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ON THE NUMBER OF EULER TRAILS
IN DIRECTED GRAPHS

JAKOB JONSSON

Abstract

Let G be an Eulerian digraph with all in- and out-degrees equal to 2, and let π be an Euler trail in
G. We consider an intersection matrix L(π) with the property that the determinant of L(π) + I
is equal to the number of Euler trails in G; I denotes the identity matrix. We show that if the
inverse of L(π) exists, then L−1(π) = L(σ ) for a certain Euler trail σ in G. Furthermore, we use
properties of the intersection matrix to prove some results about how to divide the set of Euler
trails in a digraph into smaller sets of the same size.

1. Introduction

The aim of this article is to study enumerative properties of Euler trails in
digraphs (or, more precisely, directed multigraphs with loops permitted). A
digraph G = (V ,A, t, h) consists of a set V = VG of vertices, a set A = AG

of arcs, and two functions t, h : AG → VG; t (a) = tG(a) is the tail of the arc
a and h(a) = hG(a) is the head of a. Intuitively speaking, an arc is an arrow
pointing from its tail to its head.

Let SA be the symmetric group of permutations of A with multiplication
defined as πσ(a) = π(σ(a)). A permutation π ∈ SA is a G-permutation if
h(a) = t (π(a)) for all a ∈ A; this means that a ends where π(a) begins.
The permutation π is an Euler trail in G if π is a cyclic G-permutation. A
digraph containing Euler trails is an Eulerian digraph. For m > 0, an m-
regular Eulerian digraph is an Eulerian digraph where, for each vertex v, there
are exactly m arcs with head v (and hence m arcs with tail v). Some 2-regular
Eulerian digraphs are illustrated in Figures 6 and 7 in Section 5.

In Section 3, we consider a 2-regular Eulerian digraph G with vertex set
[n] := {1, . . . , n} and with arc set {+1, . . . ,+n,−1, . . . ,−n}, where the head
of ±k is k. Let π be an Euler trail in G. Say that the vertices j and k intersect
if π ◦ (+j,−j)(+k,−k) is an Euler trail and j 
= k. Cohn and Lempel [4]
defined an n × n intersection matrix

L(π) = (ljk)j,k∈[n]
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of π by letting ljk be 1 if j and k intersect in π and 0 otherwise. They showed
for any J ⊆ [n] that the nullity of

LJ (π) = (ljk)j,k∈J

over GF(2) is equal to the number of cycles minus one in the G-permutation
σ = π ◦ ∏

j∈J (+j,−j). Beck [2] generalized this result for not necessarily
disjoint transpositions.

Macris & Pulé [11] and [12] demonstrated how to give the elements in
L(π) signs so that det LJ (π) ∈ {0, 1} over Z; det LJ (π) = 1 if and only if
π ◦ ∏

j∈J (+j,−j) is an Euler trail. Actually, they proved that det(L(π) + I)
is equal to the number of Euler trails in G, where I is the identity matrix
(Theorem 3.1). Lauri [10] carried out the details (Theorem 3.2) using methods
similar to those used by Cohn & Lempel in [4].

One of our own contributions in Section 3 is the following result (The-
orem 3.4): If σ = π ◦ ∏

j∈J (+j,−j) is an Euler trail, then LJ (σ ) = L−1
J (π).

In [8], we generalize the intersection matrix to arbitrary Eulerian digraphs.
In Section 4, we consider a (not necessarily 2-regular) Eulerian digraph

G in which the vertices can be divided into sets U1, . . . , Uϕ and into sets
W1, . . . ,Wϕ such that if a is an arc with its tail in Uk , then the head of a is in
Wk . Another way of expressing this is that t−1(Uk) = h−1(Wk) for every k.

Let π be a fixed Euler trail in G, and let σ be another Euler trail in G.
Then σ−1π is a permutation of the arcs such that the set Ak of arcs with heads
in Wk is mapped onto itself for all k. In particular, σ−1π can be restricted to
Ak . Let sk be the sign of this restricted permutation. We obtain a sequence
(s1, . . . , sϕ−1) of signs associated to the Euler trail σ ; we omit the ϕth sign,
since it is uniquely determined by (and equal to)

∏ϕ−1
i=1 sk .

We prove that the number of Euler trails with a given sequence of signs
is independent of the sequence, that is, the number is the same for all 2ϕ−1

possible sequences (Theorem 4.2). Suppose in addition that G is 2-regular, and
let v and w be vertices such that there is an arc from v to w. Then the number
of Euler trails with a given sequence of signs and with v and w intersecting is
again constant (Theorem 4.3).

In Section 5, the article is concluded with a discussion about arc digraphs.
In an arc digraph, there are sets U1, . . . , Uϕ,W1, . . . ,Wϕ with the property
that for each k ∈ [ϕ], u ∈ Uk , and w ∈ Wk , there is exactly one arc with tail u
and head w. The most famous Eulerian arc digraphs are perhaps the 2-regular
de Bruijn digraphs, in which Euler trails can be identified with binary de Bruijn
sequences. For details, consider Subsection 5.2, where we apply Theorem 4.2
to de Bruijn sequences.
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2. Some group theory

To obtain decent formulations and proofs of our results, some group theory
will be useful. Namely, there is an obvious group-theoretic interpretation of
G-permutations as follows.

Let G be an Eulerian digraph. For each vertex v ∈ V , note that h−1(v) is
the set of arcs with head v. Let TG be the subgroup of SA consisting of all
permutations σ such that σ(h−1(v)) = h−1(v) for all v ∈ V . Clearly TG is
a group of the form

∏
v∈V Sh−1(v). Let π be a fixed G-permutation; we claim

that πTG is the set of G-permutations. Namely, for any τ ∈ TG, πτ is also
a G-permutation, since t (πτ(a)) = h(τ(a)) = h(a). Moreover, if σ is a
G-permutation, then π−1σ ∈ TG since h(π−1σ(a)) = t (σ (a)) = h(a).

Conversely, every left coset πT of a permutation group of the form T =∏
v∈V SA(v), where the sets A(v) are disjoint, can be interpreted as the set of G-

permutations in a certain digraph G. Namely, put VG = V , AG = ⋃
v∈V A(v),

h(a) = v for all a ∈ A(v), and t (a) = h(σ−1(a)) for arbitrarily chosen
σ ∈ πT . This is well defined since, with σ = πτ , we obtain that

h(σ−1(a)) = h(τ−1π−1(a)) = h(π−1(a)).

We say that G is the digraph induced by πT .
For a permutation π ∈ SA, let c(π) denote the number of cycles minus one

in π ; hence π is a cyclic permutation if and only if c(π) = 0. Frequently, we
will consider restrictions of a permutation to smaller sets. In those cases we
will find it necessary to write cA(π) instead of c(π). Namely, if B is a subset
of A such that π(B) = B, then both cA(π) and cB(π) are defined since π can
be restricted to a permutation in SB .

Let B ⊂ A, where A is a finite set. We may consider SB as a subgroup
of SA by defining π(a) = a for all π ∈ SB and a ∈ A \ B. The following
construction will be used frequently throughout this article. For π ∈ SA, let
πB ∈ SB be the permutation obtained from π by “removing” all elements not
in B from the cycle decomposition of π . More precisely, for each b ∈ B, set

(1) πB(b) = πk(b),

where k is the smallest positive number j such that πj (b) ∈ B. If π(B) = B,
then πB is the restriction of π to the set B.
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Example 2.1. Let A = {1, . . . , 18},
π = (1, 3, 9, 8, 5, 15, 7, 2, 6, 18, 16, 10, 11, 14, 4, 12, 17, 13),

σ = (1, 8, 7, 18, 11, 12)(2, 16, 14, 17, 3, 5)(4, 13, 15, 6)(9, 10),

and B = {1, 7, 8, 9, 10, 11, 12, 18}. Then

πB = (1, 9, 8, 7, 18, 10, 11, 12)

and
σB = (1, 8, 7, 18, 11, 12)(9, 10).

Note that σB is the restriction of σ to B.

If π, σ ∈ SA and π(a) = σ(a) for all a /∈ B, then

(2) (σB)−1πB = σ−1π,

where the right-hand expression is restricted to B. To prove this, first assume
that B = A \ {a}. Then π(b) = πB(b) unless π(b) = a, in which case
πB(b) = π(a) = σ(a). The same is true for σ ; hence

(σB)−1πB(b) = (σB)−1(σ (a)) = σ−1(a) = σ−1π(b).

To prove (2) for general B, use induction over |A \ B| (|J | is the number of
elements in the set J ).

For more information about permutation groups, see [5].

3. The intersection matrix

The aim of this section is to describe the intersection matrix of an Euler trail
in a 2-regular digraph. Some small modifications compared to [10]-[12] are
made to make it possible to compare the intersection matrices for different
Euler trails.

3.1. Definition and known results

Let n > 0 be an integer; let G be a 2-regular Eulerian digraph with vertex set
VG = [n] and arc set AG = {+1, . . . ,+n,−1, . . . ,−n}, where the head of
the arcs +k and −k is k. Let π be an Euler trail in G. Define the intersection
matrix L(π) = {ljk : j, k ∈ [n]} of π as follows. For j, k ∈ [n], put B =
{+j,−j,+k,−k} and

ljk =



1 if πB = (−j,+k,+j,−k);

−1 if πB = (−j,−k,+j,+k);

0 otherwise.
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In particular, ljj = 0. Note that ljk is nonzero if and only if j and k intersect
in the sense described in the introduction.

If instead VG = {j1, . . . , jk} ⊂ [n], then we may define the k × k matrix
L(π) in exactly the same manner with rows and columns corresponding to
j1, . . . , jk instead of 1, . . . , n.

One easily checks that our definition of L(π) is the same as the corres-
ponding definitions in [12] and [10]. See Subsection 3.3 for another equivalent
definition.

First, we state a few known results about the intersection matrix.

Theorem 3.1 (Macris & Pulé [12]). Let π be an Euler trail in the 2-regular
digraph G. Then the number of Euler trails in G is equal to

det(L(π) + I),

where I is the identity matrix.

For any set J ⊆ [n], put τJ = ∏
j∈J (+j,−j); this notation will be used

throughout Section 3. Since TG is the abelian group generated by the trans-
positions (+1,−1), . . . , (+n,−n), it is clear that πτJ is a G-permutation
whenever π is a G-permutation. Moreover, c(πτJ ) is even if and only if |J | is
even. In particular, if πτJ is an Euler trail, then |J | is even. Put

LJ (π) = (lij )i,j∈J .

Theorem 3.2 (Lauri [10]). Let π be an Euler trail in a 2-regular digraph
with vertex set [n]. Then for any set J ⊆ [n],

det LJ (π) =
{

1 if πτJ is an Euler trail;

0 otherwise.

We conclude this summary of known results by mentioning a result about
the rank of the matrix LJ (π). To prove it, follow Cohn & Lempel [4] with
appropriate replacements of GF(2)-matrices with Z-matrices.

Theorem 3.3 (Cohn & Lempel [4]). Let π be an Euler trail in a 2-regular
digraph with vertex set [n]. Then for any J ⊆ [n],

cA(πτJ ) = |J | − rank LJ (π) = the nullity of LJ (π).
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3.2. On the inverse of the intersection matrix

The results of this subsection will not be used in later sections. We will prove
a result that requires our definition of the intersection matrix. Namely, to con-
struct the intersection matrix, one must give the arcs signs. In this paper these
signs are fixed from the beginning, while in [10] the signs are not necessarily
the same in different Euler trails.

Theorem 3.4. Let π be an Euler trail in a 2-regular digraph with vertex
set [n], and let J ⊆ [n] be such that πτJ is an Euler trail. Then

LJ (πτJ ) = L−1
J (π).

We will in fact prove more than Theorem 3.4:

Lemma 3.5. With notations and assumptions as in Theorem 3.4, suppose
that J = [2m] (2m ≤ n). Write

L(π) =
(

LJ −AT

A B

)
,

where LJ = LJ (π) , and put

M(π, J ) =
(

LJ 0

A I

)
.

Then

(3) L(π) + I = M(π, J ) · (L(πτJ ) + I)

or, equivalently,

(4) L(πτJ ) =
( L−1

J −L−1
J AT

−AL−1
J B + AL−1

J AT

)
.

Proof. First consider J = {1, 2}. We have to show that (4) holds. However,
note that lij (πτJ ) only depends on 1, 2, i, and j . Thus it suffices to consider
n = 4; in particular, there is only a finite number of cases, and these are easily
checked. As in [10], we let the reader do this. Using the row vectors Ri intro-
duced later in Subsection 3.3, one may carry out a rigorous (but cumbersome)
proof.

Induction over m is used to prove (3); suppose that m > 1. There exist
distinct numbers i, j ≤ 2m such that π1 = πτJ\{i,j} is a cyclic permutation.
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Namely, otherwise LJ (πτJ ) would be the zero matrix. Assuming (without loss
of generality) that i = 1 and j = 2, we may write

L(π1) =



D −PT −QT

P E −RT

Q R S


 ,

where D = L{1,2}(π1), E = L{3,...,2m}(π1); the other matrices are defined in
the obvious manner.

By induction,

L(π1) + I = M(π1, {1, 2}) · (L(πτJ ) + I)

and
L(π1) + I = M(π1, J \ {1, 2}) · (L(π) + I),

where

M(π1, J \ {1, 2}) =



I −PT 0

0 E 0

0 R I


 .

This implies that

L(π) + I = M−1(π1, J \ {1, 2}) · M(π1, {1, 2}) · (L(πτJ ) + I).

Some easy computations yield that M−1(π1, J \{1, 2}) ·M(π1, {1, 2}) is equal
to

(5)




D + PTE−1P PTE−1 0

E−1P E−1 0

Q − RE−1P −RE−1 I


 .

Computing L(π) = M−1(π1, J \ {1, 2}) · (L(π1) + I) − I, we immediately
realize that (5) is equal to M(π, J ), which is exactly what we need to prove
(3) and (4).

Remark 3.6. One may note that the lower right block in (4) does not have
the same shape in [10]. This depends on the fact that Lauri defines the matrix
corresponding to πτJ in a slightly different way. However, the fact that Lauri
considers τJπ instead of πτJ only affects the signs in the lower left and upper
right blocks. By the way, (4) is the resulting matrix after the first step in a
two-step method of computing the inverse of L(π) (if the inverse exists); see
for example [6], pp. 161–163.
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Remark 3.7. In [8], we investigate the matrices L(π) and M(π, J ) further.
We will show that the rows in L(π) can be interpreted as the vectors in a basis
for a certain “cycle space”. The matrix M(π, J ) is the transformation matrix
between two sets of bases corresponding to the Euler trails π and πτJ .

3.3. An application of the intersection matrix

We proceed by giving an alternative way of defining the intersection matrix
of an Euler trail. Using this new definition, we prove a result that will be used
and generalized in Section 4.

As usual we consider a 2-regular digraph G with vertex set [n] and with
h−1(i) = {+i,−i} for i ∈ [n]. Let π be an Euler trail in G. Put

ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zn;

the unit element in ei is on position i (1 ≤ i ≤ n). Choose an arbitrary arc
a ∈ A. Define the row vectors Rb(a, π) and Lj (π) (b ∈ A, j ∈ [n]) as follows.

Ra(a, π) = (0, . . . , 0),

Rπi+1(a)(a, π) = Rπi(a)(a, π) + sgn(πi(a)) · e|πi(a)|,

(0 < i < 2n) and

Lj (π) = R+j (a, π) − R−j (a, π) + ej .

The validity of the following statement is easily checked.

Proposition 3.8.

L(π) =




L1(π)

L2(π)

L3(π)
...

Ln(π)




is the intersection matrix of π .

Example 3.9. Consider the Euler trail

π = (−1,−2,−4,+2,−5,+4,−3,+1,+3,+5).
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We obtain the following table.

i πi(−1) Rπi(−1)

0 −1 ( 0, 0, 0, 0, 0)
1 −2 (-1, 0, 0, 0, 0)
2 −4 (-1,-1, 0, 0, 0)
3 +2 (-1,-1, 0,-1, 0)
4 −5 (-1, 0, 0,-1, 0)
5 +4 (-1, 0, 0,-1,-1)
6 −3 (-1, 0, 0, 0,-1)
7 +1 (-1, 0,-1, 0,-1)
8 +3 ( 0, 0,-1, 0,-1)
9 +5 ( 0, 0, 0, 0,-1)

Thus

L(π) =




0 0 −1 0 −1
0 0 0 −1 0
1 0 0 0 0
0 1 0 0 −1
1 0 0 1 0


 .

Theorem 3.10. Let G be a 2-regular digraph and suppose that there are
two vertex sets U = {u1, . . . , uk} and W = {w1, . . . , wk} (k > 0) such that
there is an arc with tail ui and head wi as well as an arc with tail ui and
head wi−1 for every i ∈ [k]; w0 = wk . Let π be an Euler trail in G. Put
L+ = L(π)+ I,L− = L(π)− I. Then there exist numbers µi, νi ∈ {−1,+1},
i = 1, . . . , k, such that

k∑
i=1

µiL+
ui

=
k∑

i=1

νiL−
wi
.

Moreover, if U and W are disjoint, then the number of Euler trails σ in G

such that (σ−1π)h
−1(W) is odd is equal to the number of Euler trails σ such

that (σ−1π)h
−1(W) is even.

Figure 1. The case k = 3
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Proof. With customary choices of numbers µi, νi ∈ {−1, 1},
π(µiui) = νiwi, π(−µiui) = −νi−1wi−1

for all i ∈ [k]; ν0 = νk and w0 = wk . This implies that

−(Rνiwi
− Rµiui

) = −µieui
;

R−νi−1wi−1 − R−µiui
= −µieui

.

Summing the left-hand sides, we obtain

k∑
i=1

(−(Rνiwi
− Rµiui

) − R−µiui
+ R−νi−1wi−1)

=
k∑

i=1

(−(Rνiwi
− Rµiui

) + R−νiwi
− R−µiui

)

=
k∑

i=1

(Rµiui
− R−µiui

) −
k∑

i=1

(Rνiwi
− R−νiwi

)

=
k∑

i=1

µiL+
ui

− 2
k∑

i=1

µieui
−

k∑
i=1

νiL−
wi
.

Summing the right-hand sides, we obtain −2
∑k

i=1 µieui
, which implies the

first part of Lemma 3.10.
To prove the second part, let K be the matrix with the property that

Ki =
{

L−
i if i ∈ W ,

L+
i otherwise.

The first part of Lemma 3.10 implies that det K = 0 (here we need the fact
that U and W are disjoint). Expand det K:

(6)

0 = det K =
∑
J⊆[n]

(−1)|W\J | det LJ

= (−1)|W | ∑
J⊆[n]

(−1)|W∩J | det LJ .

By Theorem 3.2, det LJ = 1 if πτJ is an Euler trail and 0 otherwise. Note that

sgn
(
((πτJ )

−1π)h
−1(W)

) = sgn

( ∏
j∈W∩J

(+j,−j)

)
= (−1)|W∩J |.
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Hence (6) implies the last part of Lemma 3.10.

Lemma 3.10 is in fact a special case of Theorem 4.1, a result that will be
stated and proved in the next section. It will appear that the last statement in
Lemma 3.10 remains true with the weaker assumption that U 
= W .

4. Partitioning Euler trails into sets of the same size

We prove some results about how to divide the set of Euler trails in a digraph
into smaller sets of the same size.

4.1. Main results

Let G be an Eulerian digraph G with vertex set V . Suppose that there exist
nonempty vertex sets U1, . . . , Uϕ,W1, . . . ,Wϕ � V such that

V =
ϕ∐

k=1

Uk =
ϕ∐

k=1

Wk

(
∐

denotes disjoint union) and

(7) t−1(Uk) = h−1(Wk)

for k ∈ [ϕ], that is, all arcs starting in Uk have their heads in Wk (we do not
require that Uk and Wk are disjoint). Another way of describing the situation is
as follows. Let π be any G-permutation, and put Ak = t−1(Uk) = h−1(Wk).
Then for every τ ∈ TG and k ∈ [ϕ],

(8) πτπ−1(Ak) = τ(Ak) = Ak.

Theorem 4.1. Let G be an Eulerian digraph with vertex set V and arc
set A such that |h−1(v)| 
= 1 for each vertex v ∈ V . Let EG denote the set of
Euler trails in G. Suppose that A = ∐ϕ

k=1 Ak is a partition of A satisfying (8)
with Ak nonempty and with ϕ > 1. Let K be a nonempty proper subset of [ϕ],
and put A− = ⋃

k∈K Ak . Then, for any G-permutation π ,

∑
σ∈EG

sgn((σ−1π)A
−
) = 0

That is, there are just as many Euler trails σ in G such that the restriction
(σ−1π)A

−
to A− is odd as there are Euler trails σ such that (σ−1π)A

−
is even.

Theorem 4.1 will be proved in Subsection 4.2. However, before we proceed,
we will state another version of Theorem 4.1.
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Theorem 4.2. Let the conditions inTheorem 4.1 be satisfied for the Eulerian
digraph G. For any set M ⊆ SA, let E(M) = EA(M) denote the set of cyclic
permutations in M . Let T0 be the subgroup of TG consisting of all permutations
τ ∈ SA such that the restriction of τ to Ak is an even permutation for every
k ∈ [ϕ − 1]. Then for any two G-permutations π and σ ,

|E(πT0)| = |E(σT0)|.
In particular,

|E(πT0)| = 2−(ϕ−1) · |EG|
for every G-permutation π .

For any signs s1, . . . , sϕ−1 ∈ {−1, 1}, there is a permutation τ ∈ TG such
that for all i the restriction of τ to Ai has sign si . Namely, |h−1(v)| 
= 1 for
every vertex v ∈ V . In particular, T0 divides TG into 2ϕ−1 cosets. Hence the
second statement in Theorem 4.2 is a consequence of the first statement. In
Subsection 4.3, we prove Theorem 4.2 using Theorem 4.1.

In the case of G being a 2-regular digraph, Theorem 4.2 can be refined
as follows. Recall that the vertices u and w intersect in an Euler trail π if
π ◦ (+u,−u)(+w,−w) is an Euler trail; h−1(u) = {+u,−u} and h−1(w) =
{+w,−w}.

Theorem 4.3. Let the conditions in Theorem 4.1 be satisfied for the 2-
regular Eulerian digraph G, and let T0 be as in Theorem 4.2. Let u and w be
vertices such that there is an arc with tail u and head w. Then for any two
G-permutations π and σ , the number of Euler trails in πT0 such that u and
w intersect is equal to the number of Euler trails in σT0 such that u and w

intersect.

With the convention that u always intersects itself, the result remains valid if
u = w. By Theorem 4.2, Theorem 4.3 is equivalent to the following statement:
For any two G-permutations π and σ , the number of Euler trails in πT0 such
that u and w do not intersect is equal to the number of Euler trails in σT0 such
that u and w do not intersect. We will prove Theorem 4.3 by verifying this
statement in Subsection 4.4.

4.2. Proof of Theorem 4.1

We recall that Theorem 4.1 considers a partition A = ∐ϕ

j=1 Aj satisfying (8)
and a set A− = ⋃

k∈K Ak , where K � [ϕ] is nonempty. Put A+ = A \A−, and
let π be a fixed G-permutation; we may without loss of generality assume that
π is an Euler trail. Our first goal is to show how the problem can be reduced
to the case π(A−) = A+.
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Put B+ = π−1(A−) ∩ A+, B− = π−1(A+) ∩ A−, and B = B+ ∪ B−. By
(8), this definition of B+ and B− does not depend on the choice of π ; B+ is
the set of arcs b with the property that the arcs with tail h(b) belong to A−.
This implies for every v ∈ V that if h−1(v)∩B 
= φ, then h−1(v) ⊂ B. Hence
|h−1(v) ∩ B| 
= 1. Note that π−1(A−) 
= A−. Namely, since π is a cyclic
permutation, equality would imply that A− = A. In particular, B+ and B− are
nonempty.

Consider a G-permutation σ , and recall the construction of σB from (1).
Put TB = TG ∩ SB . Since ρTB = σTB if ρ ∈ σTB ,

EG = EA(πTG) =
m∐
i=1

EA(σiTB)

for some σ1, . . . , σm ∈ EG; EA(M) is the set of cyclic permutations in M ⊆
SA. Thus it suffices to show that

(9)
∑

ρ∈EA(σiTB)

sgn((ρ−1π)A
−
) = 0

for every i ∈ [m]. LetGi be the digraph induced byσB
i TB ⊂ SB (see Section 2).

This means that TGi
= TB (restricted to SB) and that σB

i is an Euler trail in
Gi . An important observation is that ρ ∈ σiTB is an Euler trail in G if and
only if ρB is an Euler trail in Gi . Namely, if ρB happens to be an Euler trail in
Gi without ρ being an Euler trail in G, then ρ contains some cycle with arcs
exclusively from A \ B. However, since ρ−1σi leaves all elements in A \ B

fixed, the very same cycle will occur in σi , which is a contradiction to the fact
that σi is an Euler trail. Thus∑

ρ∈EA(σiTB)

sgn((ρ−1π)A
−
) =

∑
ρ∈EA(σiTB)

sgn((ρ−1σi)
A−

) sgn((σ−1
i π)A

−
)

=
∑

ρB∈EGi

sgn((ρ−1σi)
B−

) sgn((σ−1
i π)A

−
).

Here, the first identity is justified by the fact that all permutations are restric-
tions to A−, while the second identity follows from the fact that the restriction
of ρ−1σi to A− \ B− is the identity permutation. The conclusion is that (9) is
equivalent to

(10)
∑

ρB∈EGi

sgn((ρ−1σi)
B−

) = 0.

Note that the conditions in Theorem 4.1 are satisfied if G, A, A−, and π are
replaced by Gi , B, B−, and σB

i , respectively. Namely, one easily convinces
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oneself that for every ρ ∈ σiTB , (ρB)−1(B+) = B−. Moreover, as we have
already mentioned, B+ and B− are nonempty and |h−1(v) ∩ B| 
= 1 for all
v ∈ V . Thus we may assume that A = B; that is, π(A−) = A+.

Our aim is to reduce the problem to the situation in Lemma 3.10. Let
a �→ (u,w) mean that the tail of a is u and the head of a is w. Choose an
arbitrary arc d0 ∈ A−; we have d0 �→ (u1, w0) for some u1 ∈ h−1(A+) and
w0 ∈ h−1(A−). The set t−1(u1) contains at least one arc d−1 different from d0;
assume that d−1 �→ (u1, w1). The set h−1(w1) contains at least one member d1

different from d−1; assume that d1 �→ (u2, w1). Find an arc d−2 ∈ t−1(u2) in
the same manner as we found d−1 (that is, d−2 
= d1 and d−2 �→ (u2, w2) for
some w2). Continue in this zig-zag manner until for the first time uk+1 = uj+1

or wk = wj for some j, k, k > j . There is no loss of generality assuming that
j = 0. In Figure 2, the case w3 = w0 is illustrated. The reader may note the
similarities between this figure and Figure 1 in Subsection 3.3.

Figure 2. The case w3 = w0

Put U = {u1, . . . , uk}, W = {w1, . . . , wk}, and

D− = {d1, . . . , dk, d−1, . . . , d−k} ⊆ A−.

For the Euler trail σ , put

D+
σ = ρ−1(D−) ⊆ A+

and Dσ = D+
σ ∪ D−. Suppose that ρ ∈ σTDσ

, where TDσ
= TG ∩ SDσ

. Then
ρ(a) = σ(a) if a ∈ A+ \ D+

σ , which implies that ρ(D+
σ ) = σ(D+

σ ) = D−
since ρ(A+) = σ(A+). Hence Dρ = Dσ and ρTDρ

= σTDσ
. In particular,

there are Euler trails σ1, . . . , σq such that EG = ∐q

j=1 EA(σjTDσj
). Therefore

it suffices to prove

(11)
∑

ρDσ ∈EDσ (σ
Dσ TDσ )

sgn((ρ−1σ)D
−
) = 0
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for any σ ∈ EG by computations similar to those implying (10). However,
since σDσ TDσ

induces a 2-regular Eulerian digraph satisfying the conditions
in Lemma 3.10, (11) follows immediately.

4.3. Proof of Theorem 4.2

To prove Theorem 4.2, we need some names on the 2ϕ−1 different cosets in TG

given by T0. First we fix a G-permutation π . For a vector y = (y1, . . . , yϕ−1)

of elements from {0, 1}, let E(y) be the set of Euler trails σ such that the sign of
the permutation (σ−1π)Ak is equal to (−1)yk for each k ∈ [ϕ − 1]. We want to
prove that |E(y)| is the same for all vectors y. Therefore, let y = (y1, . . . , yϕ−1)

and y′ = (y ′
1, . . . , y

′
ϕ−1) be different vectors in {0, 1}ϕ−1. Consider the sum

(12)
∑

x·(y′−y)≡1

( ∑
(z−y)·x≡0

|E(z)| −
∑

(z−y)·x≡1

|E(z)|
)
,

where the outer and inner summations range over all {0, 1}ϕ−1-vectors x and z,
respectively, satisfying the indicated relations; the dot products are computed
modulo 2. Let x 
= 0 be a fixed vector; put A− = ⋃

xi=1 Ai and A+ = A \A+.
Note that A+ is nonempty since Aϕ ⊆ A+. Theorem 4.1 implies that

∑
(z−y)·x≡0

|E(z)| −
∑

(z−y)·x≡1

|E(z)| = 0.

Namely, let σ be such that sgn((σ−1π)Ai ) = (−1)yi for 1 ≤ i ≤ ϕ − 1. The
first sum counts the number of Euler trails ρ such that (ρ−1σ)A

−
is an even

permutation, while the second sum counts the other kind of permutations. In
particular, (12) vanishes. We want to prove that (12) is equal to

2ϕ−2 · (|E(y)| − |E(y′)|);

2ϕ−2 is the number of vectors x such that x · (y′ − y) ≡ 1. Namely, this will
imply that |E(y)| = |E(y′)|, which is exactly what we want to prove.

Obviously, the coefficient in front of |E(y)| in (12) is equal to 2ϕ−2, while
the coefficient of |E(y′)| is equal to −2ϕ−2. Now, let z be a vector such that
z 
= y, y′. The coefficient of |E(z)| is computed as follows. Since z−y and y′−y
are linearly independent overGF(2), there is a vector x′ such that (z−y)·x′ ≡ 1
(mod 2) and (y′ − y) · x′ ≡ 0 (mod 2). Note that x �→ (x + x′) mod 2 is a
permutation of the set consisting of vectors x such that x · (y′ − y) ≡ 1 (mod



206 jakob jonsson

2). Thus since

−
∑

x·(y′−y)≡1

(−1)(z−y)·x = (−1)(z−y)·x′ ·
∑

x·(y′−y)≡1

(−1)(z−y)·x

=
∑

x·(y′−y)≡1

(−1)(z−y)·(x+x′)

=
∑

(x+x′)·(y′−y)≡1

(−1)(z−y)·(x+x′)

=
∑

x·(y′−y)≡1

(−1)(z−y)·x,

the coefficient in front of |E(z)| is 0. The theorem is proved.

4.4. Proof of Theorem 4.3

By assumption there is an arc, say +w, with tail u and head w. Say that the
tail of the second arc −w with head w is u′, and let a be the second arc with
tail u; say that the head of a is w′. If u = w, then there is nothing to prove,
since in this case π ◦ (+u,−u)(+w,−w) = π for all Euler trails π . If u = u′
then there are two arcs from u to w, and it is obvious that u and w intersect in
all Euler trails. If instead u = w′ or u′ = w, then there will be a loop at u or
w, which means that u and w never intersect in any Euler trail. Thus assume
that u,w, u′, w′ are all different.

Let H be the 2-regular Eulerian digraph obtained from G as follows: We
remove the vertex w and the arcs +w,−w from G. Moreover, the arcs with
tail w in G will have u as their tail in H . Finally, the arc a, whose tail is u in
G, will have u′ as its tail in H . The situation is illustrated in Figure 3.

Figure 3. The construction of H from G

Consider an Euler trail π in G where u and w do not intersect. This means that
π is of the form

(a, s1, αu,+w, s2,−w, s3,−αu),
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where si are some sequences of arcs and α is +1 or −1. π can be divided
into three blocks: [a, s1, αu], [+w, s2,−w], and [s3,−αu]. Removing +w

and −w and swapping block 2 and block 3, we obtain the permutation

(13) π̂ = (a, s1, αu, s3,−αu, s2),

which is an Euler trail in H . Since the blocks can be recovered from π̂ and
since any Euler trail in H is of the form (13), we have obtained a one-to-one
correspondence between the set of Euler trails in G where u and w do not
intersect and the set of Euler trails in H .

We want to find sets Û1, . . . , Ûϕ and Ŵ1, . . . , Ŵϕ in H satisfying (7); recall
that Uk = t−1

G (Ak) and Wk = h−1
G (Ak). Put Ŵk = Wk \ {w}. Construct the

sets Ûk by first removing u and w and then adding u to Ûj , where Uj is the set
containing w. One readily verifies from this construction that (7) is satisfied
for these sets in H . Put Âk = h−1(Ŵk) and Â = A \ {+w,−w}.

Let T̂0 be the subgroup TH consisting of all permutations τ ∈ SÂ such that
the restriction of τ to Âk is an even permutation for every k ∈ [ϕ − 1]. By
Theorem 4.2 we have for any H -permutations π̂ and σ̂ that

(14) |EÂ(π̂ T̂0)| = |EÂ(π̂ T̂0)|.
Fix an Euler trail π in G where u and w do not intersect; π corresponds to the
permutation π̂ in the manner described above. For a vector y = (y1, . . . , yϕ−1)

of elements from {0, 1}, let Ê(y) be the set of Euler trails σ̂ in H such that the
sign of the permutation (σ̂−1π̂)Â

k

is (−1)yk for each k ∈ [ϕ − 1]. Let E∗(y)
be the set of Euler trails σ in G where u and w do not intersect such that the
sign of the permutation (σ−1π)A

k

is (−1)yk for each k ∈ [ϕ − 1]. Finally, let
E(y) be as in the proof of Theorem 4.2.

Suppose that u ∈ Wi and w ∈ Wj ; i and j might be equal. Let z =
(z1, . . . , zϕ−1) be defined by zk = 0 if k 
= i, j , zi = zj = 1 if i 
= j , and
zi = zj = 0 if i = j . To prove Theorem 4.3, it suffices to prove that

(15) |E∗(y)| + |E∗(y + z)| = |E∗(y′)| + |E∗(y′ + z)|
for every y, y′ ∈ {0, 1}ϕ−1, where the vector sums are computed modulo 2.
Namely, there is an obvious bijection between E(y) \ E∗(y) and E(y + z) \
E∗(y+z) given byπ �→ π◦(+u,−u)(+w,−w). Hence (15) and Theorem 4.2
imply Theorem 4.3.

Consider an Euler trail σ in G where u and w do not intersect. The sign of
(σ−1π)Ak is equal to the sign of (σ̂−1π̂)Â

k

if k 
= i, j . Namely, the procedure
σ �→ σ̂ only modifies the successors of u, u′, andw, and they are all inAi∪Aj .
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This means exactly that

|E∗(y)| + |E∗(y + z)| = |Ê(y)| + |Ê(y + z)|
= |Ê(y′)| + |Ê(y′ + z)| = |E∗(y′)| + |E∗(y′ + z)|,

where the second equality follows from (14). Theorem 4.3 is proved.

5. 2-regular arc digraphs

We consider arc digraphs and give interpretations of Theorems 4.2 and 4.3;
we will concentrate on 2-regular digraphs. The section is concluded with an
application of the results to de Bruijn sequences.

5.1. Interpretations of Theorem 4.2

The arc digraph K(G) of a digraph G is defined by VK(G) = AG,

AK(G) = {(a, b) : a, b ∈ AG, hG(a) = tG(b)},
tK(G)((a, b)) = a, and hK(G)((a, b)) = b. That is, the arcs in G are the vertices
in K(G) and there is an arc from a to b in K(G) if and only if the head of a
is equal to the tail of b in G.

We obtain in a natural way sets A1, . . . , Aϕ in K(G) satisfying (8), where
ϕ is the number of vertices in G. Namely, for each k ∈ VG, we put

(16) Ak = t−1
K(G)(h

−1
G (k)) = h−1

K(G)(t
−1
G (k)),

that is, Ak consists of all arcs (a, b) in K(G) such that the head of a and the
tail of b in G is k. Putting Uk = h−1

G (k) and Wk = t−1
G (k), we may notice the

similarity between (16) and (7). The local shape of a 2-regular arc digraph is
illustrated in Figure 4.

Figure 4. A vertex k inG and the corresponding
arc set Ak in K(G)

From our point of view, the most interesting result about 2-regular arc digraphs
and Euler trails is the following striking correspondence between the numbers
of Euler trails in a digraph and its arc digraph.

Theorem 5.1 (de Bruijn [3]; see [7]). If G is a 2-regular Eulerian digraph,
then |EK(G)| = 2ϕ−1|EG|,
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where ϕ is the number of vertices in G.

Theorem 5.1 can be proved by using the BEST Theorem ([1]), which relates
the number of Euler trails and oriented subtrees in a digraph; see also [9].
Theorems 4.2 and 5.1 imply

Theorem 5.2. Let G be a 2-regular Eulerian digraph with vertex set [ϕ],
and let Ak be defined as in (16) for k ∈ [ϕ]. Let T0 be the group of permutations
τ ∈ TK(G) such that sgn(τAk ) = 1 for k ∈ [ϕ − 1]. Then

|EAK(G)
(πT0)| = |EG|

for any K(G)-permutation π .

Proof. By Theorem 4.2,

|EAK(G)
(πT0)| = 2ϕ−1|EK(G)|;

hence Theorem 5.2 is a consequence of Theorem 5.1.

The interpretation of Theorem 4.3 is somewhat more delicate.

Theorem 5.3. Use the same notations as in Theorem 5.2, and let a and
b be arcs in G such that the head of a equals the tail of b. Then for any G-
permutation π , the number of Euler trails in EAK(G)

(πT0) such that the vertices
a and b in K(G) intersect is equal to the number of Euler trails σ in EG such
that σ(a) 
= b.

Proof. By Theorem 5.2, Theorem 5.3 is equivalent to the following state-
ment: The number of Euler trails in EAK(G)

(πT0) such that a and b do not
intersect in K(G) is equal to the number of Euler trails σ in EG such that
σ(a) = b.

Let a′ be the arc with the same head as a in G; hence a′ is a vertex in K(G)

such that there is an arc from a′ to b. Let b′ be the arc with the same tail as
b in G, that is, there is an arc from a to b′ and from a′ to b′ in K(G). K(G)

is illustrated in the left part of Figure 5. Construct a digraph Q from K(G) in
the same manner as we constructed H in the proof of Theorem 4.3: Remove
the vertex b and the arcs with head b. Moreover, the arcs with tail b in K(G)

will have a as their tail in Q. Finally, the arc with tail a and head b′ in K(G)

will have a′ as its tail in Q (and still b′ as its head).
Following the proof of Theorem 4.3, we realize that the number of Euler

trails in K(G) such that a and b do not intersect is equal to |EQ|. In Q, there are
two arcs from a′ to b′. Construct the digraph Q̂ fromQ by removing b′ together
with the two arcs from a′ to b′ and by letting a′ be the new tail of the arcs with
old tail b′ in Q. We have that |EQ| = 2|EQ̂|. Namely, given an Euler trail
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(+a′, s1,−a′, s2) in Q̂, we obtain two Euler trails (+a′,+b′, s1,−a′,−b′, s2)

and (+a′,−b′, s1,−a′,+b′, s2) in Q; s1 and s2 are sequences of arcs.
The graph Q̂ can be obtained directly from K(G) as follows. First remove

b and b′ together with the arcs with head b or b′. Then let a and a′ be the new
tails of the arcs with old tails b and b′, respectively (see Figure 5).

Figure 5. The construction of Q̂ from K(G)

Now, construct a digraph H from G by removing b, b′, and the head of a and
a′; let the head of a in H be the head of b in G; let the head of a′ in H be
the head of b′ in G. By inspection, one realizes that K(H) = Q̂. Theorem 5.1
implies that |EQ̂| = 2ϕ−2|EH |. Thus the number of Euler trails in EK(G) such
that a and b do not intersect is equal to

|EQ| = 2|EQ̂| = 2ϕ−1|EH |,
which is equal to the number of Euler trails σ in G such that σ(a) = b. Hence
Theorem 5.3 follows from Theorem 4.3.

Example 5.4. Let G and K be the digraphs in Figure 6; K is isomorphic
to the arc digraph K(G) of G. The vertex set of K is V = [8] and the arc
set is A = ±[8]. Note that TK is the subgroup of SA generated by (+k,−k),
1 ≤ k ≤ 8 and that hK(±k) = k.

Figure 6. A graph G and its arc digraph K(G)
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Put U1 = {4, 6}, U2 = {1, 7}, U3 = {2, 8}, U4 = {3, 5} and W1 = {1, 5},
W2 = {2, 6}, W3 = {3, 7}, W4 = {4, 8}. The names of the vertices in G are
chosen in correspondence to the sets W1, . . . ,W4; t−1

G (15) = {1, 5} and so on.
Consider the K-permutation

π =
(−1,+6,−5,+4)(−4,+5,−8,+3)(−3,+8,−7,+2)(−2,+7,−6,+1).

For a vector y = (y1, y2, y3) ∈ {0, 1}3, let E(y) be the set of Euler trails
πτJ = π ◦ ∏

j∈J (+j,−j) such that |J | ∩ Wk ≡ yk (mod 2). We obtain
the following table, showing for each y = (y1, y2, y3) all sets J such that
πτJ ∈ E(y).

(0, 0, 0) : {6, 2, 8} {6, 2, 4} {1, 8, 5} {7, 3, 4}
(1, 1, 0) : {1, 2, 8} {1, 2, 4} {6, 8, 5} {2, 8, 5}
(1, 0, 1) : {1, 7, 8} {1, 7, 4} {1, 3, 4} {7, 8, 5}
(0, 1, 1) : {6, 7, 8} {6, 7, 4} {6, 3, 4} {2, 3, 4}
(1, 0, 0) : {1, 7, 3} {6, 2, 5} {1, 8, 4} {7, 3, 5}
(0, 1, 0) : {6, 7, 3} {1, 2, 5} {6, 8, 4} {2, 8, 4}
(0, 0, 1) : {6, 2, 3} {1, 7, 5} {1, 3, 5} {7, 8, 4}
(1, 1, 1) : {1, 2, 3} {6, 7, 5} {6, 3, 5} {2, 3, 5}

As Theorem 5.2 states, the number of sets in each row is equal to |EG| = 4.
The last column of sets corresponds to the set of Euler trails where 1 and 6
do not intersect, while the bold sets correspond to Euler trails where 1 and 2
intersect. Note that the underlying digraph G contains four Euler trails, namely

(1, 6, 5, 8, 7, 2, 3, 4), (1, 2, 3, 4, 5, 8, 7, 6),

(1, 2, 7, 6, 5, 8, 3, 4), (1, 2, 3, 8, 7, 6, 5, 4).

1 is followed by 6 in one trail and by 2 in the other trails. Thus we have verified
Theorem 5.3 for K when u = 1 and w = 2, 6.

5.2. de Bruijn digraphs

As an application of Theorem 5.2, we conclude this article with a short dis-
cussion about de Bruijn digraphs, named after the Dutch mathematician N.G.
de Bruijn.

Let m > 1, b > 1. Define the digraph Gb,m as follows. Let

V = {(c1, . . . , cm−1) : c1, . . . , cm−1 ∈ {0, . . . , b − 1}}
and

A = {(c1, . . . , cm) : c1, . . . , cm ∈ {0, . . . , b − 1}}.
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Moreover, let the tail of (c1, . . . , cm) be (c1, . . . , cm−1) and let the head be
(c2, . . . , cm). The digraph Gb,m is called a de Bruijn digraph. The vertices
and arcs in a de Bruijn digraph can be interpreted as the b-ary representations
of integers. For example, the vertex 011 in G2,4 (see Figure 7) is the binary
representation of 0 · 4 + 1 · 2 + 1 · 1 = 3.

Figure 7. This is G2,4; arc labels are omitted

The equivalence class
s = 〈s0, . . . , sk−1〉

of rotations of a sequence (s0, . . . , sk−1) is called a cyclic sequence. A word
(c1, . . . , cm) is contained in s if there is an i (0 ≤ i < k) such that si+j = cj
for 1 ≤ j ≤ m (the indices are taken modulo k). The Euler trails in Gb,m

correspond to cyclic sequences s = 〈s0, . . . , sbm−1〉 with the property that each
b-ary word of length m is contained exactly once in s. Such cyclic sequences
are called de Bruijn sequences. For example, there are two binary de Bruijn
sequences of length 23, namely 〈00010111〉 and 〈00011101〉. The Euler trail
corresponding to the cyclic sequence 〈s0, . . . , sbm−1〉 is the Euler trail π ∈
EGb,m

with the property that

π(sk, sk+1, . . . , sk+m−1) = (sk+1, sk+2, . . . , sk+m)

for all k; the indices are computed modulo bm.
In the following, we will only deal with the 2-regular case; therefore put

Gm = G2,m. For any binary sequence p = (p1, . . . , pk) (k ≥ 1) and binary
numbers x1, . . . , xa, y1, . . . , yb (a, b ≥ 0), put

(x1, . . . , xa,p, y1, . . . , yb) = (x1, . . . , xa, p1, . . . , pk, y1, . . . , yb).

One realizes that the sets

Up = {(0,p), (1,p)}
and

Wp = {(p, 0), (p, 1)}
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satisfy (7). Moreover, it is not difficult to check that Gm is isomorphic to
K(Gm−1), the arc digraph of Gm−1.

Let m > 2. An m-de Bruijn sequence is a binary de Bruijn sequence of
length 2m. Theorem 5.1 and induction imply that the number |EGm

| of m-de
Bruijn sequences is equal to 22m−1−m (see [7]).

Theorem 5.5. Let

{yp : p = (p1, . . . , pm−2) ∈ {0, 1}m−2}
be a set of binary numbers. Then the number of m-de Bruijn sequences con-
taining exactly one of the sequences (0,p, 0, 0) and (0,p, 1, yp) for each
p ∈ {0, 1}m−2 \ {(1, 1, . . . , 1)} is equal to the number 22m−2−(m−1) of (m − 1)-
de Bruijn sequences.

Proof. Let π be the Gm-permutation given by π(0,p, 0) = (p, 0, 1) and
π(0,p, 1) = (p, 1, yp) for all p ∈ {0, 1}m−2. Let T0 be the group of permuta-
tions τ ∈ TGm

such that the first digit in τ(0,p, 0) is equal to the first digit
in τ(0,p, 1) for all p ∈ {0, 1}m−2 \ {(1, 1, . . . , 1)}, that is, T0 is defined as in
Theorem 5.2. Then πT0 contains all Euler trails corresponding to m-de Bruijn
sequences with the property in Theorem 5.5. Theorem 5.2 implies that

|EAGm
(πT0)| = |EGm−1 |,

which is equal to the number of (m − 1)-de Bruijn sequences.
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