ai,A

g̃ij
i

) = i∗0P(FAij
)− i∗1P(FAij

)

= P(FAi
)− P(g∗

ijFAi
)

= P(FAi
)− g∗

ijP (FAi
)

= 0,

since P(FAi
) is a basic form and the gauge transformation gij acts as the

identity on the base.

Define the function θij on Ui ∩Uj relative to a choice of a fixed connection
A0 in P → X.

Definition 1.9.

θij (z) = exp

(
i

∫
X×I

T P
(
A0, A

g̃ij (z,t)

i (z, x)
))

.

In future calculations we shall omit the parameters z, x, and t .

Lemma 1.10. The function θij is independent of the homotopy g̃ij .

Proof. Let g̃1
ij and g̃2

ij be two homotopies of gij to the identity and let θ1
ij

† The signs may look unusual but are in agreement with the sign convention of [5].
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and θ2
ij be calculated by means of these two respectively. Then

(
θ1
ij

)−1
θ2
ij = exp i

(
−

∫
X×I

T P
(
A0, A

g̃1
ij

i

) +
∫
X×I

T P
(
A0, A

g̃2
ij

i

))

= exp

(
i

∫
X×S1

T P
(
A0, A

g

i

))

= exp

(
2πi

∫
X×S1

∫ 1

s=0
P

(
F(1−s)A0+sAg

i

))
.

Here, g is the “homotopy” on S1 made up of the two contributions g̃1
ij and g̃2

ij .
Then g is a gauge transformation and hence an automorphism of the bundle
P × S1 → X × S1. Indeed,

P × S1 g−1−−−−−→ P × S1

↓ ↓
X × S1 id−−−−−→ X × S1

commutes. Now consider the mapping torus of P × S1 given by

T = (P × S1)× I/ ∼
where we identify ((p, t), 0) ∼ (g−1 · (p, t), 1). T is diffeomorphic to P ×
S1 × S1. The convex combination (1 − s)A0 + sA

g

i is a connection in the
bundle P ×S1 × I , but by the construction of the mapping torus, it becomes a
connection inT . In fact, the connection in P×S1×I at ((p, t), 0) isA0, and the
connection at (g−1 · (p, t), 1) isAg

i . The connection at ((p, t), 0) should equal
the pull-back along the identification map of the connection at (g−1 · (p, t), 1).

But the pull-back of Ag

0 along g−1· is just (g−1)∗Ag

0 = A
gg−1

0 = A0. With this
in mind we can make a replacement of the integral from above: If we let Ã be
the connection on T obtained from (1 − s)A0 + sA

g

i under the mapping torus
construction,

(1.11)
∫
X×S1

∫ 1

s=0
P

(
F(1−s)A0+sAg

i

) =
∫
T

P
(
FÃ

)
.

This is the integral of an invariant polynomial P ∈ I k0 (G) over a closed mani-
fold, and the result is an integer. Multiplying by 2πi and taking exp concludes
the proof.

Lemma 1.12. Let Ui , Uj and Uk be three open subsets of Z with nonempty
intersection. Then θij , θjk and θik satisfy the cocycle condition, θij θjk = θik .
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Proof. For z ∈ Ui ∩ Uj ∩ Uk ,

θij θjk = exp i

(∫
X×I

T P
(
A0, A

g̃ij
i

) +
∫
X×I

T P
(
A0, A

g̃jk
j

))
.

Since A
g̃ij (z,1)
i = Aj and A

g̃jk(z,0)
j = Aj , the integrands agree at the endpoints

of the intervals, and after a slight reparametrization,

g̃ik(z, t) =
{
g̃ij (z, 2t) if 0 ≤ t ≤ 1

2

gij g̃jk(z, 2t − 1) if 1
2 ≤ t ≤ 1

is a homotopy from the identity to gjk . Hence the sum of the two integrals
above is ∫

X×I
T P

(
A0, A

g̃ik
i

)
and the result follows by lemma 1.8.

Proof of Theorem 1.3. The functions in definition 1.9 are well-defined by
lemma 1.10 and satisfy the cocycle condition by lemma 1.12. Hence the {θij }’s
are transition functions of a line bundle L . Note that the transition functions
are U(1)-valued, and hence L can be equipped with a Hermitian metric. This
concludes the proof of theorem 1.3.

Proposition1.13. The isomorphism class of L is independent of the choice
of A0.

Proof. For the proof of this we need to rewrite the transition functions θij .
Let %2 be the two-simplex

%2 = {s0, s1, s2 ∈ R | s0 + s1 + s2 = 1, si ≥ 0 for i = 0, 1, 2}.
For three connections A0, A1, and A2 of the principal bundle P → X the
set of convex combinations {s0A0 + s1A1 + s2A2 | (s0, s1, s2) ∈ %2} will
be a connection of the bundle P × %2 → X × %2. Define the differential
(2k − 2)-form on X†

T P (A0, A1, A2) = 2π
∫
%2
P

(
Fs0A0+s1A1+s2A2

)
.

An easy calculation shows that

(1.14) dT P (A0, A1, A2) = −
2∑
i=0

(−1)iT P (. . . , Âi , . . .),

† The form P(Fs0A0+s1A1+s2A2 ) is horizontal and can be identified with a basic form.
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where T P (. . . , Âi , . . .) is the (2k− 1)-form from definition 1.6 with Ai omit-
ted. Inserting the three connections A0, Ai and A

g̃ij
i into dT P and integrating

over X × I we get∫
X×I

dT P
(
A0, Ai, A

g̃ij
i

) =
∫
X×I

T P
(
A0, A

g̃ij
i

) −
∫
X×I

T P
(
Ai,A

g̃ij
i

)
,

since
∫
X×I T P (A0, Ai) = 0 from a dimension argument. On the other hand,∫

X×I
dT P

(
A0, Ai, A

g̃ij
i

) =
∫
X

T P
(
A0, Ai, Aj ),

and it follows that

(1.15)
∫
X×I

T P
(
A0, A

g̃ij
i

) =
∫
X×I

T P
(
Ai,A

g̃ij
i

) +
∫
X

T P
(
A0, Ai, Aj

)
.

Let %3 denote the three-simplex and for four connections A0, A1, A2, A3

define the (2k − 3)-form on X

TP(A0, A1, A2, A3) = 2π
∫
%3
P

(
Fs0A0+s1A1+s2A2+s3A3

)
as above, but in one dimension higher. We have

(1.16) dT P (A0, A1, A2, A3) = −
3∑
i=0

(−1)iT P (. . . , Âi , . . .),

where the T P ’s in the sum are the (2k − 2)-forms from above. Also note that∫
X
dT P (A0, A1, A2, A3) = 0. Now let A0 and A1 be two fixed connections

of P , and for ν = 0, 1 let

θνij = exp i
∫
X×I

T P
(
A0, A

g̃ij
i

)
.

Rewriting the integrals as in (1.15) and applying (1.16) yields

θ0
ij

(
θ1
ij

)−1 = exp i

(∫
X

T P
(
A0, Ai, Aj

) −
∫
X

T P
(
A1, Ai, Aj

))

= exp i

(∫
X

T P
(
A0, A1, Ai

) −
∫
X

T P
(
A0, A1, Aj

))
,

but this is a coboundary and hence the {θ0
ij }’s and the {θ1

ij }’s define isomorphic
line bundles.
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Remark 1.17. Note that the proof provides explicit isomorphisms.

Proposition 1.18. LetX be a closed surface, let P = X×G be the product
bundle and P = −C2 = − 1

8π2 Tr, minus the second Chern polynomial. Then
the transition functions θij define the same line bundle as the one of Ramadas,
Singer and Weitsman in [14].

Proof. First recall that the line bundle of Ramadas, Singer and Weitsman
is constructed by means of a 3-manifold Y that has X as boundary and by
defining the Chern-Simons functional

(1.19) CS(Ā) = 1

4π

∫
Y

Tr

(
ι∗(ĀdĀ− 2

3
ĀĀĀ)

)
mod 2πZ.

Then a cocycle is defined on A × G , where A is the space of connections of
X × SU(2) and G is the group of gauge transformations, by

((A, g) = exp i(CS(Āḡ)− CS(Ā))

where Ā is an extension of A into Y and ḡ is an extension of g. This gives a
line bundle on the manifold A s

F /G , the set of flat, irreducible connections of
X × SU(2) modulo G . Given a covering {Ui} and transition functions {gij },
the transition functions in the line bundle are given by ((Ai, gij ) and we shall
show that this equals θij .

Recalling that the curvature of the connectionA is given byFA = A∧A+dA
we get

T P
(
A0, A

g̃ij
i

) = − i

4π

∫ 1

s=0
Tr

(
F 2

sA0+(1−s)Ag̃ij

i

)

= − i

4π

∫ 1

s=0
Tr

(
(sA0 + (1 − s)A

g̃ij
i )2 + d(sA0 + (1 − s)A

g̃ij
i )

)2

Calculation of this integral yields

−
(
A
g̃ij
i ∧ dA

g̃ij
i + 2

3

(
A
g̃ij
i

)3
)

+
(
A0 ∧ dA0 + 2

3
A3

0

)
− d(A0 ∧ A

g̃ij
i ),

and when integrated over X × I the terms in parentheses vanish, as does

the term d(A0 ∧ A
g̃ij
i ). In fact we get the terms A0 ∧ Ai and A0 ∧ Aj with

opposite signs from the two ends of the cylinder, and sinceAi andAj are gauge
equivalent the two terms cancel out each other when pulled back to the base.
What is left is then

(1.20) θij = exp
1

4π

∫
X×I

Tr

(
A
g̃ij
i ∧ dA

g̃ij
i + 2

3
(A

g̃ij
i )3

)
.
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Now let W be the closed manifold Y ∪ (X× I )∪ (−Y ), where −Y denotes Y
with the opposite orientation. The integrands of (1.19) and (1.20) agree at the
boundaries of the constituents of W , and letting B denote the connection

B =



Āi on Y

A
g̃ij
i on X × I

Āj on −Y
we have

((Ai, gij )
−1θij = exp i

(
1

4π

∫
W

Tr

(
ι∗

(
BdB + 2

3
B3

)))
.

This contains an integral of a Chern-Simons form over a closed manifold.
Hence the contents of the parentheses is an integer multiple of 2π , and the
whole expression equals 1, which completes the proof.

In [14], Ramadas, Singer, andWeitsman show that the line bundle L defined
by the transition functions in definition 1.9 is isomorphic to the Quillen de-
terminant line bundle LD that arises from the family {∂̄A|A ∈ A s

F }.
Remark 1.21. A slightly more general version of the line bundle is obtained

if we consider two fibre bundles E and F as in the geometric data 1.1 with
families of connections Az and Bz respectively, both with local trivializations
as in (1.2) and with homotopies g̃Aij and g̃Bij respectively as in (1.4). Define

transition functions θABij = exp i
∫
X×I T P

(
B
g̃Bij
i , A

g̃Aij
i

)
. It is an easy calculation

to show that θABij differ from the product θAij (θ
B
ij )

−1 by a coboundary and hence
define the same line bundle. Here θAij and θBij denote the transition functions
of the A-family and the B-family respectively. In other words, given the two
families A and B we get a line bundle L AB . If the B-family is constant and
equal to A0 we get the same line bundle as the one defined by the transition
functions in definition 1.9. If H is a third fibre bundle with connections C we
get three relative line bundles, L AB , L BC , and L AC , and it is not difficult to
show that there is an isomorphism L AB ⊗ L BC ∼= L AC .

2. Connections in the Line Bundle

In this section we shall describe connections of the line bundle L constructed
in the previous section.

Theorem 2.1. Given the geometric data 1.1, let A be a connection of the
principal bundle E → Z × X which fibre-wise restricts to the connection of
each fibre of the bundleE → Z. Then the induced line bundleL with transition
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functions θij from definition 1.9 has a canonical Hermitian connection whose
curvature is

2πi
∫
X

P (FA).

Remark 2.2. Thus, for a connection in L we need an extension of the
family {A(z)} to a connection also in the Z direction. However, corollary 2.10
below gives conditions (e.g. when A(z) is flat for all z ∈ Z) insuring the
connection to be independent of choice of extension. Notice also that such an
extension always exists. This is easily seen by considering the fibre bundle E
as a principalG-bundle, which locally, has the formG → Ui ×P → Ui ×X.
Pulling back Ai(z) via Ui × P → P and using partition of unity yields a
connection of E → Z ×X.

In the following we shall see how a connection inE → Z×X gives rise to a
canonical connection of the line bundle L . Again choose a fixed connectionA0

in P → X, and let θij be the transition functions for L given by definition 1.9.
The local connection one-forms are now given as follows.

Definition 2.3. Let ωi be the 1-form on Ui ⊆ Z

ωi = −i
∫
X

T P (A0, Ai).

Lemma 2.4.

θ−1
ij dθij = i

(
−

∫
X

T P (A0, Ai)+
∫
X

T P (A0, Aj )

)
.

Proof. By (1.15),

θij = exp i

(∫
X×I

T P (Ai, A
g̃ij
i )+

∫
X

T P (A0, Ai, Aj )

)
,

where Ai and Aj are the pull-backs of the connections in E|Ui
→ Ui and

E|Uj → Uj . It is obvious that

dθij = d exp i

(∫
X×I

T P (Ai, A
g̃ij
i )+

∫
X

T P (A0, Ai, Aj )

)

= iθij d

(∫
X×I

T P (Ai, A
g̃ij
i )+

∫
X

T P (A0, Ai, Aj )

)
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and so

(2.5) θ−1
ij dθij = i

(
d

∫
X×I

T P (Ai, A
g̃ij
i )+ d

∫
X

T P (A0, Ai, Aj )

)
.

Note that this is a differential form on Ui ∩ Uj and of course depends on
z ∈ Ui ∩ Uj . The two terms are treated separately. First,

dZ

∫
X×I

T P (Ai, A
g̃ij
i ) =

∫
X×I

dT P (Ai, A
g̃ij
i )−

∫
X×I

dX×I T P (Ai, A
g̃ij
i ).

The integral
∫
X×I dT P (Ai, A

g̃ij
i ) is zero by lemma 1.8. The second term eval-

uates to ∫
X×I

dX×I T P (Ai, A
g̃ij
i ) = −

∫
X

T P (Ai, Aj ).

The second integral in (2.5) is treated in the same way, i.e.

dZ

∫
X

T P (A0, Ai, Aj ) =
∫
X

dT P (A0, Ai, Aj )−
∫
X

dXT P (A0, Ai, Aj ).

Stokes’ theorem shows that the second term in this expression is zero, and by
(1.14),

∫
X

dT P (A0, Ai, Aj ) =
∫
X

(−T P (A0, Ai)+ T P (A0, Aj )− T P (Ai, Aj )
)
.

This leads to

θ−1
ij dθij = i

(
−

∫
X

T P (A0, Ai)+
∫
X

T P (A0, Aj )

)
.

Note that ωi is purely imaginary, and hence the connection is Hermitian.
Next, we calculate the curvature ofωi . Since L is a line bundle, ω∧ω = 0,

and the curvature of ω is just dω. It suffices to show that

dωi = 2πi
∫
X

P (FAi
).

This is a direct calculation. According to the sign convention, integration along
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the fibre commutes with the differential dZ .

dωi = −id
∫
X

T P (A0, Ai)

= −2πidZ

∫
X

∫ 1

s=0
P(F(1−s)A0+sAi

)

= −2πi
∫
X

∫ 1

s=0
dZP (F(1−s)A0+sAi))

= −2πi
∫
X

∫ 1

s=0
(d − dX − ds)P (F(1−s)A0+sAi

)

= −2πi
∫
X

∫ 1

s=0
dP (F(1−s)A0+sAi

)+ 2πi
∫
X

dX

∫ 1

s=0
P(F(1−s)A0+sAi

)

+ 2πi
∫
X

∫ 1

s=0
dsP (F(1−s)A0+sAi

)

= 2πi
∫
X

P (FAi
)− 2πi

∫
X

P (FA0)

= 2πi
∫
X

P (FAi
),

since the terms containing d and dX vanish; the form 2πi
∫
X
P (FA0) vanishes,

since it is independent of z ∈ Z.
This concludes the proof of theorem 2.1.

We shall now investigate how the connection of the line bundle depends on
the connection A of the principal bundle E → Z×X. Given a connection AE

in E, AE can be written locally as

(2.6) AE
i = Ai + Bi,

whereAi contains all terms involving derivations in P-direction (dp’s) andBi

contains all terms involving derivations in Z-direction (dz’s). If two different
connections AE

1 and AE
2 in E induce the same family {Ai(z)}z∈Ui

in P then,
locally

(2.7) AE
1,i = Ai + B1,i , AE

2,i = Ai + B2,i

because both AE
1,i and AE

2,i restrict to Ai(z) for fixed z.

Theorem 2.8. LetA1 andA2 be two connections of the bundleE → Z×X.
Let ω1 and ω2 be two connections in the associated line bundle as defined in
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definition 2.3. Assume that both A1 and A2 restrict to A(z) for each z ∈ Z.
Then

ω2 − ω1 = −k
∫
X

P (F k−1
A ∧ β).

Here k is the degree of P and β = A2 −A1 is a horizontal 1-form in E → Z

so that the integral only involves the curvatures FA(z) along the fibres.

Proof. Consider a subset Ui ⊆ Z such that the local considerations from
above apply, i.e. ωi can be calculated explicitly by the expression in defin-
ition 2.3. In the proof the index i is left out. The first step is to show that
ω2 − ω1 = −i ∫

X
T P (A1, A2). It has already been shown that

dZ

∫
X

T P (A0, A1, A2)

= −
∫
X

T P (A0, A1)+
∫
X

T P (A0, A2)−
∫
X

T P (A1, A2).

Hence it suffices to show that dZ
∫
X
T P (A0, A1, A2) = 0. WriteA1 = A+B1

and A2 = A+ B2 and consider∫
X

T P (A0, A1, A2) = 2π
∫
X

∫
%2
P(Fs0A0+s1A1+s2A2)

which is a function on Z and therefore can be calculated pointwise. Let A =
s0A0 + s1A1 + s2A2 and write FA = dA + A ∧ A as

(2.9) FA = σ + φ + ψ,

where σ contains all terms involving ds’s, φ contains all terms involving dx’s
only, and ψ contains all terms involving dz’s. Now, a term in the integral∫

X

∫
%2
P(FA ∧ . . . ∧ FA)

contributes with something non-vanishing when it contains exactly (2k − 2)
dx’s and two ds’s, i.e. such terms contain noψ’s. Hence, one can replace both
A1 and A2 by A and calculate:

dZ

∫
X

T P (A0, A1, A2) = dZ

∫
X

T P (A0, A,A) = 0.

This concludes the first step.
The second step deals with

∫
X
T P (A1, A2). Recall that T P (A1, A2) is

given by 2π
∫ 1
s=0 P(F(1−s)A1+sA2). Splitting up A1 and A2 as in (2.7) gives

(1 − s)A1 + sA2 = A+ B1 + s(B2 − B1).
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Then a calculation yields

F(1−s)A1+sA2 = FA + ds ∧ β + γ,

where β = B2 − B1 and γ do not contain any terms involving ds or dx’s.
Since P is an invariant polynomial of degree k,∫ 1

s=0
P(F(1−s)A1+sA2) =

∫ 1

s=0
P

(
F(1−s)A1+sA2 ∧ . . . ∧ F(1−s)A1+sA2

)
=

∫ 1

s=0
P

(
(FA + β + γ ) ∧ . . . ∧ (FA + β + γ )

)
=

∫ 1

s=0
P

(
Fk−1
A ∧β + Fk−2

A ∧β ∧FA + · · · + β ∧Fk−1
A

)
+

∫ 1

s=0
R(s, x, z)

= k

∫ 1

s=0
P(F k−1

A ∧ β)+
∫ 1

s=0
R(s, x, z)

= −kP (F k−1
A ∧ β)+

∫ 1

s=0
R(s, x, z),

whereR contains all terms which are not on the formFk−1
A ∧β. Note that all the

terms containing 2k−2 derivations in theX-direction have been accounted for
since such forms must contain (k− 1) times FA. The form R(s, x, z) contains
no such terms and hence ∫

X

∫ 1

s=0
R(s, x, z) = 0.

This concludes the proof.

Corollary 2.10. Assume that A1 = A + B1 and A2 = A + B2 are two
connections inE which agree along the fibres ofE → Z. IfFk−1

Az
= 0 for each

z, thenA1 andA2 induce the same connectionωi in the associated line bundle.
Furthermore, if k ≥ 3 and Fk−2

Az
= 0 for each z, then L is a flat bundle. In

particular if Az is flat for each z, then the connection in L is well-defined for
k ≥ 2 and is flat for k ≥ 3.

Proof. This follows immediately from theorem 2.8 and theorem 2.1.

Remark 2.11. This construction also gives a tensor power of the line bundle
constructed by Freed and Bismut (see [10]) for a family of Riemannian mani-
folds at least in the case of varying metrics on a fixed manifold X. In this case
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let Pz = F(X) be the oriented orthogonal frame bundle of X with the Levi-
Civita connection Az of the metric of the fibre, and let P be the Â-polynomial
multiplied by the least common denominator µ of its coefficients (see [12],
Chapter I, § 1.6). The curvature of the line bundle is 2πi

∫
X
µÂ(FA).

Example 2.12. The case of [14]. Let X be a closed surface and P = X×
SU(2). To compare our connection and its curvature to the case in [14] consider
ω as a 1-form on AF . Let A ∈ AF , and α ∈ TAAF . Let γ : (−ε, ε) → A be
a curve such that γ (0) = A, and γ ′(0) = α. Then

ω(α) = ω
(
γ∗(

d

dt
)
) = γ ∗ω(

d

dt
).

Since A is an affine space we can let γ (t) = A+ tα. We wish to compare ω
to the form ω̂RSW from [14] given by ω̂RSW(α) = i

4π

∫
X

Tr(A ∧ α). Write A
as A = A0 + B, where A0 is a flat connection. Then

(1) T P (A0, A) = 1
4π Tr(BdA0B + 2

3B
3)

(2) ω(α) = i
4π

∫
X

Tr(B ∧ α),

where in this caseP = −C2 = − 1
8π2 Tr is minus the second Chern polynomial.

The curvature is obtained from this and yields

dω(α, β) = i

2π

∫
X

Tr(α ∧ β)

in agreement with [14].

Remark 2.13. The connection one-form of the relative line bundle described
in Remark (1.27) is given by ωAB

i = −i ∫
X
T P (Bi, Ai).

3. The Chern-Simons Invariant

We shall now extend the definition of the Chern-Simons invariant to a family
of bundles and connections over a family of odd-dimensional manifolds with
boundary. In this situation the Chern-Simons invariant determines a section of
the inverse line bundle L −1, where L is the line bundle constructed in section
1 for the family of boundaries. In the case of a single bundle P̄ with connection
Ā over an odd-dimensional manifold Y with boundary X the Chern-Simons
invariant of Ā must be defined relative to some “boundary conditions”. For
these we take once and for all a fixed manifold Y0 with ∂Y0 = X together with
a principal bundle P̄0 → Y0 with connection Ā00 extending our background
connection A0 on P over X. In the special case of P = X ×G we can take
P̄0 = Y0 × G and A00 the Maurer-Cartan connection. With these data we
can now define the relative Chern-Simons invariant cs(Ā, Ā00) for P ∈ I ∗

0 (G)
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as follows. Consider the “glued” manifold W = Y ∪ (X × I ) ∪ (−Y0) with
G-bundle P̄ ∪ (X × I ×G) ∪ P̄0 and connection B̄ given by

B̄ =



Ā on Y

(1 − t)A+ tA0 on X × I ×G

Ā00 on −Y0

Then we put

(3.1) cs(Ā, Ā00) = exp
(
2πi〈SP (B̄), [W ]〉) ,

where SP (B̄) is the secondary characteristic class for the connection B̄ as
defined by Cheeger-Chern-Simons [7] or [6] (see also [9]).

Returning to the case of a family we thus have the following general setup
with the above “boundary conditions” as point (5):

Geometric Data 3.2.
(1)–(4) as in the geometric data 1.1

(5) A smooth, compact, oriented, odd-dimensional manifold Y0 with
∂Y0 = X and a principal G-bundle P̄0 → Y0 which extends P ,
i.e. P̄0|X = P , and a connection Ā00 which extends A0.

(6) A smooth, compact, oriented, odd-dimensional manifoldY with ∂Y =
X and a principal G-bundle P̄ → Y which extends P , i.e. P̄|X =
P ,

(7) A fibre bundle P̄ → Ē → Z, where each fibre has a connection
Āz which extends Az and such that the transition functions are gauge
transformations homotopic to the identity

Theorem 3.3. The geometric data 3.2 determine a global section cs of
the inverse line bundle L −1 → Z. Furthermore, for an extension of Ā to a
connection in the G-bundle Ē → Z × Y ,the covariant derivative of cs with
respect to the connection of section 2 is

∇Ā(cs) = 2πi
∫
Y

P (FĀ)⊗ cs.

Corollary 3.4. Given the geometric data 3.2 the associated line bundle
L is trivial.

For the proof of theorem 3.3 we choose a covering {Ui} of Z and local
trivializations of Ē

(3.5) ϕ̄i : Ē|Ui
→ Ui × P̄.
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This gives rise to a connection Āi(z) = (
ϕ̄−1
i

)∗
Āz in P̄ for each z ∈ Z. The

trivializations give transition functions over Ui ′ ∩ Uj ′ :

(3.6) ḡij : Ui ∩ Uj → Ḡ ,

where Ḡ is the group of gauge transformations of P̄ . Of course these trivializ-
ations restrict to local trivializations of the boundary. Also choose a connection
Ā0 in P̄ → Y extending A0.

Define a section of the inverse line bundle L −1 = L ∗ as follows. Over Ui ,
the section is defined by

(3.7) csi(z) = cs(Ā0, Ā00) · exp i

(
−

∫
Y

T P (Ā0, Āi)

)
.

Lemma 3.8. The local sections defined in (3.7) patch together to a global
section of L ∗, independent of choice of Ā0.

Proof. On Ui ∩ Uj the transition function θij “from Ui to Uj” (cf. defini-
tion 1.9) is given by:

θij (z) = exp i

(∫
X×I

T P (Ai(z), A
g̃ij
i (z))+

∫
X

T P (A0, Ai(z), Aj (z))

)
.

Hence the transition functions θ∗
ij of L ∗ are θ∗

ij = θ−1
ij = θji , or

θ∗
ij = exp i

(
−

∫
X×I

T P (Ai, A
g̃ij
i )−

∫
X

T P (A0, Ai, Aj )

)
.

OnUi ∩Uj we must show the compatibility condition csj = csiθ
∗
ij . To see this

first consider c−1
0 csiθ

∗
ij , where c0 = cs(Ā0, Ā00). Then

c−1
0 csi(z)θ

∗
ij (z) = exp i

(
−

∫
Y

T P (Ā0, Āi(z))−
∫
X×I

T P (Ai(z), A
g̃ij
i (z))

−
∫
X

T P (A0, Ai(z), Aj (z))

)

= exp i

(
−

∫
Y

T P (Ā0, Āj (z))+
∫
Y

T P (Āi, Āj )

−
∫
X×I

T P (Ai(z), A
g̃ij
i (z))

)
,

since

−
∫
X

T P (A0, Ai, Aj ) =
∫
Y

T P (Ā0, Āi)−
∫
Y

T P (Ā0, Āj )+
∫
Y

T P (Āi, Āj ).
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Claim.∫
X×I

T P (Ai(z), A
g̃ij
i (z)) =

∫
Y

T P (Āi(z), Āj (z)) mod 2πZ.

To show this we observe that

−
∫
Y

T P (Āi(z), Āj (z)) =
∫

−Y
T P (Āi(z), Āj (z)),

where −Y denotes Y with the opposite orientation. Recall that by antisym-
metry,

∫
Y
T P (Āi(z), Āi(z)) = 0. Then consider the closed (2k− 1)-manifold

W = Y ∪X×{0} (X× I )∪X×{1} (−Y ), where a connection B can be defined as

B(z) =



Āi(z) on Y

A
g̃ij
i (z) on X × I

Āj (z) on −Y

Y X ¥ I -Y

0 1

Figure 1. W = Y ∪X×{0} (X × I ) ∪X×{1} (−Y )

The problem now reduces to showing that

(3.9)
∫
W

T P (Āi(z), B(z)) = 0 mod 2πZ.

By earlier remarks there exists a gauge transformation ḡij on P̄ such that

Ā
ḡij
i = Āj . Then there is a gauge transformation h given by

h =



id on Y

g̃ij on X × I

ḡij on −Y

such that B = Āh
i . With this the integral in (3.9) reads

∫
W

T P (Āi(z), Ā
h
i (z)),
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or, with the definition of T P

(3.10) 2π
∫
W

∫ 1

s=0
P

(
F(1−s)Āi (z)+sĀh

i (z)

)
.

Now, at the ends of the manifoldW×I , the differential form under the integral
are P(FĀi(z)

) and P(FĀh
i (z)

) respectively, but since we are dealing with forms

on the base, these two forms agree. Again we apply the mapping torus of P̄ .
This is P̄×I/ ∼, where (p, 1) ∼ (h·p, 0), which on the base is justW×I/ ∼
with (w, 1) ∼ (w, 0). In other words the integral in (3.10) can be rewritten as∫

W×S1
P

(
F(1−s)Āi (z)+sĀh

i (z)

)
,

which is integer valued. This concludes the proof of the compatibility condi-
tion.

Next we show that the section does not depend on the extension Ā0 of the
connectionA0. LetA0 be a connection in P . Let Ā0 and Ā′

0 be two connections
in P̄ extending A0. Let csi and cs ′

i be defined over Ui by

csi(z) = c0 exp i
∫
Y

T P (Ā0, Āi(z)), cs ′
i (z) = c′

0 exp i
∫
Y

T P (Ā′
0, Āi(z))

with c0 = cs(Ā0, Ā00), c′
0 = cs(Ā′

0, Ā00). Then

(
c−1

0 csi(z)
)−1

c′
0cs

′
i (z) = exp i

(∫
Y

T P (Ā0, Āi(z))−
∫
Y

T P (Ā′
0, Āi(z))

)

= exp i

(∫
Y

T P (Ā0, Ā
′
0)+

∫
X

T P (A0, A0, Ai(z))

)

= exp i
∫
Y

T P (Ā0, Ā
′
0).

On the other hand, by (3.1) we have

c0(c
′
0)

−1 = exp
(
2πi〈SP (B̄)− SP (B̄

′), [W ]〉)
exp

(
−i

∫
W

T P (B̄, B̄ ′)
)

= exp

(
−i

∫
Y

T P (Ā0, Ā
′
0)

)
.

by [9] (2.10). This proves that cs is a well-defined section. Finally we calculate
the covariant derivative of the section with respect to the connection obtained
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in section 2. Locally we have, using the formula for csi with c0 = cs(Ā0, Ā00):

dcsi = c0d exp

(
−i

∫
Y

T P (Ā0, Āi)

)

= −idZ
∫
Y

T P (Ā0, Āi)⊗ csi

= −2πi
∫
Y

∫ 1

s=0
dZP (F(1−s)Ā0+sĀi

)⊗ csi

= −2πi
∫
Y

∫ 1

s=0
(d − dY − ds)P (F(1−s)Ā0+sĀi

)⊗ csi

= 0 − i

∫
X

T P (A0, Ai)⊗ si − 2πi
∫
Y

P (FĀ0
)⊗ csi

+ 2πi
∫
Y

P (FĀi
)⊗ csi .

Here the form 2πi
∫
Y
P (FĀ0

) is zero, since it does not depend on z ∈ Z. On
the other hand, the one-formωi that determines the connection of L was given
by

ωi = −i
∫
X

T P (A0, Ai),

cf. definition 2.3. Hence the connection of L ∗ is determined by the one-form

(3.11) ω∗
i = i

∫
X

T P (A0, Ai).

It follows that

∇(csi) = ω∗
i ⊗ csi + dcsi = 2πi

∫
Y

P (FĀi
)⊗ csi,

and hence, globally

(3.12) ∇(cs) = 2πi
∫
Y

P (FĀ)⊗ cs.

Remark 3.13. The Chern-Simons section of the relative line bundle from
remark 1.27 is given locally by csABi (z) = exp(−i ∫

Y
T P (B̄i(z), Āi(z)), and

its covariant derivative is ∇AB(csABi ) = 2πi(
∫
Y
P (FĀi

)−∫
Y
P (FB̄i ))⊗ csABi .
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4. Application to handle bodies

As an example we apply our results to a family of flat connections over a genus
g surface X. We shall show the following:

Proposition 4.1. Let X be a genus g surface and Y the corresponding
handle body such that ∂Y = X. Let ρz : π1(Y ) → SU(2) be a family of
representations of the fundamental group of Y indexed by a manifold Z and
choose the Maurer-Cartan connection in the trivial bundle over Y as boundary
condition in the sense of 3.2 (5). Then these data define a line bundle L → Z

with a canonical flat connection and an everywhere non-zero Chern-Simons
section which is parallel.

Proof. Let Y be the “massive interior” of X such that ∂Y = X. The
homotopy type of Y is the same as a wedge of g circles, so the fundamental
group is the free group with g generators.

y0

Figure 2. A genus 2 handle body with generators of the fun-
damental group

Let Ỹ be the fundamental covering of Y and π : Ỹ → Y the projection. Let

ρ : π1(Y ) → SU(2)

be a representation of the fundamental group of Y . Let

Ỹ ×ρ SU(2)

be the quotient by the equivalence relation (ỹ · ξ, g) ∼ (ỹ, ρ(ξ)g) for ξ ∈
π1(Y ). This is a principal SU(2)-bundle over Y ; it is well-known that it is
trivial. In particular it makes sense to use the Maurer-Cartan connection as
“boundary condition” in the sense of 3.2 (5). A set of representations {ρz}|z∈Z
determine a family of (trivial) principal SU(2)-bundles Pz and hence a line
bundle L → Z, cf. theorem 1.3. Now let U be a plane disc with g holes and
note that there is a deformation retraction

r : Y → U.
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Then the above family of flat principal bundles is induced from U via r , more
precisely there is a deformation retraction r̄ : Z × Y → Z × U such that a
bundle Ē → Z × Y as the one in theorem 3.3 is the pull back via r̄ from a
bundle Ẽ → Z×U . The form P(FĀ) on Y in (3.12) is the pull-back of a form
on U , and hence the integral ∫

Y

P (FĀ)

in (3.12) is zero. It follows that the Chern-Simons section cs is parallel, and
the connection has zero curvature.
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