
MATH. SCAND. 90 (2002), 267–288

FULL DUALITY FOR COACTIONS OF
DISCRETE GROUPS

SIEGFRIED ECHTERHOFF and JOHN QUIGG∗

Abstract

Using the strong relation between coactions of a discrete group G on C∗-algebras and Fell bundles
over G we prove a new version of Mansfield’s imprimitivity theorem for coactions of discrete
groups. Our imprimitivity theorem works for the universally defined full crossed products and
arbitrary subgroups of G as opposed to the usual theory of [16], [11] which uses the spatially
defined reduced crossed products and normal subgroups of G. Moreover, our theorem factors
through the usual one by passing to appropriate quotients. As applications we show that a Fell
bundle over a discrete group is amenable in the sense of Exel [7] if and only if the double dual
action is amenable in the sense that the maximal and reduced crossed products coincide. We also
give a new characterization of induced coactions in terms of their dual actions.

1. Introduction

One of the main tools in the study of crossed products by C∗-dynamical
systems is Green’s imprimitivity theorem ([9, §2]): starting with an action
α : G → Aut(A) and a closed subgroup H of G, it provides a Morita equi-
valence between the crossed products

C0(G/H, A) ×τ⊗α G and A ×α| H,

where τ denotes the translation action of G on G/H . Note that we can take
either the full or the reduced crossed products in the formulation of Green’s the-
orem (see [13, Theorem 3.15] and [19, Lemma 4.1] for the reduced versions).
If G is abelian, the imprimitivity theorem combined with Takesaki-Takai du-
ality theory provides an even more powerful tool for the investigation of the
structure of certain crossed products. Note that the connection of both theories
is given by the existence of a natural isomorphism

C0(G/H, A) ×τ⊗α G ∼= (A ×α G) ×α̂| Ĝ/H,
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where α̂ denotes the dual action of the Pontrjagin dual Ĝ on A ×α G (e.g., see
[9, §7] and [1], [3] for details and applications). If G is nonabelian, Takesaki-
Takai duality theory becomes a duality between actions and coactions of G, so
in order to make these techniques available for the study of crossed products
by actions and coactions of nonabelian groups it is necessary to have good
working analogues of the imprimitivity theorem for coactions of groups on
C∗-algebras.

A major step towards a general imprimitivity theorem for coactions was
first achieved by Mansfield in [16], where he showed that, if δ : A → M(A ⊗
C∗(G)) is a coaction of G on A and N is a normal and amenable closed
subgroup of G, there exists a natural Morita equivalence between

(A ×δ G) ×δ̂| N and A ×δ| G/N,

where δ̂ : G → Aut(A ×δ G) denotes the dual action of G on A ×δ G.
This result was generalized to possibly non-amenable normal subgroups by
the second author and Kaliszewski in [11], but with a technical restriction
which is satisfied in particular when δ is a normal coaction in the sense of [17,
Definition 2.1]. For such coactions they obtained a natural Morita equivalence
for the reduced crossed product (A×δ G)×δ̂|,r N and A×δ| G/N . Since every
coaction δ has a normalization (see [17, §2]), this result should be interpreted
as a general analogue of Green’s theorem for reduced crossed products (note
that, if N is amenable, B ×β N ∼= B ×β,r N for every action β of N , which
explains why Mansfield’s result can be regarded as a special case of the results
in [11]).

In [4] it is shown that if we start with a dual coaction α̂ : A ×α G →
M

(
(A ×α G) ⊗ C∗(G)

)
on the full crossed product A ×α G by an action

α : G → Aut(A), then there exists also a full version of Mansfield’s theorem.
More precisely, for B = A ×α G and δ = α̂ the authors constructed a natural
imprimitivity bimodule between the full crossed products

B ×δ G ×δ̂| N and B ×δ| G/N,

which actually factors through the reduced version of [11] by passing to ap-
propriate quotients. Moreover, because δ is dual to an action, the construction
of the bimodule became much more natural and it even allowed versions of
Mansfield’s imprimitivity theorems for possibly non-normal subgroups of G.
Note that the big advantage of working with full crossed products rather than
with the spatially defined reduced ones is that full crossed products can be
defined via universal properties, which, in general, are not available for the
study of the reduced crossed products.
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The main purpose of this paper is to extend the results of [4] to arbitrary
coactions of discrete groups. The main idea is to use the strong relationship
between coactions of a discrete group G and Fell bundles over G as observed
by the second author in [18] (see also [5]): if δ: A → A ⊗ C∗(G) is a coaction
of the discrete group G on the C∗-algebra A, then the set of spectral subspaces
A = {As : s ∈ G} with As = {a ∈ A : δ(a) = a⊗s} forms a Fell bundle over
G. For any such bundle we can form the full and the reduced cross-sectional
algebras C∗(A ) and C∗

r (A ) of A , which are completions of the ∗-algebra
�c(A ) of finitely supported sections with respect to the maximal and minimal
topologically graded C∗-norms (see [7]). We also have �c(A ) ⊆ A as a dense
subalgebra, and the identity map on �c(A ) induces quotient maps C∗(A ) →
A → C∗

r (A ). There are canonical coactions δm: C∗(A ) → C∗(A ) ⊗ C∗(G)

and δn: C∗
r (A ) → C∗

r (A )⊗C∗(G) determined by as �→ as ⊗ s. The quotient
maps C∗(A ) → A → C∗

r (A ) are equivariant with respect to δm, δ, and δn,
and it is shown in [5, Lemma 2.1] that they induce isomorphisms

C∗(A ) ×δm G
∼=→ A ×δ G

∼=→ C∗
r (A ) ×δn G

of the crossed products. It is actually checked in [5, Section 2] that the coaction
δn on the reduced cross-sectional algebra C∗

r (A ) constructed above coincides
with the normalization of δ. On the other side, δm should be regarded as a
maximalization of δ, thus explaining our notation.

As our main result, we shall derive a new version of Mansfield’s imprim-
itivity theorem, which works for full crossed products and arbitrary sub-
groups of a discrete group G. To be more precise, we show that for any
subgroup H of G there exists a canonical C∗(A ) ×δm G ×δ̂m H − C∗(A ×
G/H) imprimitivity bimodule X, where C∗(A × G/H) denotes the maximal
cross-sectional algebra of the Fell bundle A × G/H over the transformation
groupoid G × G/H . We then show that this bimodule naturally factors to a
C∗

r (A ) ×δn G ×δ̂n,r H − C∗
r (A × G/H) imprimitivity bimodule for the re-

duced cross-sectional algebras on both sides. Note that if H is normal, we have
C∗(A ×G/H) = C∗(A )×δm| G/H and C∗

r (A ×G/H) = C∗
r (A )×δn| G/H ,

where δm| and δn| denote the restrictions of δm and δn to G/H . Using the fact
that an arbitrary coaction δ: A → A ⊗ C∗(G) of a discrete group G “lies
between” δm and δn, we derive an “intermediate” imprimitivity theorem for δ:
if H is a normal subgroup of G then A ×δ| G/H is canonically Morita equi-
valent to a crossed product A ×δ G ×δ̂,µ H “lying between” the full crossed
product A ×δ G ×δ̂ H and the reduced crossed product A ×δ G ×δ̂,r H .

We obtain an interesting consequence concerning amenability of Fell bund-
les in the sense of Exel [7]: a Fell bundle A over G is amenable if and only if
its dual action δ̂m of G on C∗(A ) ×δm G is amenable in the (weak) sense that
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the full and reduced crossed products coincide (recall that Exel defined a Fell
bundle A to be amenable if the regular representation C∗(A ) → C∗

r (A ) is
an isomorphism). This result potentially allows us to restrict questions related
to amenability of Fell bundles to the special (and better understood) case of
actions. As a further application of our general imprimitivity theorem we shall
derive a characterization of induced coactions as introduced in [5]: a coaction
δm: C∗(A ) → C∗(A ) ⊗ C∗(G) is induced from a quotient group G/H if and
only if the dual action δ̂m is twisted over H in the sense of Green [9].

2. Preliminaries

Throughout §2–§4 G will be a discrete group. We adopt the conventions of
[5], [17], [18] for coactions of groups on C∗-algebras, and of [7], [8] for Fell
bundles. We will need the more general notion of Fell bundles over discrete
groupoids, for which we refer to [15]. If B is a Fell bundle over a discrete
groupoid G , we let �c(B) denote the ∗-algebra of finitely supported sections.
A homomorphism of B into a C∗-algebra C is a map φ: B → C which is
linear on each fiber Bs , is as multiplicative as makes sense, and preserves
adjoints. A representation of B on a Hilbert space H is a homomorphism
π : B → L (H ), and we say π is nondegenerate if span{π(B)H } = H . A
C∗-algebra B is the enveloping C∗-algebra of a ∗-algebra B0 if the supremum
of the C∗-seminorms on B0 is finite and B is the Hausdorff completion of B0

in this largest C∗-seminorm.

Proposition 2.1. If B is a Fell bundle over the discrete groupoid G ,
then the ∗-algebra �c(B) has an enveloping C∗-algebra, which we denote by
C∗(B).

Proof. Let � be a representation of �c(B), and let b = ∑
x∈G bx ∈ �c(B),

with bx ∈ Bx finitely nonzero. Using that �|Bd(x)
is a ∗-representation of the

C∗-algebra Bd(x) we get ‖�(bx)‖2 = ‖�(b∗
xbx)‖ ≤ ‖b∗

xbx‖ = ‖bx‖2, which
implies that ‖�(b)‖ ≤ ∑

x ‖bx‖. But this suffices to establish the conclusion.

Corollary 2.2. The assignment � �→ �|B gives a one-to-one corres-
pondence between homomorphisms of C∗(B) and of B, and between nonde-
generate representations of C∗(B) and of B.

Proof. Since there is an obvious one to one correspondence between ho-
momorphisms of B and �c(B), the result follows from Proposition 2.1.

Let α be an action of G on a C∗-algebra B, and let B × G be the associated
semidirect product Fell bundle over G as in [8], so that C∗(B×G) is canonically
isomorphic to the crossed product B ×α G. For reference, the operations on
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the bundle are

(b, s)(c, t) = (bαs(c), st) and (b, s)∗ = (αs−1 (b)∗, s−1).

Often it is convenient to restrict attention to a dense ∗-subalgebra B0 of B, and
we write �c(B0 × G) for the linear span of B0 × G in �c(B × G).

Lemma 2.3. Let (B, G, α) be an action, and suppose B is the enveloping
C∗-algebra of an α-invariant ∗-subalgebra B0. Then B ×α G is the enveloping
C∗-algebra of �c(B0 × G).

Proof. Proposition 2.1 implies that B×α G is the enveloping C∗-algebra of
�c(B×G), so it suffices to show that every representation � of B0 ×G extends
to a representation of the Fell bundle B × G. But using the representation π

of B0 defined by π(b) = �(b, e) one can easily check that � restricts to a
bounded linear map on each fiber (B0, s).

Now let δ be a coaction of G on a C∗-algebra A, and let A be the associated
Fell bundle. For any subgroup H of G, we get a Fell bundle A × G/H over
the discrete transformation groupoid G × G/H . For reference, the operations
on A × G/H are

(as, trH)(bt , rH) = (asbt , rH) and (as, tH)∗ = (a∗
s , stH).

We define a notion of covariant representation for the “restricted coaction”
(A, G/H, δ|) (whatever that might be), and show in Proposition 2.7 that
C∗(A × G/H) is characterized by a universal property for covariant rep-
resentations. In Corollary 2.8 we deduce that C∗(A × G/H) reduces to the
usual crossed product A×δ| G/H when H is normal and δ is maximal (that is,
A = C∗(A )). Recall that the restriction δ| of a coaction δ : A → A ⊗ C∗(G)

to the quotient group G/H is defined by

δ| = (idA ⊗q) ◦ δ : A → A ⊗ C∗(G/H),

where q : C∗(G) → C∗(G/H) denotes the quotient map. Proposition 2.7 also
shows that when H is non-normal C∗(A × G/H) is analogous to the “full
crossed product by the (dual) coaction of the homogeneous space G/H” in [4,
Section 2].

Definition 2.4. A covariant representation of (A,G/H,δ|) is a pair (π,µ),
where π is a nondegenerate representation of A and µ is a nondegenerate
representation of c0(G/H) on the same Hilbert space, such that

(2.1) π(as)µ(χtH ) = µ(χstH )π(as) for all s, t ∈ G, as ∈ As,
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where χtH denotes the characteristic function of the singleton subset {tH } of
G/H .

Remark 2.5. When H is normal, if follows from [18, Lemma 2.2] that
the above definition is equivalent to the more usual definition of covariant
representation of the coaction (A, G/H, δ|), namely

(π ⊗ id) ◦ δ(a) = Ad µ ⊗ id(wG/H )(π(a) ⊗ 1) for a ∈ A,

where wG/H is the unitary element of M(c0(G/H) ⊗ C∗(G/H)) =
cb(G/H, C∗(G/H)) defined by wG/H (sH) = sH , where on the right hand
side we view sH as an element of C∗(G/H). However, when H is non-normal
there is no such object wG/H .

Proposition 2.6. Let (π, µ) be a covariant representation of (A, G, δ),
and let µ| denote the restriction µ|c0(G/H). Then (π, µ|) is a covariant repres-
entation of (A, G/H, δ|).

Proof. We need only verify the covariance condition (2.1). Take s, t ∈ G

and as ∈ As . Since χtH = ∑
h∈H χth, the sum converging in the strict topology

of cb(G) = M(c0(G)), we have

π(as)µ|(χtH ) = π(as)
∑

h

µ(χth) =
∑

h

π(as)µ(χth) =
∑

h

µ(χsth)π(as)

=
(∑

h

µ(χsth)

)
π(as) = µ|(χstH )π(as).

Proposition 2.7. For every covariant representation (π,µ) of (A,G/H,δ|),
there exists a unique nondegenerate representation π × µ of C∗(A × G/H)

such that

(2.2) π × µ(a, tH) = π(a)µ(χtH ) for all a ∈ A , t ∈ G.

Moreover, in the case A = C∗(A ), every nondegenerate representation of
C∗(A × G/H) arises this way.

Proof. First assume (π, µ) is a covariant representation of (A, G/H, δ|).
It is easy to check that (a, tH) �→ π(a)µ(χtH ) is a representation of the Fell
bundle A × G/H , and moreover this representation is nondegenerate since
both π and µ are. So, by Corollary 2.2 there exists a unique representation
π × µ of C∗(A × G/H) satisfying the compatibility condition (2.2).

Conversely, assume A = C∗(A ), and let � be a nondegenerate represent-
ation of C∗(A × G/H). For each coset tH ∈ G/H define a representation
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σtH of the unit fiber algebra Ae by

σtH (ae) = �(ae, tH).

Fix a bounded approximate identity {di} for Ae, and for each tH ∈ G/H put

ptH = lim σtH (di),

the limit taken in the weak operator topology. Then {ptH : tH ∈ G/H } is
an orthogonal family of projections, hence determines a representation µ of
c0(G/H) such that µ(χtH ) = ptH . Computations similar to those in the proof
of [5, Theorem 3.3] show that for all a ∈ A the sum

π(a) :=
∑

tH∈G/H

�(a, tH)

converges in the weak operator topology and determines a representation π

of A, and moreover (π, µ) is a covariant representation of (A, G/H, δ|) such
that � = π × µ.

Notice that if A �= C∗(A ), the case H = G shows that there might be
strictly fewer covariant representations of (A, G/H, δ|) than representations
of C∗(A ×G/H). From Proposition 2.7 and the universal properties of crossed
products by coactions with respect to covariant representations we get

Corollary 2.8. If H is normal then there is a unique isomorphism
C∗(A )×δm|G/H ∼= C∗(A ×G/H) mapping jC∗(A )(as)jG/H (χtH ) to (as, tH)

(where jC∗(A ) and jG/H denote the canonical maps of C∗(A ) and c0(G/H)

into M(C∗(A ) ×δm| G/H)).

Now we recall from [15] Kumjian’s construction of what we call the reduced
cross-sectional algebra of a Fell bundle B over a groupoid G . Kumjian only
needed G to be r-discrete, but our G will actually be discrete. �c(B) is given a
pre-Hilbert �c(B

0)-module structure (where B0 is the restricted bundle B|G 0

over the unit space G 0), with inner product

〈f, g〉�c(B0) = (f ∗g)|G 0 for f, g ∈ �c(B).

Here �c(B
0) is regarded as a subalgebra of �0(B0), the C0-section algebra

of the C∗-bundle B0. Then the completion L2(B) of �c(B) is a full Hil-
bert �0(B0)-module. Left multiplication in �c(B) extends to a nondegenerate
action of �c(B) on L2(B) by adjointable operators, and the completion of
�c(B) in the norm of this representation is the reduced cross-sectional algebra
C∗

r (B). The identity map on B extends uniquely to a surjective homomorph-
ism, which we call the regular representation, of C∗(B) onto C∗

r (B). Further,
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we call a Fell bundle B over a discrete groupoid G amenable if the regular
representation of C∗(B) onto C∗

r (B) is faithful. Note that in the special case
where G is actually a group, this is the same terminology used by Exel [7].
Note also that in the case of an action (B, G, α), C∗

r (B × G) can be identified
with the reduced crossed product B ×α,r G.

Consider the case B = A × G/H , where A is a Fell bundle over G, and
G = G×G/H . The unit space G 0 = {e}×G/H can be identified with G/H .
Then B0 = Ae × G/H , a trivial C∗-bundle, so the C0-section algebra is

�0(Ae × G/H) = Ae ⊗ c0(G/H) = c0(G/H, Ae).

The inner product on �c(B) = �c(A × G/H) is

〈f, g〉Ae⊗c0(G/H) = (f ∗g)|{e}×G/H .

Writing f as a finitely nonzero sum
∑

s,tH (fs,tH , tH), and similarly for g, we
arrive at〈∑

s,tH

(fs,tH , tH),
∑
u,vH

(gu,vH , vH)

〉
Ae⊗c0(G/H)

=
∑
s,tH

(f ∗
s,tH gs,tH , tH)

=
∑

tH∈G/H

(∑
s∈G

〈fs,tH , gs,tH 〉Ae
, tH

)
.

In particular, for generators (as, tH), (bu, vH) ∈ A × G/H we have

〈(as,tH), (bu,vH)〉Ae⊗c0(G/H) = (a∗
s bu,tH) if s = u, tH = vH (and 0 else).

The regular representation, which we denote by /, of the cross-sectional al-
gebra C∗(A × G/H) on the Hilbert Ae ⊗ c0(G/H)-module L2(A × G/H)

is given by

/(as, tH)(bu ⊗ χvH ) = asbu ⊗ χvH if tH = vH (and 0 else),

and C∗
r (A × G/H) is the image of C∗(A × G/H) in L (L2(A × G/H)).

We want to identify the reduced cross-sectional algebra C∗
r (A ×G/H) with

the image Im jC∗(A )×jG| of C∗(A ×G/H) in M(C∗(A )×δm G), where jC∗(A )

and jG denote the canonical maps of C∗(A ) and c0(G) into M(C∗(A )×δm G)

and jC∗(A ) × jG| is the corresponding ∗-homomorphism of C∗(A × G/H) as
described in Proposition 2.7. For this we need the following technical lemma
on Hilbert modules, which is an easy modification of [21, Lemma 2.5]. The
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essential idea is that a linear map between Hilbert modules which preserves
inner products is automatically a module homomorphism. Let C and D be C∗-
algebras, let Z be a (right) Hilbert D-module, and suppose C is represented by
adjointable operators on Z. If Z is full as a Hilbert D-module and the action
of C on Z is nondegenerate, we say Z is a right-Hilbert C − D bimodule. We
use the notation CZD to indicate that the coefficient algebras of the bimodule
Z are C and D. If C0 and D0 are dense ∗-subalgebras and Z0 is a dense linear
subspace such that C0Z0 ∪ Z0D0 ⊆ Z0 and 〈Z0, Z0〉D ⊆ D0, we say CZD is
the completion of the right-pre-Hilbert bimodule C0 (Z0)D0 .

Lemma 2.9 (cf. [21, Lemma 2.5]). Suppose CZD and EWF are right-Hilbert
bimodules such that CZD is the completion of a right-pre-Hilbert bimodule
C0 (Z0)D0 , and suppose we are given homomorphisms φ: C → E and ψ : D →
F and a linear map 6: Z0 → W with dense range such that for all c ∈ C0

and z, w ∈ Z0 we have

(i) 6(cz) = φ(c)6(z), and

(ii) 〈6(z), 6(w)〉F = ψ
(〈z, w〉D

)
.

Then 6 extends uniquely to a right-Hilbert bimodule homomorphism of CZD

onto EWF . Moreover, if Z and W are actually imprimitivity bimodules, this
extension of 6 is an imprimitivity bimodule homomorphism.

Proposition 2.10. With the notation preceding Lemma 2.9, the two ho-
momorphisms / and jC∗(A ) × jG| of C∗(A × G/H) have the same kernel.

Proof. It suffices to produce isomorphic right-Hilbert C∗(A ×G/H)−Ae

bimodules Y and Z such that the homomorphisms of C∗(A ×G/H) into L (Y )

and L (Z) have the same kernels as / and jC∗(A ) ×jG|, respectively. To get Y ,
note that Ae ⊗c0(G/H) acts faithfully by adjointable operators on the external
tensor product Ae ⊗ 92(G) of the Hilbert Ae-module Ae and the Hilbert space
92(G), via

(a ⊗ f )(b ⊗ g) = ab ⊗ fg for a, b ∈ Ae, f ∈ c0(G/H), g ∈ 92(G).

Thus, the associated homomorphism of C∗(A × G/H) into the adjointable
operators on the balanced tensor product L2(A × G/H) ⊗Ae⊗c0(G/H) (Ae ⊗
92(G)) has the same kernel as /.

In order to construct the bimodule Z, first note that, since the coaction δn

on C∗
r (A ) is the normalization of δm, the crossed product C∗(A ) ×δm G has a

faithful representation on the Hilbert Ae-module L2(A ) ⊗ 92(G). The action
is given on the generators by

(as, t)(bu ⊗ χv) = asbu ⊗ λsMχt
χv = asbu ⊗ χsv if t = v (and 0 else).
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If we compose this representation with jC∗(A ) × jG| : C∗(A × G/H) →
M(C∗(A ) ×δm G), C∗(A × G/H) acts on L2(A ) × 92(G) by

(as, tH)(bu ⊗ χv) = asbu ⊗ χsv if v ∈ tH (and 0 else).

Thus for Z we take L2(A ) ⊗ 92(G) equipped with this action.
We want to define an isomorphism 6 between the Hilbert Ae-modules

L2(A × G/H) ⊗Ae⊗c0(G/H) (Ae ⊗ 92(G)) and L2(A ) ⊗ 92(G). We begin by
defining 6 on the generators:

6((as, tH) ⊗ (b ⊗ χr)) = asb ⊗ χsr if r ∈ tH (and 0 else).

and then extending additively. This gives a linear map from �c(A × G/H) �
(Ae �Cc(G)) to L2(A )⊗92(G) with dense range. We show 6 preserves inner
products. For as, bu ∈ A , tH, vH ∈ G/H , c, d ∈ Ae, and r, w ∈ G we have

〈6(
(as, tH) ⊗ (c ⊗ χr)

)
, 6

(
(bu, vH) ⊗ (d ⊗ χw)

)〉Ae

= 〈asc ⊗ χsr , bud ⊗ χuw〉Ae
if r ∈ tH, w ∈ vH (and 0 else)

= 〈asc, bud〉Ae
〈χsr , χuw〉 if r ∈ tH, w ∈ vH (and 0 else)

= c∗a∗
s bud if s = u, sr = uw, r ∈ tH, w ∈ vH (and 0 else).

On the other hand,

〈(as, tH) ⊗ (c ⊗ χr), (bu, vH) ⊗ (d ⊗ χw)〉Ae

= 〈c ⊗ χr, 〈(as, tH), (bu, vH)〉Ae⊗c0(G/H)(d ⊗ χw)〉Ae

= 〈c ⊗ χr, (a∗
s bu, tH)(d ⊗ χw)〉Ae

if s = u, tH = vH (and 0 else)

= 〈c ⊗ χr, a∗
s bud ⊗ χw〉Ae

if s = u, tH = vH, w ∈ tH (and 0 else)

= c∗a∗
s bud〈χr, χw〉 if s = u, tH = vH, w ∈ tH (and 0 else)

= c∗a∗
s bud if s = u, tH = vH, w ∈ tH, r = w (and 0 else).

Since the two sets of conditions

{s = u, sr = uw, r ∈ tH, w ∈ vH } and {s = u, tH = vH, w ∈ tH, r = w}
are equivalent, 6 preserves the inner products.

A similar computation shows that 6 preserves the left module actions.
Thus, by Lemma 2.9, 6 extends to a surjective right-Hilbert bimodule ho-
momorphism, which we still denote by 6. Since the right hand coefficient
homomorphism is the identity map on Ae, 6 is actually an isomorphism.

Remark 2.11. When H = {e} the result shows that the reduced cross-
sectional algebra C∗

r (A × G) of the Fell bundle A × G over G × G is iso-
morphic to the crossed product C∗(A )×δm G. Hence, the Fell bundle A ×G is
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always amenable in the sense that the regular representation /: C∗(A ×G) →
C∗

r (A × G) is faithful.

Corollary 2.12. If H is normal then there is a unique isomorphism
C∗

r (A )×δn|G/H ∼= C∗
r (A ×G/H) mapping jC∗

r (A )(as)jG/H (χtH ) to (as, tH).

Proof. We must show that jC∗
r (A ) ×jG/H has the same kernel as the regular

representation /: C∗(A × G/H) → C∗
r (A × G/H). By Proposition 2.10,

it suffices to show that the homomorphisms jC∗
r (A ) × jG/H and jC∗(A ) × jG|

of C∗(A × G/H) have the same kernel. These maps fit into a commutative
diagram

C∗(A × G/H)
jC∗(A )×jG|−−−−−−−−→ M(C∗(A ) ×δm G)

↓jC∗
r (A )×jG/H ↓jC∗

r (A )×jG

C∗
r (A ) ×δn| G/H −−−−−−−−→

jC∗
r (A )×jG| M(C∗

r (A ) ×δn G)

The right hand map is an isomorphism. Since the coaction δn is normal, by
[11, Lemma 3.1] the bottom map is injective. The result follows.

3. The imprimitivity theorem

In this section we prove the imprimitivity theorems for coactions of discrete
groups. Starting with a Fell bundle A over G, we first construct a C∗(A ) ×δm

G×δ̂m H −C∗(A ×G/H) imprimitivity bimodule X, where δm is the canonical
coaction of G on C∗(A ). As usual, we work with dense subspaces. For C∗(A ×
G/H) we take the dense ∗-subalgebra C0 := �c(A ×G/H), where we remind
the reader to regard A × G/H as a Fell bundle over the groupoid G × G/H .
For C∗(A )×δm G×δ̂m H we form the corresponding dense ∗-subalgebra B0 :=
�c(A × G × H), and we put X0 = �c(A × G). For reference, the operations
on the ∗-algebra B0 are given on the generators by

(3.1)
(as, t, h)(au, v, l) = (asau, vh−1, hl) if th = uv (and 0 else)

(as, t, h)∗ = (a∗
s , sth, h−1).

The B0 − C0 pre-imprimitivity bimodule structure on X0 will be given on the
generators by

(3.2)

(as, t) · (au, vH) = (asau, u−1t) if tH = uvH (and 0 else)

(aq, r, h) · (as, t) = (aqas, th−1) if rh = st (and 0 else)

〈(as, t), (au, v)〉C0 = (a∗
s au, vH) if st = uv (and 0 else)

B0〈(as, t), (au, v)〉 = (asa
∗
u, ut, t−1v) if tH = vH (and 0 else).
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Theorem 3.1. Suppose that A is a Fell bundle over the discrete group G

and H is a subgroup of G. The above operations make X0 into a B0 − C0 pre-
imprimitivity bimodule. Consequently, its completion is a C∗(A ) ×δm G ×δ̂m

H − C∗(A × G/H) imprimitivity bimodule X.

Proof. We closely follow the lines of the proof of [5, Theorem 4.1], where
we proved an imprimitivity theorem for crossed products by induced coactions.
We have to check the following items:

(i) X0 is a B0 − C0 bimodule;
(ii) B0〈b · x, y〉 = bB0〈x, y〉 and 〈x, y · c〉C0 = 〈x, y〉C0 c;

(iii) B0〈x, y〉∗ = B0〈y, x〉 and 〈x, y〉∗C0
= 〈y, x〉C0 ;

(iv) B0〈x, y〉 is linear in x and 〈x, y〉C0 is linear in y;
(v) x · 〈y, z〉C0 = B0〈x, y〉 · z;

(vi) span B0〈X0, X0〉 is dense in B0 and span〈X0, X0〉C0 is dense in C0;
(vii) B0〈x, x〉 ≥ 0 and 〈x, x〉C0 ≥ 0;

(viii) 〈b · x, b · x〉C0 ≤ ‖b‖2〈x, x〉C0 and B0〈x · c, x · c〉 ≤ ‖c‖2
B0〈x, x〉.

The verifications of the algebraic properties (i)–(v) are routine and we omit
the details on this. As in [5], we prove (vi)–(vii) in one whack using Rieffel’s
trick: it suffices to produce nets in both B0 and C0, each term of which is a
finite sum of the form

∑〈xi, xi〉, which are approximate identities for both the
algebras and the module multiplications in the inductive limit topologies.

To construct an approximate identity for C0 let {ai}i∈I be a bounded and
positive approximate identity for the unit fiber Ae, and let F denote the family
of finite subsets of G/H , directed by inclusion. For each F ∈ F we choose
SF ⊆ G comprising exactly one element from each coset in F . Then∑

t∈SF

〈
(a

1/2
i , t), (a

1/2
i , t)

〉
C0

=
∑

tH∈F

(ai, tH)

for all (i, F ) ∈ I × F , which implies{∑
t∈SF

〈
(a

1/2
i , t), (a

1/2
i , t)

〉
C0

}
(i,F )∈I×F

is an approximate identity (in the inductive limit topologies) for both the al-
gebra C0 and the right module multiplication of C0 on X0. For B0, we let F̃
denote the finite subsets of G. Then the desired approximate identity in B0 is
given by the elements∑

t∈F

B0

〈
(a

1/2
i , t), (a

1/2
i , t)

〉 =
∑
t∈F

(ai, t, e),
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where (i, F ) runs through the directed set I × F̃ .
In order to show (viii) we first observe that each generator (as, t, h) ∈ B0

determines an adjointable operator on the pre-Hilbert C0-module X0 with ad-
joint given by the action of (as, t, h)∗ = (a∗

s , sth, h−1). The product (as, t, h)∗
(as, t, h) = (a∗

s as, t, e) is a positive element of the C∗-algebra (Ae, t, e). Ex-
tend the action of (Ae, t, e) on X0 to its unitization (Ãe, t, e) in the obvious way.
We find elements be ∈ Ãe such that (b∗

e be, t, e) = ‖(as, t, h)‖21− (a∗
s as, t, e).

Hence, using (vii), we get

‖(as, t, h)‖2〈x, x〉C0 − 〈(as, t, h) · x, (as, t, h) · x〉C0

= 〈(be, t, e) · x, (be, t, e) · x〉C0 ≥ 0.

Thus the action of (as, t, h) extends to an adjointable operator on the Hilbert
C∗(A ×G/H)-module completion X, which by (i) gives us a ∗-homomorphism
of B0 into the C∗-algebra of adjointable module maps on X. By Lemma 2.3 this
homomorphism extends to the enveloping C∗-algebra C∗(A ) ×δm G ×δ̂m H ,
hence must be contractive, and we arrive at the desired inequality 〈b · x, b ·
x〉C0 ≤ ‖b‖2〈x, x〉C0 for b ∈ B0. The inequality B0〈x · c, x · c〉 ≤ ‖c‖2

B0〈x, x〉
is proved similarly.

Remark 3.2.Theorem 3.1 can be made equivariant for appropriate coactions
of G on C∗(A )×δm G×δ̂m H and C∗(A ×G/H). The “appropriate” coaction
of G on C∗(A ) ×δm G ×δ̂m H is Inf(δ̂m|H)̂ , the inflation from H to G of
the dual coaction of the restricted action δ̂m|H . Recall that if ε: B → B ⊗
C∗(H) is a coaction of H , then Inf ε = (id ⊗CH ) ◦ ε: B → B ⊗ C∗(G),
where CH : C∗(H) → C∗(G) denotes the natural inclusion. The “appropriate”
coaction of G on C∗(A × G/H) is the decomposition coaction δdec, given on
the generators by

δdec(as, tH) = (as, tH) ⊗ s.

This is readily verified to give a homomorphism of the Fell bundle A ×G/H ,
hence of the C∗-algebra C∗(A ×G/H), into the C∗-algebra C∗(A ×G/H)⊗
C∗(G). Moreover it is easy to check that this homomorphism is nondegenerate
and satisfies the coaction identity, and is injective because (id ⊗1G)◦δdec is the
identity map on C∗(A ×G/H), where 1G denotes the trivial one-dimensional
representation of G.

Recall that X is the completion of the B0 − C0 pre-imprimitivity bimodule
X0 with operations given by (3.2). Adapting from [6] to our context (with non-
normal subgroups, full coactions, full crossed products, and discrete groups),
we find a unique homomorphism δX of X0 into the (B0 � C∗(G)) − (C0 �
C∗(G)) pre-imprimitivity bimodule X0 � C∗(G) such that

δX(a, t) = (a, t) ⊗ t−1.



280 siegfried echterhoff and john quigg

Hence δX extends uniquely to a homomorphism of the C∗(A )×δm G×δ̂m H −
C∗(A × G/H) imprimitivity bimodule X into the

(
(C∗(A ) ×δm G ×δ̂m H) ⊗

G∗(G)
) − (

C∗(A × G/H) ⊗ G∗(G)
)

imprimitivity bimodule X ⊗ C∗(G).
Moreover, it is easy to verify on the generators that this homomorphism is
nondegenerate and satisfies the coaction identity. Therefore δX implements
a Morita equivalence between the coactions Inf(δ̂m|H)̂ and δdec. Observe
that in the extreme case H = G we obtain a Morita equivalence between̂̂δm and δm, where ̂̂δm is the dual coaction on the maximal crossed product
C∗(A ) ×δm G ×δ̂m G. Note that this result can not be deduced from the usual
Katayama duality theorem, since this only works for normal (or reduced)
coactions.

Remark 3.3. Now suppose the subgroup H is normal in G. Let δm| denote
the restriction of the coaction δm : C∗(A ) → C∗(A ) ⊗ C∗(G) to G/H

(see §2). The theory of [5] shows how to induce δm| to a coaction Ind δm|
of G on an induced C∗-algebra Ind C∗(A ) (we refer to §4 below for the
precise definitions), and [5, Theorem 4.1] gives an Ind C∗(A ) ×Ind δm| G −
C∗(A )×δm| G/H imprimitivity bimodule Z. Dually to the situation regarding
Green’s imprimitivity theorem for actions, Z is isomorphic to the C∗(A ) ×δm

G ×δ̂m H − C∗(A ) ×δm| G/H imprimitivity bimodule of Theorem 3.1. The
interested reader can check that the map

(as, t) �→ (as, st)

of A × G extends uniquely to an isomorphism of X onto Z whose left coef-
ficient isomorphism from C∗(A ) ×δm G ×δ̂m H onto Ind C∗(A ) ×Ind δm| G is
given on the generators by

(as, t, h) �→ (as, sth−1t−1, th).

Note that in order to see that this map on the generators extends to the desired
isomorphism, one uses the fact that X is an C∗(A )×δm G×δ̂m H −C∗(A )×δm|
G/H imprimitivity bimodule, since then the result follows from an easy ap-
plication of Lemma 2.9. We actually were not able to get this isomorphism
directly, i.e., to deduce Theorem 3.1 directly from [5, Theorem 4.1] in the
special case where H is normal in G.

In what follows we want to show that the imprimitivity bimodule of The-
orem 3.1 factors to an imprimitivity bimodule for the reduced cross-sectional
algebras. Thus we want to show

Theorem 3.4. Let X be the C∗(A ) ×δm G ×δ̂m H − C∗(A × G/H)

imprimitivity bimodule of Theorem 3.1, and let I and J denote the kernels
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of the regular representations of C∗(A ) ×δm G ×δ̂m H and C∗(A × G/H),
respectively. Then I is equal to the ideal of C∗(A ) ×δm G ×δ̂m H induced
from J via X and therefore Y := X/(X · J ) has a canonical structure as a
C∗(A ) ×δm G ×δ̂m,r H − C∗

r (A × G/H) imprimitivity bimodule.

Recall that a regular representation of C∗(A )×δm G×δ̂m H is by definition
an induced representation IndH

{e}(π × µ), where π × µ is any given faithful
representation of C∗(A )×δm G. Moreover, using Proposition 2.10, we see that
the kernel of the regular representation of C∗(A × G/H) equals ker(π × µ|),
where π × µ| denotes the restriction of π × µ to C∗(A × G/H) (note that if
we represent C∗(A ) ×δm G faithfully on a Hilbert space H via π × µ, then
we may identify the pair (π, µ) with the canonical inclusions (jC∗(A ), jG),
so that Proposition 2.10 applies). Using these realizations of the (kernels of
the) regular representations, and the fact that inducing ideals is compatible
with the process of inducing representations, that is, ker

(
IndX(π × µ|)) =

IndX
(

ker(π × µ|)), where X is the bimodule of Theorem 3.1, Theorem 3.4
follows from

Proposition 3.5. Let π × µ be any representation of C∗(A ) ×δm G.
Then IndH

{e}(π × µ) is equivalent to IndX(π × µ|), where IndX: Rep(C∗(A ×
G/H)) → Rep(C∗(A ) ×δm G ×δ̂m H) denotes induction via the bimodule X

of Theorem 3.1.

The above proposition constitutes a (new) version of the duality results for
induction and restriction of representations obtained in [1], [4], [12] which
works for arbitrary subgroups of discrete groups.

Proof of Proposition 3.5. If (D, H, α) is a system with H discrete, then
the process of inducing representations from D to D ×α H can be described as
follows: let W0 = �c(D × H), where D × H denotes the semidirect product
bundle. Then translating Green’s formulas (see [9]) to this special situation,
W0 becomes a right pre-Hilbert D-module with D-valued inner product given
by

〈(b, h), (c, l)〉D = αh−1 (b∗c) if h = l (and 0 else).

The left convolution action of �c(D × H) then extends to a ∗-homomorphism
of D ×α H into LD(W), where W denotes the Hilbert-module completion
of W0. The map IndH

{e}: Rep(D) → Rep(D ×α H) is just induction via the
right-Hilbert D ×α H − D bimodule W .

In our situation we have D = C∗(A ) ×δm G and α = δ̂m|. If we restrict
the actions and inner products given above to the dense subalgebras D0 :=
�c(A × G) of D and B0 := �c(A × G × H) of B := D ×α H , and the
dense B0 − D0 subbimodule Y0 = �c(A × G × H) of W , then Y0 becomes a
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pre-right-Hilbert B0 − D0 bimodule with inner product and actions given by
the formulas

〈(au, v, l), (br , x, m)〉D0 = (a∗
ubr , xl) if uv = rx, l = m (and 0 else)

(as, t, h) · (bu, v, l) = (asbu, vh−1, hl) if th = uv (and 0 else)

(au, v, l) · (by, z) = (auby, zl−1, l) if vl = yz (and 0 else).

Clearly, the completion Y of Y0 coincides with W as a right-Hilbert B − D

bimodule.
We now describe restriction of representations from C∗(A )×δmG to C∗(A×

G/H) in bimodule language. For this we view Z := C∗(A ) ×δm G as a right-
Hilbert C∗(A ×G/H)−C∗(A )×δm G bimodule equipped with the canonical
right C∗(A )×δm G-valued inner product and left action of C∗(A ×G/H) given
by the natural homomorphism of C∗(A ×G/H) into M(C∗(A )×δm G). Then
the restriction π ×µ| is equivalent to the induced representation IndZ(π ×µ).
If we restrict our attention to the dense subspace Z0 := �c(A × G) of Z,
and the dense subalgebras D0 = �c(A × G) and C0 = �c(A × G/H) of
D = C∗(A ) ×δm G and C = C∗(A × G/H), respectively, then the formulas
for the inner product and the left action are given on the generators by

〈(au, v), (br , x)〉D0 = (a∗
ubr , x) if uv = rx (and 0 else)

(as, tH) · (bu, v) = (asbu, v) if tH = uvH (and 0 else).

Finally, let X0 = �c(A × G) be the B0 − C0 pre-imprimitivity bimodule of
Theorem 3.1 with formulas given as in Equation (3.2). It is now straightforward
to check that the map V : X0 � Z0 → Y0 defined on the generators by
(3.3)

V
(
(as, t) ⊗ (au, v)

)
:= (asau, u−1t, t−1uv) if tH = uvH (and 0 else)

extends to a right-Hilbert B − D bimodule isomorphism of X ⊗C Z onto Y .
This gives the following chain of unitary equivalences among representations
of C∗(A ) ×δm G ×δ̂m H :

IndH
{e}(π × µ) ∼= IndY (π × µ) ∼= IndX×CZ(π × µ)

∼= IndX
(

IndZ(π × µ)
) ∼= IndX(π × µ|).

As an immediate corollary of Theorem 3.4 we get the following application
to amenability of Fell bundles in the sense of Exel and Kumjian (see the
discussion in Section 2).

Corollary 3.6. Let A be a Fell bundle over the discrete group G and let
H be a subgroup of G. Then the following are equivalent:
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(i) A × G/H is an amenable Fell bundle over the groupoid G × G/H .

(ii) A × G × H is an amenable Fell bundle over the groupoid G × G × H .

(iii) The semi direct product bundle (C∗(A )×δm G)×H is an amenable Fell
bundle over H .

In particular, A is amenable if and only if the double dual bundle (C∗(A )×δm

G) × G (or A × G × G) is amenable.

Note that in the formulation of the above corollary we could have replaced
(C∗(A ) ×δm G) × H with (A ×δ G) × H , where δ: A → A ⊗ C∗(G) is any
coaction which has A as an underlying Fell bundle (see [5, Lemma 2.1]). Just
to prevent any misunderstandings: the groupoid structure on G × G × H is
given by

(s, t, h)(u, v, l) = (su, vh−1, hl) if th = uv,

which is compatible with Equation (3.1).
We are now going to derive from Theorem 3.1 an imprimitivity theorem

which works for any coaction of a discrete group G. In order to prepare the
statement recall from [5] that if δ: A → A ⊗ C∗(G) is a coaction of G on A,
and if (A , G) denotes the corresponding Fell bundle, then A is a completion of
�c(A ) with respect to a C∗-norm ‖ · ‖ν which lies between the norms ‖ · ‖max

and ‖ · ‖min arising from viewing �c(A ) as a dense subalgebra of C∗(A )

and C∗
r (A ), respectively. If N is a normal subgroup of G, we may restrict δ

to a coaction δ| = (idA ⊗q) ◦ δ: A → A ⊗ C∗(G/N), where q: C∗(G) →
C∗(G/N) denotes the quotient map. If δ is normal (that is, A = C∗

r (A )),
then it follows from the generalization of Mansfield’s imprimitivity theorem
to nonamenable groups obtained in [11, Corollary 3.4], that A ×δ| G/N is
Morita equivalent to the reduced double crossed product A×δ G×δ̂,r N , but it
was not clear at all whether there is a similar imprimitivity theorem for general
coactions. For discrete G, the following theorem gives a complete answer to
this open question.

Theorem 3.7. Let (A, G, δ) be a coaction of the discrete group G, and
let N be a normal subgroup of G. Let (A , G) denote the corresponding Fell
bundle, and let ‖ · ‖ν denote the C∗-norm on �c(A ) corresponding to A.
Then there exists a C∗-norm ‖ · ‖µ (lying between ‖ · ‖max and ‖ · ‖min) on
�c((A ×δ G) × N) and a quotient Z of the bimodule X of Theorem 3.1 such
that Z becomes an

A ×δ G ×δ̂,µ N − A ×δ| G/N

imprimitivity bimodule, where A ×δ G ×δ̂,µ N denotes the completion of
�c((A ×δ G) × N) with respect to ‖ · ‖µ. Moreover, if ‖ · ‖ν is the minimal
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(respectively, maximal) norm, then ‖ · ‖µ is also the minimal (respectively,
maximal) norm.

Proof. Let δm| and δn| denote the restrictions of the coactions δm and δn

of G on C∗(A ) and C∗
r (A ) to G/N , respectively, and let

C∗(A )
φ−−→ A

❅↘/ ↓λ

C∗
r (A )

be the commutative diagram of surjections determined by the identity map on
�c(A ). Since φ, λ, and / are equivariant with respect to the coactions δm, δ,
and δn, and hence also with respect to their restrictions δm|, δ|, and δn|, we
obtain a commutative diagram of surjections

C∗(A ) ×δm| G/N
φ×G/N−−−−−→ A ×δ| G/N

❅↘/×G/N ↓λ×G/N

C∗
r (A ) ×δn| G/N

.

Note that φ × G/N , λ × G/N , and / × G/N are all given by the identity
on �c(A × G/N), sitting as a dense subalgebra in all three crossed products.
Moreover, it follows from Corollaries 2.8 and 2.12 that the identity map on
�c(A ×G/N) also induces isomorphisms C∗(A )×δm|G/N ∼= C∗(A ×G/N)

and C∗
r (A ) ×δn| G/N ∼= C∗

r (A × G/N).
Let X be the C∗(A )×δm G×δ̂m N−C∗(A )×δm|G/N imprimitivity bimodule

of Theorem 3.1. Since the crossed product A ×δ G and the dual action δ̂ only
depend on the Fell bundle A and not on the particular choice of the cross-
sectional algebra A (see [5, Lemma 2.1]) we can replace C∗(A )×δm G×δ̂m N

on the left hand side with either A ×δ G ×δ̂ N or C∗
r (A ) ×δn G ×δ̂n N . If

‖ · ‖ν = ‖ · ‖max, we have A = C∗(A ) and δ = δm, so X is actually an
A×δ G×δ̂ N −A×δ|G/N imprimitivity bimodule. Thus we get ‖·‖µ = ‖·‖max

in this case. If ‖·‖ν = ‖·‖min, (that is, A = C∗
r (A ) and δ = δn), then Theorem

3.4 shows that X factors through an A×δ G×δ̂,r N −A×δ| G/N imprimitivity
bimodule, and we get ‖ · ‖µ = ‖ · ‖min on the left hand side.

In general, it follows from the above considerations of the maps φ × G/N ,
λ × G/N and / × G/N that the kernel L of φ × G/N : C∗(A ) ×δm| G/N →
A ×δ| G/N contains the kernel of the regular representation / × G/N , and
hence the ideal K of A ×δ G ×δ̂ N induced from L via X contains the kernel
of the regular representation of A ×δ G ×δ̂ N (which by Theorem 3.4 is the
ideal induced from ker /×G/N via X). It follows that (A×δ G×δ̂ N)/K is a
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completion of �c

(
(A×δG)×N

)
with respect to a norm ‖·‖µ which lies between

‖·‖max and ‖·‖min. Therefore Z := X/(X ·L) is an A×δ G×δ̂,µN −A×δ|G/N

imprimitivity bimodule.

4. Applications to induced coactions

Recall from [5] that if H is a normal subgroup of the discrete group G and
ε : D → D ⊗ C∗(G/H) is a coaction of the quotient group G/H with
underlying Fell bundle D , then the induced coaction δ := Ind ε is defined
as the dual coaction on the maximal cross-sectional algebra C∗(q∗D), where
q∗D denotes the pull back of D via the quotient map q : G → G/H . In [5,
Theorem 5.6] we prove an analogue of a theorem of Olesen and Pedersen, in
which we show that an action of G is twisted in the sense of Green over a
normal subgroup H if and only if the dual coaction is induced from a coaction
of G/H . Of course it is a natural question whether the dual of this result is
also true, namely whether a coaction δ of G is induced from G/H if and only
if the dual action δ̂ is twisted over H . We are now prepared to show that this
is indeed the case if we assume the coaction is maximal.

Theorem 4.1. Let δ be a coaction of the discrete group G on the C∗-algebra
A, and assume that A = C∗(A ), where A is the associated Fell bundle. Then
δ is induced from a quotient G/H of G by a normal subgroup H if and only
if there exists a Green-twist τ : H → UM(A ×δ G) for the dual action δ̂ of G

on A ×δ G.

Proof. Suppose first that δ is induced from a coaction ε: D → D ⊗
C∗(G/H) of G/H . This means that A is the pull-back bundle q∗D={(DsH , s):
s ∈ G}, where D is the Fell bundle over G/H corresponding to ε. It fol-
lows then from [5, Theorem 4.1] that δ̂ is Morita equivalent to the inflated
action Inf ε̂. Since the trivial homomorphism taking H to the identity of
UM(D ×ε G/H) is a twist for Inf ε̂, and since Morita equivalence of ac-
tions preserves the property of being twisted over H , by [2, Proposition 2], it
follows that δ̂ is twisted over H .

Let us now assume that δ̂ is twisted over H . Put E = A ×δ G, and let
us look at the semi-direct product bundle E × G corresponding to δ̂. The
E ×δ̂ G − A imprimitivity bimodule X of Theorem 3.1 for the case H = G is
the completion of the B0 − C0 pre-imprimitivity bimodule X0 with operations
given by the corresponding special case of (3.2). For t ∈ G define Xt =
span{(As, t−1) : s ∈ G} ⊆ X. Then the following assertions are true:

(i) (E, s) · Xt = Xst and Xs · At ⊆ Xst ;

(ii) 〈Xs, Xt 〉A ⊆ As−1t and 〈Xe, Xs〉A = As
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for all s, t ∈ G, where all spaces here are to be interpreted as the respective
closed linear spans.

Since, by assumption, δ̂ is twisted over H , the semidirect product bundle
E × G is induced from the twisted semidirect product bundle E ×H G over
G/H , by [5, Theorem 5.6]. Thus, by [5, Theorem 5.1] there exists a map
v: H → UM(E × G) with vh ∈ UM(E, h) satisfying (b, t)vh = vtht−1 (b, t)

for all (b, t) ∈ E × G and h ∈ H (see [5, §5] for the notation). If we manage
to construct a map u: H → UM(A) with similar properties, the result will
follow from the other direction of [5, Theorem 5.1].

Since vh is canonically identified with an element of UM(E ×δ̂ G), it acts
as a unitary adjointable operator on the Hilbert A-module X, with adjoint
v∗

h = v−1
h = vh−1 . Because Xs = (E, e) · Xs by (i), each vh gives rise to an

isometry xs �→ vh · xs from Xs to Xhs with inverse xhs �→ vh−1 · xs . We use
this fact to define left and right multiplication of uh with elements in As :
(4.1)

uh〈xe, xs〉A = 〈xe, vh ·xs〉A ∈ Ahs and 〈xe, xs〉Auh = 〈xe, vshs−1 ·xs〉A ∈ Ash.

To see that these formulas determine well-defined isometric maps As → Ahs

and As → Ash, respectively, we first observe that for all xt ∈ Xt, xe ∈ Xe and
xs ∈ Xs ,

(4.2)
xt · 〈xe, vh · xs〉A = B0〈xt , xe〉vh · xs = vtht−1 B0〈xt , xe〉 · xs

= B0〈vtht−1 · xt , xe〉 · xs = vtht−1 · xt · 〈xe, xs〉A

Using (4.2) for t = e we compute

∥∥∥∥
n∑

i=1

〈xi
e, vh · xi

s〉A

∥∥∥∥2

=
∥∥∥∥

n∑
i,j=1

〈vh · xj
s , xj

e 〉A〈xi
e, vh · xi

s〉A

∥∥∥∥ =
∥∥∥∥

n∑
i,j=1

〈
vh · xj

s , xj
e · 〈xi

e, vh · xi
s〉A

〉
A

∥∥∥∥
(4.2)=

∥∥∥∥
n∑

i,j=1

〈
vh · xj

s , vh · xj
e · 〈xi

e, xi
s〉A

〉
A

∥∥∥∥ =
∥∥∥∥

n∑
i,j=1

〈vh · xj
s , vh · xj

e 〉A〈xi
e, xi

s〉A

∥∥∥∥
=

∥∥∥∥
n∑

i,j=1

〈xj
s , xj

e 〉A〈xi
e, xi

s〉A

∥∥∥∥ =
∥∥∥∥

n∑
i=1

〈xi
e, xi

s〉A

∥∥∥∥2

.

Thus, left multiplication with uh, as defined in Equation (4.1), is a well-defined
isometry with inverse uh−1 , and replacing h by shs−1 gives the similar result
for right multiplication. We show (asuh)at = as(uhat ) for all s, t ∈ G and
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h ∈ H : (〈xe, xs〉Auh

)〈ye, yt 〉A = 〈xe, vshs−1 · xs〉A〈ye, yt 〉A

= 〈
xe, vshs−1 · xs · 〈ye, yt 〉A

〉
A

= 〈
xe, B0〈vshs−1 · xs, ye〉 · yt

〉
A

= 〈
xe, vshs−1 B0〈xs, ye〉 · yt

〉
A

= 〈
xe, B0〈xs, ye〉vh · yt

〉
A

= 〈xe, xs〉A〈ye, vh · yt 〉A

= 〈xe, xs〉A

(
uh〈ye, yt 〉A

)
.

To see that uh ∈ UM(Ah) it now suffices to check that u∗
h = uh−1 (= u−1

h ).
Using (4.2) we first compute(〈xr, xt 〉Auh

)〈xe, xs〉A = 〈
xr, xt · 〈xe, vh · xs〉A

〉
A

= 〈
xr, vtht−1 · xt · 〈xe, xs〉A

〉
A

= 〈xr, vtht−1 · xt 〉A〈xe, xs〉A,

from which it follows that right multiplication of uh with an inner product
〈xr, xt 〉A ∈ Ar−1t is given by the formula 〈xr, xt 〉Auh = 〈xr, vtht−1 · xt 〉A.
Using this we now compute

(uh〈xe, xs〉A)∗ = 〈xe, vh · xs〉∗A = 〈vh · xs, xe〉A = 〈xs, vh−1 · xe〉A

= 〈xs, xe〉Auh−1 = 〈xe, xs〉∗Auh−1 ,

which proves u∗
h = uh−1 . Since it follows directly from the definition of left

and right multiplication with uh that ushs−1 as = asuh for all as ∈ As , we see
that h �→ uh ∈ UM(Ah) satisfies all requirements of [5, Theorem 5.1], and
the result follows.
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