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GAUSSIAN BOUNDS FOR REDUCED HEAT
KERNELS OF SUBELLIPTIC OPERATORS ON

NILPOTENT LIE GROUPS

A. F. M. TER ELST and HUMBERTO PRADO

Abstract
We obtain Gaussian estimates for the kernels of the semigroups generated by a class of subel-
liptic operators H acting on Lp(Rk). The class includes anharmonic oscillators and Schrödinger
operators with external magnetic fields. The estimates imply an H∞-functional calculus for the
operator H on Lp with p ∈ 〈1,∞〉 and in many cases the spectral p-independence. Moreover,
we show for a subclass of operators satisfying a homogeneity property that the Riesz transforms
of all orders are bounded.

1. Introduction

In this paper we consider a class of subelliptic operators given by a composition
of differential and multiplication operators acting on Lp(Rk). These operators
generate holomorphic semigroups which are consistent on Lp(Rk) for p ∈
[1,∞]. Moreover, the semigroup operators turn out to be integral operators
with a smooth kernel on Rk × Rk . Examples of such operators include the
(an)harmonic oscillator and the Hamiltonian for curved magnetic fields. All
these operators are naturally associated to subelliptic operators on a nilpotent
Lie group.

If H is a subelliptic operator affiliated to a continuous representation U of
a Lie group G then the closure generates a holomorphic semigroup S which
has a representation independent kernel K such that

St =
∫
G

dg Kt(g)U(g).

For the kernel K one has Gaussian bounds (see [9]). Henceforth we consider
a class of representations of a nilpotent Lie group on Lp(Rk). Under suitable
conditions we show that the semigroup S has a reduced heat kernel κ such that

(Stϕ)(x) =
∫

Rk

dy κt (x; y) ϕ(y)
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for all t > 0,ϕ ∈ C∞
c (Rk) andx ∈ Rk . The aim of this work is to prove Gaussian

bounds for κ . Previously, Gaussian bounds for reduced heat kernels have been
deduced in [8] and [11] for semigroups generated by strongly elliptic operators
affiliated to irreducible unitary representations of nilpotent Lie groups and in
[11] for strongly elliptic operators on homogeneous spacesG/M withG unim-
odular and M compact. In [18] Sikora proved off- and on-diagonal bounds for
the kernels of semigroups generated by (second-order) Schrödinger operators
with magnetic field and a potential of polynomial growth, satisfying a Nash
inequality. The novelty of this paper is that the operators are weighted subco-
ercive instead of strongly elliptic. As a consequence of the Gaussian bounds
for the kernel we obtain that H has a bounded H∞-functional calculus on all
the Lp-spaces with p ∈ 〈1,∞〉 and also in many cases the p-independence
of the spectrum of H . We also show that the Riesz transforms are bounded on
Lp for p ∈ 〈1,∞〉.

Typical examples for the second order operators are the spinless particles
of mass m in an external magnetic field �B where �B is a polynomial. Then the
Hamiltonian is given by H = 1

2m( �p − e
c

�A)2 where �p = −ih̄ �∇ and �A is a

polynomial vector potential satisfying �B = �∇ × �A, see [13] and [19]. Other
examples are the anharmonic oscillators (−∂2/∂x2)j + x2n, with j, n ∈ N.

Throughout the following let G be a connected nilpotent Lie group with
Lie algebra �. Then the exponential mapping on � is surjective. Let a1, . . . , ad ′

be an algebraic basis of �, i.e., a1, . . . , ad ′ are independent and together with
their multi-commutators span �. Let U be a continuous representation of G in
a Banach space X . For i ∈ {1, . . . , d ′} let Ai = dU(ai) be the infinitesimal
generator of the one parameter group t �→ U(exp(−tai)). We also need multi-
index notation. Set J (d ′) = ⋃∞

n=0{1, . . . , d ′}n. If α = (i1, . . . , in) ∈ J (d ′)
define Aα = Ai1 . . . Ain . Generally we adopt the notation of [9].

The representations that we consider in this paper are of the following type.
First we assume that there exist ad ′+1, . . . , ad ∈ � such that a1, . . . , ad is a basis
for � and [�, �] ⊂ span{ad ′+1, . . . , ad}. Secondly, let k ≤ d ′. For p ∈ [1,∞]
let U be a representation of G in Lp(Rk) of the form

(1)
(
U(exp a)ϕ

)
(x) = eiE(a,x)ϕ

(
x + ξ (0)

a

)
for all ϕ ∈ C∞

c (Rk), where E: � × Rk → R is a real polynomial and

ξ (0)
a = (ξ1, . . . , ξk)

for all a = ∑d
i=1 ξi ai ∈ �. It is straightforward to see that the representation

is a continuous representation acting on Lp(Rk) for all p ∈ [1,∞].
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Fix n1, . . . , nd ′ ∈ N and set

H =
d ′∑
i=1

(−1)niA
2ni

i

with domain
D(H) =

⋂
α∈J (d ′)
‖α‖≤m

D(Aα)

where m = 2 lcm(n1, . . . , nd ′), wi = (2ni)
−1m for all i ∈ {1, . . . , d ′} and

‖α‖ = wi1 + . . . + win if α = (i1, . . . , in) ∈ J (d ′). Define the modulus
‖ · ‖: Rk → [0,∞〉 by

(2) ‖x‖2w =
k∑

i=1

|xi |2w/wi

where x = (x1, . . . , xk) and w = lcm(w1, . . . , wk). The main result of this
paper is the next theorem.

Theorem 1.1. Let p ∈ [1,∞]. Then the following are satisfied.

I. The closure H of H generates a semigroup S in Lp(Rk), which is holo-
morphic in the right half-plane.

II. For all t > 0 the semigroup operator St has a smooth kernel κt ∈
C∞(Rk × Rk) such that the maps x �→ κt (x ; y0) and y �→ κt (x0 ; y)
belong to the Schwartz space S (Rk) for all x0, y0 ∈ Rk and

(Stϕ)(x) =
∫

Rk

dy κt (x ; y) ϕ(y)

for all ϕ ∈ Lp(Rk) and (a.e.) x ∈ Rk .

III. There exist c, τ > 0 such that

|κt (x; y)| ≤ c t−Q/me−τ(‖x−y‖mt−1)1/(m−1)

for all t > 0 and x, y ∈ Rk , where Q = w1 + . . . + wk . Moreover, if
Ai and Bi denote the left derivative of κt with respect to the first and
second variable, respectively, and Aα and Bβ the corresponding multi-
derivatives, then for all α, β ∈ J (d ′) there exist c, τ > 0 such that

|(AαBβκt )(x; y)| ≤ c t−(Q+‖α‖+‖β‖)/me−τ(‖x−y‖mt−1)1/(m−1)

for all t > 0 and x, y ∈ Rk .
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IV. For all p ∈ 〈1,∞〉 the operator H is closed and for all α ∈ J (d ′) one
has D(H ‖α‖/m) ⊂ D(Aα). Moreover, there exists a c > 0 such that

‖Aαϕ‖p ≤ c ‖H ‖α‖/mϕ‖p
for all ϕ ∈ D(H ‖α‖/m).

Statement I is a direct consequence of [9]. To be precise, it follows from
Example 4.4, Proposition 11.3 and Theorem 1.1 of [9]. The sketch of the proof
of the other three statements is as follows. The directions a1, . . . , ad ′ with the
weights w1, . . . , wd ′ make the operator H homogeneous. Unfortunately these
weights do not in general allow one to define a family of dilations on �. This
problem, however, can be circumvented by lifting the representation to a free
nilpotent group G̃. Then the semigroup has a kernel K̃ on G̃ and one can relate
the reduced heat kernel κ with K̃ . The Gaussian bounds for κ follow by a
projection and a scaling argument from the Gaussian bounds for K̃ . Finally
the boundedness of the Riesz transforms follows from transference.

Although Theorem 1.1 is formulated for operators H which are sums of
even powers, the conclusions of the theorem are with small modifications also
valid for a larger class of operators affiliated to representations of the form (1)
of the group G. In Section 2 we prove Statements II and III of Theorem 1.1 in
the generalized theorem and in Section 3 we give applications and examples.
Finally, in Section 4 we discuss the boundedness of the Riesz transforms in
case the operator is homogeneous. In that section the representation can be any
induced representation from a character and the representation does not have
to be of the form (1). In particular the bounds are valid for any basis realization
of an irreducible unitary representation.

2. Gaussian bounds

Before we can define the operators for which the generalization of Theorem
1.1 is valid we have to introduce a suitable free Lie group.

Let a1, . . . , ad ′ be an algebraic basis of the Lie algebra � of a connected nil-
potent Lie group G and let w1, . . . , wd ′ ∈ N be weights. For α = (i1, . . . , in) ∈
J (d ′) set ‖α‖ = wi1 + . . . + win . Let

r = max{‖α‖ : α = (i1, . . . , in) ∈ J (d ′) and [ai1 , [. . . [ain−1 , ain ] . . .]] �= 0}.
Let �̃ be the nilpotent Lie algebra with d ′ generators ã1, . . . , ãd ′ which is
free of weighted step r . So �̃ is the quotient of the free Lie algebra with d ′
generators by the ideal spanned by the commutators [ãi1 , [. . . [ãin−1 , ãin ] . . .]]
with ‖(i1, . . . , in)‖ ≥ r + 1. We give ãi the weight wi for all i ∈ {1, . . . , d ′}.
Then there exists a family (γt )t>0 of dilations of �̃ such that γt (ãi) = twi ãi
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for all t > 0 and i ∈ {1, . . . , d ′} (see [17] or [9], Example 2.7). Moreover,
there exist ãd ′+1, . . . , ãd̃ ∈ �̃ and wd ′+1, . . . , wd̃ ∈ N such that ã1, . . . , ãd̃ is
a basis for �̃ and γt (ãi) = twi ãi for all t > 0 and i ∈ {d ′ + 1, . . . , d̃}. Then
[�̃, �̃] = span{ãd ′+1, . . . , ãd̃} (cf. [9] Example 2.6).

Let m ∈ N be such that m ∈ 2wiN for all i ∈ {1, . . . , d ′} and for all
α ∈ J (d ′) with ‖α‖ ≤ m let cα ∈ C. Moreover, let Ãi = dLG̃(ãi) for all
i ∈ {1, . . . , d ′}, where G̃ is the connected simply connected Lie group with
Lie algebra �̃ and LG̃ is the left regular representation of G̃ on L2(G̃). Set

H̃ =
∑

‖α‖≤m

cα Ãα

with domain D(H̃ ) = ⋂
‖α‖≤m D(Ãα) and assume that H̃ is a weighted sub-

coercive operator, i.e., there exist µ, ν > 0 such that

Re(ϕ, H̃ϕ) ≥ µ
∑

‖α‖=m/2

‖Ãαϕ‖2
2̃
− ν ‖ϕ‖2

2̃

for all ϕ ∈ C∞
c (G̃), that is, H̃ satisfies a Gårding inequality on G̃ (see [9]).

Here ‖ · ‖2̃ is the norm on L2(G̃).
Let U be a representation of G in Lp(Rk) of the form (1). We consider the

analogue operator
H =

∑
‖α‖≤m

cα Aα

with domain D(H) = ⋂
‖α‖≤m D(Aα) and the same coefficients as the oper-

ator H̃ .

Theorem 2.1. Let U be a representation of the form (1) and

H =
∑

‖α‖≤m

cα Aα

as above. Let p ∈ [1,∞]. Then the following are satisfied.

I The closure H of H generates a semigroup S in Lp(Rk), which is holo-
morphic in a p-independent sector.

II For all t > 0 the semigroup operator St has a smooth kernel κt ∈
C∞(Rk × Rk) such that the maps x �→ κt (x ; y0) and y �→ κt (x0 ; y)
belong to the Schwartz space S (Rk) for all x0, y0 ∈ Rk and

(Stϕ)(x) =
∫

Rk

dy κt (x ; y) ϕ(y)
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for all ϕ ∈ Lp(Rk) and (a.e.) x ∈ Rk .

III For all α, β ∈ J (d ′) there exist c, τ > 0 and ω ∈ R such that

|(AαBβκt )(x; y)| ≤ c t−(Q+‖α‖+‖β‖)/meωte−τ(‖x−y‖mt−1)1/(m−1)

for all t > 0 and x, y ∈ Rk , where Q = w1 + . . .+wk and the modulus
‖ · ‖ on Rk is as in (2).

Moreover, ifH is a purem-th order operator, i.e.,H = ∑
‖α‖=m cα Aα ,

then ω can be taken equal to 0.

IV The Schwartz space S (Rk) is a core for H .

Proof. Statement I follows from Proposition 11.3 and Theorem 1.1 of [9].
Next, since �̃ is free of weighted step r there exists a unique Lie algebra

homomorphism π : �̃ → � such that π(ãi) = ai for all i ∈ {1, . . . , d ′}. The Lie
algebra homomorphism π lifts to a Lie group homomorphism 2 from G̃ onto
G. For g̃ ∈ G̃ define Ũ (g̃) = U(2(g̃)). Then Ũ is a continuous representation
of G̃ in Lp(Rk). Define Ẽ: �̃ × Rk → R by

Ẽ(ã, x) = E(π(ã), x).

Let ã = ∑d̃
i=1 ξ̃i ãi ∈ �̃. Since π(ãi)∈π([�̃, �̃])= [�, �] ⊂ span{ad ′+1, . . . , ad}

for all i ∈ {d ′ + 1, . . . , d̃} and

π(ã) =
d ′∑
i=1

ξi ai +
d̃∑

i=d ′+1

ξi π(ãi)

it follows that ξ̃ (0)
ã

= ξ
(0)
π(ã)

, where

ξ̃
(0)
ã

= (ξ̃1, . . . , ξ̃k).

Hence (
Ũ (ẽxp ã)ϕ

)
(x) = eiẼ(ã,x)ϕ

(
x + ξ̃

(0)
ã

)
for all ϕ ∈ Cc(Rk), ã ∈ �̃ and x ∈ Rk , where ẽxp is the exponential map on �̃.
Thus the representation Ũ is of the same type as the representation U .

Note that dŨ(ãi) = dU(ai) for all i ∈ {1, . . . , d ′}. Therefore we can just
as well use the group G̃ with the representation Ũ instead of the group G with
the representation U . According to Theorem 1.1 of [9] for all t > 0 there exists
a K̃t ∈ S (G̃) such that

Stϕ =
∫
G̃

dg̃ K̃t (g̃) Ũ (g̃) ϕ
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for all ϕ ∈ Lp(Rk). Moreover, there exist c, τ > 0 and ω ∈ R such that

(3)
∣∣K̃t (ẽxp (ã))

∣∣ ≤ c t−D̃/meωte−τ(|ã|mt−1)1/(m−1)

for all t > 0 and ã ∈ �̃, where D̃ = w1 + . . . + wd̃ and the modulus | · | on �̃
is defined by ∣∣∣∣

d̃∑
i=1

ξi ãi

∣∣∣∣2w̃

=
d̃∑

i=1

|ξi |2w̃/wi

and w̃ = lcm(w1, . . . , wd̃). By scaling one can take ω = 0 in case the op-
erator H̃ is homogeneous. Next, set �̃ = span{ãk+1, . . . , ãd̃} and for y =
(y1, . . . , yk) ∈ Rk define ŷ ∈ �̃ by

ŷ = y1ã1 + . . . + ykãk.

Since Ẽ is real valued one can define for all t > 0 the functionκt ∈ C∞(Rk×Rk)

by

κt (x; y) =
∫

h̃
db̃K̃t

(
ẽxp (b̃ − x̂ + ŷ)

)
eiẼ(b̃−x̂+ŷ,x).

Then it is easy to verify that Statement II of Theorem 2.1 is valid.
Now we prove Statement III. It follows from the Gaussian bounds (3) that

(4)

|κt (x; y)| ≤
∫

h̃
db̃ct−D̃/meωte−τ(|b̃−x̂+ŷ|mt−1)1/(m−1)

≤ ct−D̃/meωt

∫
h̃
db̃e−2−1τ(|x̂−ŷ|mt−1)1/(m−1)

e−2−1τ(|b̃|mt−1)1/(m−1)

= ct−Q/meωte−2−1τ(|x̂−ŷ|mt−1)1/(m−1)

·
(
t−(D̃−Q)/m

∫
h̃
db̃e−2−1τ(|b̃|mt−1)1/(m−1)

)

for all t > 0 and x, y ∈ Rk . But the quantity between the brackets is inde-
pendent of t (and also of x and y), by scaling. Moreover, there exists a τ ′ > 0
such that ‖z‖ ≤ τ ′ |ẑ| for all z ∈ Rk with ‖z‖ ≤ 1. Hence, again by scaling, it
follows that ‖z‖ ≤ τ ′ |ẑ| for all z ∈ Rk . Therefore the proof of the Gaussian
bounds of Statement III is complete if ‖α‖ = ‖β‖ = 0.

Next we consider derivatives of the reduced heat kernel κt . If α, β ∈ J (d ′)
then

(AαBβκt )(x; y) =
∫

h̃
db̃

(
ÃαB̃βK̃t

)(
ẽxp (b̃ − x̂ + ŷ)

)
eiẼ(b̃−x̂+ŷ,x)
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for all t > 0 and x, y ∈ Rk , where B̃i = dRG̃(ãi) for all i ∈ {1, . . . , d ′} and
RG̃ is the right regular representation on G̃. Since one has Gaussian bounds∣∣(ÃαB̃βK̃t

)(
ẽxp (ã))

∣∣ ≤ ct−(D̃+‖α‖+‖β‖)/m eωte−τ(|ã|mt−1)1/(m−1)

by [9], Theorem 1.1, one can estimate AαBβκt as in (4). Again ω can be taken
equal to 0 if H̃ is homogeneous.

Finally, sinceAi = ∂/∂xi+Mi for all i ∈ {1, . . . k} withMi a multiplication
operator with a polynomial it follows from the Gaussian bounds that St maps
S (Rk) into S (Rk) for all t > 0. Therefore S (Rk) is a core for H (see [2]
Corollary 3.1.7). This completes the proof of Theorem 2.1.

3. Applications and examples

The Gaussian bounds have several implications. The first is thep-independence
of the spectrum if all weights equal one. Note that it will follow from The-
orem 4.2 that the operator H is already closed on Lp for all p ∈ 〈1,∞〉.

Corollary 3.1. Assume the notation and conditions of Theorem 2.1.
Moreover, suppose that wi = 1 for all i ∈ {1, . . . , d ′}. Then for all p ∈ [1,∞]
the spectrum σp(H) of the operator H on Lp(Rk) is independent of p.

Proof. This follows from [15], or [16].

Note that the spectrum σ(H) is independent of p ∈ [1,∞] if the repres-
entation U is irreducible, by the arguments given in the proof of Theorem 2.5
of [8].

The second implication of the Gaussian bounds is that the bounded H∞-
functional calculus on L2 extends to all Lp spaces.

Corollary 3.2. Assume the notation and conditions of Theorem 2.1. Then
for all p ∈ 〈1,∞〉 and large enough λ > 0 the operator H +λI has a bounded
H∞-functional calculus on Lp(Rk). If the operator H is homogeneous then one
can take λ = 0.

Proof. By [9] Theorem 9.2.III the semigroup generator H satisfies a Gård-
ing inequality on L2. Therefore H + λI is maximal accretive if λ > 0 is large
enough. Hence it follows from Theorem G of [1] that the operator H +λI has
a bounded H∞-functional calculus on L2. Then the corollary is a consequence
of the Gaussian bounds of Theorem 2.1.III and [6] Theorem 3.4.

Quadrature of the Gaussian bounds gives semigroup bounds.

Corollary 3.3. Assume the notation and conditions of Theorem 2.1. Then
there exist c > 0 and ω ∈ R such that for all p, q ∈ [1,∞] with p ≤ q one
has ‖St‖p→q ≤ ct−Q(1/p−1/q)/meωt uniformly for all t > 0.



gaussian bounds for reduced heat kernels of subelliptic . . . 259

Proof. Obviously ‖St‖1→∞ = ‖κt‖∞ ≤ ct−Q/meωt by the bounds of
Theorem 2.1.III. Next, let c, τ be as in Theorem 2.1.III with ‖α‖ = ‖β‖ = 0.
For t > 0 define Gt : Rk → R by Gt(x) = ct−Q/me−τ(‖x−y‖mt−1)1/(m−1)

. Then

|(Stϕ)(x)| ≤ eωt

∫
Rk

dy Gt(x − y) |ϕ(y)| = eωt (Gt ∗ |ϕ|)(x)

for all ϕ ∈ C∞
c (Rk) and x ∈ Rk , where ∗ denotes the convolution on the

commutative group Rk . Therefore, ‖St‖p→p ≤ ‖Gt‖1 e
ωt = ‖G1‖1 e

ωt for all
t > 0 and p ∈ [1,∞], by scaling. Now the corollary follows by interpolation.

If the spectrum σ(H) of H is a subset of 〈0,∞〉 then one also has expo-
nential decay for t → ∞ in the Gaussian bounds. Furthermore, the decay at
infinity of the kernel is almost equal to the growth bound of the semigroup on
L2.

Proposition 3.4. Assume the notation and conditions of Theorem 2.1. Let

λ1 = inf{Re(ϕ,Hϕ) : ϕ ∈ C∞
c (Rk)} .

Then for all ε > 0 there exist c, τ > 0 such that

|κt (x; y)| ≤ c t−Q/me−(λ1−ε)t e−τ(‖x−y‖mt−1)1/(m−1)

for all t > 0 and x, y ∈ Rk .

Proof. It follows from semigroup theory that ‖St‖2→2 ≤ e−λ1t for all
t > 0. Let ε > 0. Then by Corollary 3.3 there exist c, ω > 0 such that

‖κt‖∞ = ‖St‖1→∞ ≤ ‖Sεt/2‖1→2‖S(1−ε)t‖2→2‖Sεt/2‖2→∞
≤ ct−Q/me−λ1(1−ε)t eεωt

for all t > 0. Hence interpolation with the Gaussian estimates of Theorem
2.1.III gives

|κt (x; y)| = |κt (x; y)|ε |κt (x; y)|1−ε

≤ (
ct−Q/meωte−τ(‖x−y‖mt−1)1/(m−1))ε(

ct−Q/me−λ1(1−ε)t eεωt
)1−ε

= ct−Q/me−λ1(1−ε)2t eε(2−ε)ωt e−τε(‖x−y‖mt−1)1/(m−1)

for all t > 0 and x, y ∈ Rk , from which the proposition follows.

Example 3.5. Let j, n ∈ N. Then the anharmonic oscillator is the operator

H0 =
(

− d2

dx2

)j

+ x2n
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on L2(R) and domain the Schwartz space. This operator is a special example
for which Theorem 1.1 applies in the following way. Let G be the connected
simply connected Heisenberg group with Lie algebra � and let a1, a2, a3 be a
basis of � such that [a1, a2] = a3. Then the standard irreducible representation
U of G is given by(

U(exp(ξ1 a1 + ξ2 a2 + ξ3 a3))ϕ
)
(x) = eiξ3 eix ξ2 ϕ(x + ξ1)

for all ϕ ∈ C∞
c (R). So U is of the form (1) and if one takes k = 1 and d ′ = 2.

Then A1 = −iP and A2 = iQ, where P and Q are the self-adjoint operators
in L2(R) given by (Pf )(x) = if ′(x) and (Qf )(x) = xf (x) for all f ∈ C∞

c (R)
and x ∈ R. If

H = (−1)jA2j
1 + (−1)nA2n

2

then the operator H0 is the restriction of the self-adjoint operator H to the
Schwartz space, which is a core for H (see [7], Example 7.1). Let d0 =
gcd(j, n). Then w1 = n/d0, w2 = j/d0, Q = n/d0 and the weighted order of
H equals m = 2j n/d0. Moreover, ‖x‖ = |x| for all x ∈ R.

Let κ be the reduced heat kernel of the semigroup generated by H . Then it
is a consequence of Theorem 1.1 that there are c, τ > 0 such that

|κt (x; y)| ≤ c t−1/(2j)e−τ(|x−y|2jn/d0 t−1)1/(2jn/d0−1)

for all t > 0 and x, y ∈ R. Moreover, if j = n = 1 then the smallest eigenvalue
of H equals λ1 = 1 and it follows from Proposition 3.4 that for all ε > 0 there
are c, τ > 0 such that

|κt (x; y)| ≤ c t−1/2e−(1−ε)t e−τ |x−y|2t−1

for all t > 0 and x, y ∈ R. Note that these bounds are consistent with the
explicit expression for κ by Mehler’s formula;

κt (x; y) = (π(1 − e−4t ))−1/2e−(x+y)2(tanh t)/4e−(x−y)2(coth t)/4e−t

for all t > 0 and x, y ∈ R (see [3] Theorem 7.13).
Lower order terms are also allowed. If, for example, H is an operator of

the form

(5) H =
(

− d2

dx2

)j

+ µx2n +
∑
l,k≥0

lj+kn<2jn

cklx
l dk

dxk

with µ > 0, ckl ∈ C and domain D(H) = D(P 2j ) ∩ D(Q2n) then the
semigroup generated by H has a smooth reduced heat kernel κ . Moreover,
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there are c, τ, ω > 0 such that

|κt (x; y)| ≤ c t−1/(2j)eωt e−τ(|x−y|2jn/d0 t−1)1/(2jn/d0−1)

for all t > 0 and x, y ∈ R. A typical example of an operator H in (5) is the
operator

H = − d2

dx2
+ µx4 + µ′x2

with µ > 0 and µ′ ∈ R.

Example 3.6. Let � be an ideal in the Lie algebra � of a connected
simply connected Lie group G, let M be the connected (and simply connected)
subgroup ofGwith Lie algebra � and letχ be a one dimensional representation
of M . Set k = d−dim �. Let a1, . . . , ad be a basis for � such that ak+1, . . . , ad

is a basis for �. Finally, assume that d ′ ≥ k is such that a1, . . . , ad ′ is an
algebraic basis for � and [�, �] ⊂ {ad ′+1, . . . , ad}. Then the basis realization
of the induced representation Ind(M ↑ G,χ) is of the form (1). This follows
immediately from the description in [5] p. 125 and the fact that � is an ideal.

As an example reconsider the Hamiltonian with polynomial vector field
�A and magnetic field �B = �∇ × �A. In order to avoid confusion between the

components of the vector field �A and the infinitesimal generators Aj which
we introduce below, we denote the components of the components of the vec-
tor field �A by A

(M)
j . Set Xj = h̄∂j − iec−1A

(M)
j with domain S (R3) for all

j ∈ {1, 2, 3}. Then [Xi,Xj ] = −ih̄ec−1 ∑3
k=1 εijkBk for all i, j ∈ {1, 2, 3}.

Since multiplication operators commute and the Bj are polynomials it fol-
lows that X1, X2, X3 generate a finite dimensional Lie subalgebra � of oper-
ators in Hom(S (R3)), the space of all linear operators acting on the Schwartz
space S (R3). Extend X1, X2, X3 to a basis X1, X2, X3, . . . , Xd for � such that
X4, . . . , Xd are all polynomial multiplication operators, say with polynomials
ψ4, . . . , ψd . Then � = span{X4, . . . , Xd} is an (Abelian) ideal in �. Moreover,
there exists a unique linear map l: � → C such that l(Xj ) = −ec−1A

(M)
j (0)

for all j ∈ {1, 2, 3} and l(Xj ) = −iψj (0) for all j ∈ {4, . . . , d}. Define
χ :M → C by χ(exp a) = exp(il(a)) for all a ∈ �. Then it follows from
[12] Proposition II.1.6.1 and its proof that χ is a one dimensional repres-
entation of M and that the basis realization U of the induced representation
Ind(M ↑ G,χ) with respect to the basis a1, . . . , ad given by aj = h̄−1Xj is of
the form (1). For j ∈ {1, 2, 3} let Aj = dU(aj ) be the associated infinitesimal
generator. Note that Xjϕ = h̄Ajϕ for all ϕ ∈ S (R3). One can take d ′ = 3 and

set H = − h̄2

2m(A2
1 + A2

2 + A2
3). By Theorem 2.1.IV it follows that H is the



262 a. f. m. ter elst and humberto prado

closure of the operator

H0 = 1

2m

(
�p − e

c
�A
)2 = − 1

2m
(X2

1 + X2
2 + X2

3)

with domain S (R3). Moreover, Theorem 2.1 states that the semigroup gener-
ated by H has a reduced heat kernel κ and there are c, τ > 0 such that

|κt (x; y)| ≤ c t−3/2e−τ |x−y|2t−1

for all t > 0 and x, y ∈ R3, where |x − y| is the Euclidean modulus of x − y.

Remark 3.7. It can be proved as above that any operator associated with a
representation of the form (1) equals an operator associated with an induced
representation as described in the first part of Example 3.6 on a possibly dif-
ferent Lie group.

4. Riesz transforms

If H = ∑
‖α‖=m cα Aα is acting on Lp(Rk) and is such that the comparable

operator H̃ = ∑
‖α‖=m cα Ãα is a homogeneous weighted subcoercive oper-

ator then in this section we show that the Riesz transforms of all orders are
bounded on Lp(Rk) for all p ∈ 〈1,∞〉. The result relies on an application of
the transference theorem in [4], which holds naturally for kernels in L1(G̃),
and a technique that has been used in the the study of the Riesz transforms of
all orders for homogeneous subcoercive operator with complex coefficients in
[10] Section 4. We stress that in the present context the representation of the
nilpotent group G can be any representation induced from a character, includ-
ing the basis realization of a unitary irreducible representation (see [14], [5]
and [8], Lemma 2.1).

Theorem 4.1. Let (M , µ) be a σ -finite measure space, p ∈ 〈1,∞〉
and U a continuous bounded representation of G in Lp(M ). Suppose H̃ =∑

‖α‖=m cα Ãα is a homogeneous weighted subcoercive operator of order m

on G̃ and set
H =

∑
‖α‖=m

cα Aα

with domain D(H) = ⋂
‖α‖=m D(Aα). Then H is closed, generates a bounded

semigroup and for all α ∈ J (d ′) one has D(H ‖α‖/m) ⊂ D(Aα). Moreover,
there exists a c > 0 such that

‖Aαϕ‖p ≤ c
∥∥H ‖α‖/mϕ

∥∥
p



gaussian bounds for reduced heat kernels of subelliptic . . . 263

for all ϕ ∈ D(H ‖α‖/m).

Proof. Let 2: G̃ → G be as in the proof of Theorem 2.1. Let Ũ = U ◦2.
Then Ũ is a continuous representation of G̃ in Lp(M ). If K̃ is the kernel of
the semigroup S̃ generated by H̃ and S the semigroup generated by H then
Stϕ = ∫

G̃
dg̃K̃(g̃)Ũ (g̃)ϕ. for all t > 0 and ϕ ∈ Lp(M ). Then the transference

method of [4], Theorem 2.4, together with a density argument, gives the bounds∥∥St

∥∥
p→p

≤ c2
∥∥S̃t

∥∥
p̃→p̃

≤ c2
∥∥K̃t

∥∥
1̃ = c2

∥∥K̃1

∥∥
1̃

uniformly for all t > 0, where ‖ · ‖p̃ is the norm on Lp(G̃) and we have set
c = supg∈G ‖U(g)‖p→p. So H generates a bounded semigroup.

If n ∈ N is large enough then for all ν, ε > 0 the convolution kernel k̃α;ν,ε
of the operator

R̃α;ν,ε = Ãα(νI + H̃ )−‖α‖/m(I + εH̃ )−n

is in L1(G̃). Since Ai = dU(ai) = dŨ(ãi) for all i ∈ {1, . . . , d ′} it follows
that

Rα;ν,ε = Aα(νI + H)−‖α‖/m(I + εH)−n =
∫
G̃

dg̃ k̃α;ν,ε(g̃) Ũ (g̃).

The transference method then gives the estimates

(6) ‖Rα;ν,ε‖p→p ≤ c2 ‖R̃α;ν,ε‖p̃→p̃

uniformly for all ν, ε > 0. But the right hand side of (6) is bounded uniformly
for all ν, ε > 0 by scaling on G̃ (cf. [10] Lemma 4.1). Hence there exists an
M > 0 such that ‖Rα;ν,ε‖p→p ≤ M uniformly for all ν, ε > 0. Then∥∥Aαϕ

∥∥
p

≤ M
∥∥(

νI + H
)‖α‖/m(

I + εH
)n
ϕ
∥∥
p

for all ϕ ∈ D∞(H) = ⋂
β∈J (d ′) D(Aβ). Taking the limit ε ↓ 0 it follows that

(7)
∥∥Aαϕ

∥∥
p

≤ M
∥∥(

νI + H
)‖α‖/m

ϕ
∥∥
p

for all ϕ ∈ D∞(H).

Now let ν > 0, N ∈ N and ϕ ∈ D(H
N/m

) = D((νI + H)N/m). Since
D∞(H) is a core for the operator (νI +H)N/m there are ϕ1, ϕ2, . . . ∈ D∞(H)

such that lim ϕn = ϕ and lim(νI+H)N/mϕn = (νI+H)N/mϕ. Then lim(νI+
H)j/mϕn = (νI + H)j/mϕ for all j ∈ {0, 1, . . . , N}. Hence by induction on
the number of indices of the multi-index α and the closedness of the Ai it
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follows from the estimates (7) that lim Aαϕn = Aαϕ for all α with ‖α‖ ≤ N .
So D(H

‖α‖/m
) ⊂ D(Aα) for all α ∈ J (d ′) and the estimates (7) are valid

uniformly for all ϕ ∈ D(H
‖α‖/m

) and ν > 0. Taking the limit ν ↓ 0 yields

‖Aαϕ‖p ≤ M ‖H ‖α‖/m
ϕ‖p for all ϕ ∈ D(H

‖α‖/m
).

Finally, one has as a special case that D(H) ⊂ D(Aα) for all α with
‖α‖ = m. Therefore the operator H is closed.

In the unweighted case, i.e., if w1 = . . . = wd ′ = 1, then one can prove as
in Corollary 4.3 of [10] that

(8) D(Hnw/m) =
⋂

‖α‖=nw

D(Aα)

for all n ∈ N and that the seminorms on the two spaces are equivalent. It is
unclear whether the equality (8) is also valid in the weighted case.

Finally, for non-homogeneous operators we prove optimal regularity for
any weighted subcoercive operator.

Theorem 4.2. Let (M , µ) be a σ -finite measure space, p ∈ 〈1,∞〉
and U a continuous bounded representation of G in Lp(M ). Suppose Ĥ =∑

‖α‖≤m cα Âα is a weighted subcoercive operator of order m on G, where

LG is the left regular representation on Lp(G) and Âi = dLG(ai) for all
i ∈ {1, . . . , d ′}. Let

H =
∑

‖α‖≤m

cαA
α

be the corresponding operator on Lp(M ). Then H is closed and for all α ∈
J (d ′) one hasD((H+λI)‖α‖/m) ⊂ D(Aα) ifλ > 0 is large enough. Moreover,
there exists a c > 0 such that∥∥Aαϕ

∥∥
p

≤ c
∥∥(

H + λI
)‖α‖/m

ϕ
∥∥
p

for all ϕ ∈ D((H + λI)‖α‖/m).

Proof. We may assume that Ĥ generates an exponentially decreasing
semigroup Ŝ on Lp(G). The proof of the theorem is similar to the proof of
Theorem 4.1. If n ∈ N is large enough then for all ε > 0 the convolution kernel
of the operator

R̂α;ε = ÂαĤ−‖α‖/m(
I + εĤ

)−n

is inL1(G). Moreover, D(Ĥ ‖α‖/m) ⊂ D(Âα) and the embedding is continuous
in Lp(G)-sense by [9], Section 9. Next,∥∥R̂α;ε

∥∥
Lp(G)→Lp(G)

≤ ∥∥ÂαĤ−‖α‖/m∥∥
Lp(G)→Lp(G)

∥∥(
I + εĤ

)−n∥∥
Lp(G)→Lp(G)
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and if M = supt>0

∥∥Ŝt

∥∥
Lp(G)→Lp(G)

then

∥∥(
I+εĤ

)−n∥∥
Lp(G)→Lp(G)

≤ (n−1)!−1
∫ ∞

0
dte−t tn−1

∥∥Ŝεt

∥∥
Lp(G)→Lp(G)

≤ M

uniformly for ε > 0. Therefore the operators R̂α;ε are bounded on Lp(G)

uniformly for ε > 0. The rest of the proof is by the same arguments as in the
proof of Theorem 4.1. It relies on the transference method.

Note that in fact the above argument can be applied to any continuous
bounded representation of an amenable Lie group G in Lp(M ) where (M , µ)

is a σ -finite measure space.
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