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2-GENERATOR ARITHMETIC KLEINIAN GROUPS III

M. D. E. CONDER, C. MACLACHLAN, G. J. MARTIN and E. A. O’BRIEN∗

Abstract

This paper forms part of the program to identify all the 2-generator arithmetic Kleinian groups.
Here we identify all conjugacy classes of such groups with one generator parabolic and the
other generator elliptic. There are exactly 14 of these and exactly 5 Bianchi groups in their
commensurability class, namely PSL(2,Od ) for d = 1, 2, 3, 7 and 15. This complements our
earlier identification of the 4 arithmetic Kleinian groups generated by two parabolic elements.

1. Introduction

In previous work [22], [10] we established the finiteness of the number of
two-generator arithmetic Kleinian groups generated by a pair of elliptic or
parabolic elements. Further, we found there are exactly 4 arithmetic Kleinian
groups generated by two parabolic elements [10], which are all knot and link
complements. Here we extend this result by identifying all the two-generator
arithmetic Kleinian groups with one generator parabolic and the other generator
elliptic.

There is a substantial literature on the topic of discrete groups generated by
two parabolic elements, and in particular the question of when such groups are
free. Numerical studies, particularly those of Riley [31], show that the space
of all such groups (a one dimensional complex space) is very complicated. It
consists of a “free” part with a highly fractal boundary and numerous isolated
points clustering to this boundary. Among these points are the (infinitely many)
hyperbolic 2-bridge knot and link complements. There is very little literature
on the corresponding question of groups generated by parabolic and elliptic
elements, or indeed other spaces of two-generator discrete groups; however
see [8] and the recent innovative work of Gabai, Meyerhoff and Thurston [7].

There are infinitely many two-generator Kleinian groups of finite covolume
with one generator parabolic and the other elliptic. For example, carrying out
(n, 0)-Dehn filling on one component of a hyperbolic two-bridge link com-
plement yields a hyperbolic orbifold for most values of n whose fundamental
group is such a two-generator Kleinian group. If the group is to be arithmetic,

∗ Research supported in part by grants from the New Zealand Marsden Fund.
Received August 6, 1998; in revised form June 23, 1999.



162 m. d. e. conder, c. maclachlan, g. j. martin and e. a. o’brien

then it must be commensurable with a Bianchi groupGd = PSL(2,Od)where
Od is the ring of integers in a quadratic imaginary number field Q(

√−d ) for
some square free positive integer d. An algorithm for determining the present-
ations of these Bianchi groups was developed by Swan [35].

Our method is to combine an elementary bound on the size of the relevant
space of free products with some number theory to give a finite number of can-
didates for arithmetic Kleinian groups generated by a parabolic and an elliptic.
In each candidate we identify a finite index subgroup which is a subgroup of
a Bianchi group. This subgroup is identified in terms of a set of generators
expressed as words in the generators of the ambient Bianchi group. The re-
maining problem is to decide whether or not this subgroup has finite index
in the Bianchi group. To do this we use some computational group theoretic
methods. The methods used to prove that (in many cases) the subgroups are
of infinite index do not seem to be well-known but are clearly of importance
for work in this area and may be of wider interest. The discussion of these is
given independently in §7.

In stating the main theorem below, each of the 14 arithmetic groups which
arises is described either by its relationship to the corresponding Bianchi group,
or by a description of the related orbifold, or, in most cases, by both. The or-
bifold descriptions are given in terms of the two-bridge knot and link comple-
ments where we use the standard notation (p/q) for both the link complement
and the corresponding group.

Theorem 1.1. Suppose that G = 〈f, g〉 is an arithmetic Kleinian group
with f parabolic and g elliptic. Then the order of g is one of 2, 3, 4, or 6 and
there are fourteen such groups.

• If g has order 2, then there are six groups:
a. Two Z2 extensions of (5/3) each with index 6 in G3. One orbifold is

obtained by (2, 0)-filling a component of (10/3). The other is not a
surgery on a link complement and is described below.

b. A Z2 extension of (8/3) with G ∩G1 of index 2 in G and 12 in G1. The
orbifold is obtained by (2, 0)-filling a component of (16/5).

c. Two Z2 extensions of (10/3) and for bothG∩G3 has index 2 inG and 24
inG3. One orbifold is obtained by (2, 0)-filling a component of (24/7).
The other by (2, 0)-filling a component of (21/5).

d. A Z2 extension of (12/5) andG∩G7 has index 2 inG and 12 inG7. The
orbifold is obtained by (2, 0)-filling a component of (20/7).

• If g has order 3, then there are three groups:
a. [G1 : G] = 8 and the orbifold is obtained by (3, 0)-filling a component

of (10/3).
b. G = G3.
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c. [G7 : G] = 2 and the orbifold is obtained by (3, 0)-filling a component
of (8/3).

• If g has order 4, then there are three groups:
a. G = PGL(2,O1).
b. G ∩G2 is of index 4 in G and 24 in G2 and the orbifold is obtained by
(4, 0)-filling a component of (24/7).

c. G ∩G3 is of index 2 in G and 30 in G3 and the orbifold is obtained by
(4, 0)-filling a component of (8/3).

• If g has order 6, then there are two groups:
a. G = PGL(2,O3).
b. G ∩G15 has index 6 in G and 6 in G15 and the orbifold is obtained by
(6, 0)-filling a component of (8/3).

Remark. Recall that (5/3) is the figure-8 knot complement and (8/3) the
Whitehead link. Arithmetic groups obtained by (n, 0)-filling a component of
the Whitehead link were discussed in [25]. From Rolfsen’s tables [32] of two
bridge links we find (24/7) is 82

4, (16/5) is 82
2, (20/7) is 92

1 and (21/5) is 92
4.

2. Kleinian groups and arithmeticity

We begin with a few basic definitions and some notation. A Kleinian group is
a discrete nonelementary subgroup of isometries of hyperbolic 3-space H3. (In
this setting nonelementary means the group is not virtually abelian). Such
groups are identified with (the Poincaré extensions of) discrete groups of
Möbius or conformal transformations of the Riemann sphere C. The orbit
spaces of Kleinian groups are the hyperbolic 3-orbifolds or, if the Kleinian
group is torsion free, hyperbolic 3-manifolds. We use [1], [24], [27] and [37]
as basic references for the theory of discrete groups and hyperbolic spaces.

The elements of a Kleinian group, other than the identity, are either loxo-
dromic (conjugate to z 	→ λz, |λ| �= 1), elliptic (conjugate to z 	→ λz, |λ| = 1)
or parabolic (conjugate to z 	→ z+ 1).

We associate with each Möbius transformation

(1) f = az+ b
cz+ d , ad − bc = 1,

the matrix

(2) X =
(
a b

c d

)
∈ SL(2, C)
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and set tr(f ) = tr(X) where tr(X) denotes the trace of the matrixX. For each
pair of Möbius transformations f and g we let [f, g] denote the multiplicative
commutator fgf −1g−1. We call the three complex numbers

(3) β(f ) = tr2(f )− 4, β(g) = tr2(g)− 4, γ (f, g) = tr([f, g])− 2

the parameters of the two-generator group 〈f, g〉 and write

(4) par(〈f, g〉) = (γ (f, g), β(f ), β(g)).

These parameters are independent of the choice of matrix representatives for f
and g in SL(2, C) and they determine 〈f, g〉 uniquely up to conjugacy whenever
γ (f, g) �= 0. If f is parabolic, then β(f ) = 0; if g is elliptic, some power of g
is primitive, and so we assume that β(g) = −4 sin2(π/n)where n is the order
of g. Thus ifG = 〈f, g〉 is a Kleinian group generated by a parabolic element
and an elliptic element of order n, we have

(5) par(G) = (γ, 0,−4 sin2(π/n))

Thus, up to conjugacy, the space of all such discrete groups is determined
uniquely by the one complex parameter γ (f, g).

Note that when n = 2 the subgroup 〈f, gfg〉 is generated by a pair of
parabolics and has parameters (γ (f, g)2, 0, 0) and is of index 2 in 〈f, g〉.

We recall some further notation and basic results from [11]. Let G be a
finitely generated subgroup of PSL(2, C). The trace field of G is the field
generated over Q by the set tr(G) = {± tr(g) : g ∈ G}. Since G is finitely
generated, the subgroup G(2) = 〈g2 : g ∈ G〉 is a normal subgroup of finite
index with quotient group a finite abelian 2-group. Following [25] we call

(6) kG = Q(tr(G(2)))

the invariant trace-field of G. For any finite index subgroup G1 of a nonele-
mentary group G one can show that Q(tr(G(2))) ⊂ Q(tr(G1)); in [29] it is
shown that kG is an invariant of the commensurability class. Furthermore

AG(2) =
{∑

aiγi | γi ∈ G(2), ai ∈ kG
}

is a quaternion algebra which is also an invariant of the commensurability class
of G [25], termed the invariant quaternion algebra.

We next recall some facts about quaternion algebras; see [38] for details.
Let k be a number field, let ν be a place of k, i.e. an equivalence class of
valuations on k and denote by kν the completion of k at ν. If B is a quaternion
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algebra over k, we say that B is ramified at ν if B ⊗k kν is a division algebra
of quaternions. Otherwise B is unramified at ν.

If ν is a place associated to a real embedding of k, B is ramified if and only
ifB⊗k kν ∼= H , where H is the Hamiltonian division algebra of quaternions.

We now give the definition of an arithmetic Kleinian group. Let k be a
number field with one complex place andA a quaternion algebra over k ramified
at all real places. Letρ be an embedding ofA intoM(2, C), O an order ofA, and
O1 the elements of norm 1 in O . Then ρ(O1) is a discrete subgroup of SL(2, C)
and its projection, Pρ(O1), to PSL(2, C) is an arithmetic Kleinian group.
The commensurability classes of arithmetic Kleinian groups are obtained by
considering all such Pρ(O1), see [2] for further details.

In [23] it is shown that two arithmetic Kleinian groups are commensur-
able up to conjugacy if and only if their invariant quaternion algebras are
isomorphic; see also [2]. We recall the following from [11].

Theorem 2.1. Let G be a finitely generated non-elementary subgroup of
the group PSL(2, C) such that

(1) kG has exactly one complex place;

(2) tr(G) consists of algebraic integers;

(3) AG(2) is ramified at all real places of kG.

Then G is a subgroup of an arithmetic Kleinian group.

Following [22] we define a Kleinian group G to be nearly arithmetic if G
is a Kleinian subgroup of an arithmetic Kleinian group and G does not split
as a nontrivial free product. Of course, an arithmetic Kleinian group is nearly
arithmetic. We note the following well known result.

Theorem 2.2. IfG is an arithmetic Kleinian group which contains a para-
bolic element, then G is commensurable with a Bianchi group. In particular
the invariant trace field is a complex quadratic extension of Q.

3. Two-generator groups

Next we specialize to the case whereG is a two-generator group with one gen-
erator, f , parabolic and the other generator, g, elliptic. Here both the invariant
field and the invariant quaternion algebra are readily described in terms of the
parameters of the group.

It is shown in [29] that the field kG coincides with the field

Q({tr2(g) : g ∈ G}) = Q({β(g) : g ∈ G}).
See also [17]. For two-generator groups this together with Theorem 2.2 has
the following consequence, established in [10].
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Theorem 3.1. Let G = 〈f, g〉 be a nearly arithmetic Kleinian group with
f parabolic and g either parabolic or elliptic of order n. Then n = 2, 3, 4, 6.
Further, γ = γ (f, g) is an algebraic integer. If γ is complex, then kG =
Q(γ ) = Q(

√−d). The field kG is real if and only if n = 2 and γ ∈ Z. In
this case, kG = Q and G contains a Fuchsian subgroup of index 2 which is
a free product of cyclic groups. If n �= 2 and γ is real, then γ is a negative
integer and kG = Q(

√
tnγ ) where tn = 1, 2, 3, 4 for n = 3, 4, 6,∞ (when g

is parabolic) respectively.

The converse of this result is almost true in the sense that a group G with
parameters (γ, 0,−4 sin2(π/n)), n = 2, 3, 4, 6 is a Kleinian subgroup of an
arithmetic group whenever γ �= 0 is a rational or quadratic integer, see [8],
[11]. However, as we will see, it is most often true thatG splits as a free product
of cyclic groups and so is not nearly arithmetic.

We now give a fairly general criterion to determine when a group generated
by a parabolic element and an elliptic element of order 3, 4, 6 is discrete and
free on its two generators. It extends earlier results of [9] and [21].

Given a closed and bounded set  ⊂ C we define the maximal horizontal
width, δ( ), of  to be the maximum of the distances of pairs of points in  
with the same imaginary part; that is

(7) δ( ) = max{|z− w| : z,w ∈  ,�(z) = �(w)}.
Let  consist of two discs of the same radii which overlap. It is a simple

geometric exercise to show that the maximal horizontal width is either the
diameter of a disc or is achieved by the horizontal line through the mid-point
of the line joining the centres of the discs.

Lemma 3.2. Let 0 ≤ λ ≤ 2 and ω = x + iy ∈ C with x, y ≥ 0. Let  be
the region bounded by the two circles

(8) |z| < 1/|ω|, |z+ λ/ω| < 1/|ω|.
Then δ( ) ≤ 1 if and only if |w| ≥ 2 and |w − λ| ≥ 2.

Proof. The part of the horizontal line through the mid-point of the line
joining the centres of these circles which lies inside the circles has length

|w|−2
(√
(4|w|2 − λ2y2)+ λx).

The result follows a simple calculation.

Theorem 3.3. Let f be parabolic and g elliptic of order n ≥ 2 and suppose
that G = 〈f, g〉 is non-elementary. Then G is conjugate to the subgroup of
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PSL(2, C) generated by the images of the two matrices

(9) X =
(

1 1
0 1

)
Y =

(
0 −1/ω
ω λn

)

where λn = 2 cos(π/n). If �(ω) ≥ 0 and

(10) |ω| ≥ 2 and |ω − λn| ≥ 2

then G is discrete and G ∼= Z ∗ Zn splits as a nontrivial free product of cyclic
groups.

Proof. We can conjugate G so that f (z) = z + 1 [1]. Since G is non-
elementary we must have g(∞) �= ∞. We then may conjugate G by a trans-
lation commuting with f so that g(∞) = 0. Since g(z) = (az+ b)/(cz+ d)
with ad−bc = 1, tr(g) = ±λn and g(∞) = a/c = 0, a matrix representative
for g in PSL(2, C) is completely determined and has the indicated form. Next
we note that the isometric circles of g are the two circles

(11) |ωz+ λn| = 1, |ωz| = 1.

By the above lemma, the maximum horizontal width of the region bounded
by these two isometric circles is at most 1. Therefore this region lies inside a
family of horizontal segments {Iy}y∈R of width 1. Such a family of horizontal
strips forms a fundamental domain for the action of 〈f 〉 on C. The exterior of
the isometric circles of g are a fundamental domain for the action of 〈g〉 on C.
The Klein combination theorem [24] now implies that the group generated by
f and g is discrete and isomorphic to the free product of the cyclic groups 〈f 〉
and 〈g〉.

4. Candidates

Here we discuss the possible values for ω such that the group 〈f, g〉 is arith-
metic, f parabolic andg elliptic of ordern. Theorem 3.1 impliesn∈ {2, 3, 4, 6}.
Here we normalise so that

(12) X =
(

1 1
0 1

)
Y =

(
0 −1/ω
ω 2 cos(π/n)

)

Further it is an easy matter to see that we can restrict our attention to those
values of ω lying in the positive quadrant �(ω) ≥ 0 and �(ω) ≥ 0.

IfG = 〈f, g〉 is an arithmetic Kleinian group (where f and g are the images
in PSL(2, C) ofX and Y above), then kG is a quadratic imaginary field and all
traces of elements of G are algebraic integers.
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Then

(13) kG = Q
(
tr2(X), tr2(Y ), tr(X) tr(Y ) tr(XY)

)
see [22]. In particular the elementsX2Y 2, [X, Y ] lie inG(2) and so their traces
are integers in kG. That is, with the notation above,

(14) tr(X2Y 2) = 2
(
2ω cos(π/n)+ cos(2π/n)

)
and tr[X, Y ] = 2 + ω2

are integers in kG = Q(
√−d) for some positive square free integer d.

4.1. f parabolic, g elliptic of order 2

This case is basically covered by the results of [10]. If f is parabolic and g is
elliptic of order 2, then the group 〈f, g〉 has the index 2 subgroup 〈f, h〉, with
h = gfg−1 generated by two parabolics. Both groups must be simultaneously
arithmetic. In [10] we showed there are 4 arithmetic Kleinian groups generated
by two parabolics. These are the four two bridge knots and links (5/3), (8, 3),
(10/3) and (12/5). As explained in [8] there are at most two such Z2 extensions
since γ (f, g)2 = γ (f, h). The values of γ (f, h) are given in [10] and we
deduce the two possible values for γ (f, g). The element g of order 2 must
appear in the symmetry group of the knot or link and conjugate one parabolic
generator to the other (or its inverse). The symmetry group can be found using
SNAPPEA [39] as well as a description of the action on the cusps. Checking
the various possibilities yields our list which is subsequently easily verified.
One of the symmetries of the figure-8 has fixed point set meeting the knot and
thus the orbifold is not surgery on a link complement. This symmetry (as well
those in the other cases) can be seen in most drawings of the knot, see eg. [32],
and the associated orbifold described accordingly.

4.2. f parabolic, g elliptic of order 3

Here 2 cos(π/n) = 1 and tr(XY) = 1 + w. Thus from (13), kG = Q(w) =
Q
(√−d ) for some square free positive d. Note that tr(X2Y 2) = −1 + 2w and

tr[X, Y ] = 2 + w2. Thus w is an algebraic integer such that 2w ∈ Q
(√−d ).

Since number fields are integrally closed, it follows that w is an algebraic
integer in Od , the ring of integers in Q

(√−d ). We thus need to find those w
such that at least one of the inequalities |w| < 2, |w − 1| < 2 holds. See
Table 1.

4.3. f parabolic, g elliptic of order 4

In this case, tr(XY) = w+ √
2, tr(X2Y 2) = 2

√
2w, tr[X, Y ] = 2 +w2. Thus

w is an algebraic integer such that 2
√

2w ∈ Od . Thus
√

2w ∈ Q
(√−d ) and

so as before
√

2w ∈ Od . Also w2 ∈ Od .
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Table 1. Possible ω values when |g| = 3.

d ω

−1 i, 1 + i, 2 + i
−2 i

√
2, 1 + i√2, 2 + i√2

−3
(
1 + i√3

)
/2,

(
3 + i√3

)
/2,

(
5 + i√3

)
/2, i

√
3, 1 + i√3

−7
(
1 + i√7

)
/2,

(
3 + i√7

)
/2

−11
(
1 + i√11

)
/2,

(
3 + i√11

)
/2

Lemma 4.1. If
√

2w,w2 ∈ Od , then

• w = x+y√−d√
2

where x, y ∈ Z and x ≡ y (mod 2) if d ≡ 1 (mod 4).

• w = √
2x + y

√
−d
2 where x, y ∈ Z if d ≡ 2 (mod 4).

• w = x+y√−d√
2

where x, y ∈ Z and x ≡ y (mod 2) if d ≡ 3 (mod 4).

Proof. If d �≡ 3 (mod 4) then
√

2w = a + b
√−d. Then w2 = (

a2 −
db2 + 2ab

√−d )/2.
(i) d ≡ 1 (mod 4). Since w2 is an integer we must have a ≡ b (mod 2)

and hence w has the given form.
(ii) d ≡ 2 (mod 4). Then a ≡ 0 (mod 2) and again w has the given form.

(iii) d ≡ 3 (mod 4). Then
√

2w = a+b√−d
2 where a, b have the same parity.

But then

w2 =
a2−db2

4 + ab
2

√−d
2

.

If w2 is an integer, then either a or b must be even and hence they must both
be even. But then w2 has the form

(
(a2 − db2) + 2ab

√−d )/2. If that is to
be an integer as well, then this new a, b must have the same parity. The result
now follows.

Table 2. Possible ω values when |g| = 4.

d ω

−1 (1 + i)/√2, (3 + i)/√2, i
√

2,
√

2 + i√2

−2 i,
√

2 + i, 2
√

2 + i
−3

(
1 + i√3

)
/
√

2,
(
3 + i√3

)
/
√

2

−5
(
1 + i√5

)
/
√

2,
(
3 + i√5

)
/
√

2

−6 i
√

3,
√

2 + i√3
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In this case we need to find all w as described in the above lemma such that at
least one of the inequalities |w| < 2,

∣∣w − √
2
∣∣ < 2 holds. See Table 2.

4.4. f parabolic, g elliptic of order 6

In this case, tr(XY) = w+√
3, tr(X2Y 2) = 1+2

√
3w, and tr[X, Y ] = 2+w2.

Thusw is an algebraic integer such that 2
√

3w andw2 ∈ Od . Thus
√

3w ∈ Od .
An analysis, similar to the last lemma, gives the following result.

Lemma 4.2. Let
√

3w,w2 ∈ Od . Then

• for all d, we have w = √
3v, where v ∈ Od .

• if d ≡ 0 (mod 3) we have w = (√
3x + y√−d/3 )/2 where x, y ∈ Z with

x ≡ y (mod 2) and x ≡ y ≡ 0 (mod 2) if d ≡ 1, 2 (mod 4).

In this case we need to find allw as described in the above lemma such that
at least one of the inequalities |w| < 2, |w − √

3| < 2 holds. See Table 3.

Table 3. Possible ω values when |g| = 6.

d ω

−1 i
√

3,
√

3 + i√3

−3 i,
√

3 + i, (√3 + i)/2,
(√

3 + i3)/2,
(
3
√

3 + i)/2
−6 i

√
2,

√
3 + i√2

−15
(√

3 + i√5
)
/2,

(
3
√

3 + i√5
)
/2

5. Bianchi Groups

The candidate groups given in Tables 1 to 3 show that we need to consider the
eight Bianchi groupsGd for d = 1, 2, 3, 5, 6, 7, 11, 15. To further study these,
we use the presentations of these groups in terms of the images of convenient
matrices [13], [35].

For all groups, let a, b, c be the images of the matrices

A =
(

1 1
0 1

)
, B =

(
0 −1
1 0

)
, C =

(
1 τ

0 1

)

where τ = (
1 + √−d )/2 or

√−d according as d ≡ 3 (mod 4) or not.

d = 1

〈a, b, c | b2 = (ab)3 = [a, c] = (c2bc−1b)2

= (cbc−1bcb)2 = (acbc−1bcb)2 = 1〉.
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d = 2
〈a, b, c | b2 = (ab)3 = [a, c] = [b, c]2 = 1〉.

d = 3

〈a, b, c|b2 = (ab)3 = [a, c] = (cbc−1ac−1ab)2 = (cbc−1ab)3

= a−1c−1ba−1cbac−1bac−1ba−1cb = 1〉.
d = 5

〈a, b, c, e1, e2|b2 = (ab)3 = [a, c] = e2
2 = (be2)

2 = (bce2c
−1)2

= be1bae
−1
1 a

−1 = ce2c
−1e1e2ae

−1
1 a

−1 = 1〉
where e1, e2 are the images of the matrices

E1 =
( 4 + i√5 2i

√
5

−2i
√

5 4 − i√5

)
, E2 =

(−i√5 2

2 i
√

5

)
.

d = 6

〈a, b, c, e1, e2|b2 = (ab)3 = [a, c] = e2
2 = [b, e1] = (bae2)

3

= (bace2c
−1)3 = a−1e1ace2c

−1e−1
1 e2 = 1〉

where e1, e2 are the images of the matrices

E1 =
( 5 −2i

√
6

2i
√

6 5

)
, E2 =

(−1 − i√6 2 − i√6

2 1 + i√6

)
.

d = 7
〈a, b, c|b2 = (ab)3 = [a, c] = (bac−1bc)2 = 1〉.

d = 11
〈a, b, c|b2 = (ab)3 = [a, c] = (bac−1bc)3 = 1〉.

d = 15

〈a, b, c, e|b2 = (ab)3 = [a, c] = [b, e] = cecbac−1e−1c−1ba−1 = 1〉
where e is the image of the matrix

E =
( 4 −i√15

i
√

15 4

)
.
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6. Subgroups

Now for each possible value of ω in Tables 1–3 we want to identify a subgroup
of a Bianchi group which is commensurable with the appropriate two-generator
subgroup. For n = 3 all the groups in question are easily identifiable subgroups
of Bianchi groups. This is not so straightforward for elliptics of order 4 and 6
since these elements do not lie in the Bianchi groups. We overcome this prob-
lem by looking at the finite index subgroup 〈f, gfg−1, g2fg−2, g−1fg〉wheng
has order 4 and the finite index subgroup 〈f, gfg−1, g2fg−2, g3fg−3, g−2fg2,

g−1fg〉 when g has order 6. This procedure is straightforward for the Euc-
lidean Bianchi groups (those whereOd has a Euclidean Algorithm). However
the identification of these matrices in the Bianchi groups which are not Euc-
lidean is quite tricky. We were reduced to solving certain systems of nonlinear
equations to identify various conjugates. Of course, once the matrices are in
hand, it is a trivial matter to verify their correctness.

Table 4. Parabolic and elliptic of order 3.

d ω Subgroup generators I

−1 i ba, c ∞
−1 1 + i ba, ac 8

−1 2 + i ba, a2c ∞
−2 i

√
2 ba, c ∞

−2 1 + i√2 ba, ac ∞
−2 2 + i√2 ba, a2c ∞
−3

(
1 + i√3

)
/2 ba, c 1

−3
(
3 + i√3

)
/2 ba, ac ∞

−3
(
5 + i√3

)
/2 ba, a2c ∞

−3 i
√

3 ba, ac2a−2 ∞
−3 1 + i√3 ba, ac2a−1 ∞
−7

(
1 + i√7

)
/2 ba, c 2

−7
(
3 + i√7

)
/2 ba, ac ∞

−11
(
1 + i√11

)
/2 ba, c ∞

−11
(
3 + i√11

)
/2 ba, ac ∞

At this point the only obstruction to proving that the groups we are consid-
ering are arithmetic is showing they have finite covolume. Equivalently, we
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may show that the finite index subgroup of our two-generator group which lies
in a Bianchi group has finite index in that Bianchi group. In each table below
we give the appropriate subgroup of our two-generator group and its index in
the respective Bianchi group. How this index is derived is discussed in the next
section.

6.1. Parabolic and order 3

A conjugation by a diagonal matrix of the representatives given at (12) allows
us to assume the matrix representatives have the form

(15) X =
( 1 ω

0 1

)
, Y =

( 0 −1

1 2 cos(π/n)

)

The subgroup 〈f, g〉 is identified with a subgroup of the Bianchi group in
terms of the generators of the Bianchi group given in §5. The generators of the
subgroup and its index I are given in Table 4.

6.2. Parabolic and order 4

Returning to the representation at (12) the group generated by four parabol-
ics 〈f, gfg−1, g2fg−2, g−1fg〉 is the group generated by the images of the
following matrices:

X1 =
(

1 1
0 1

)

X3 =
( 1 + √

2ω 1

−2ω2 1 − √
2ω

)
X2 =

(
1 0

−ω2 1

)

X4 =
( 1 + √

2ω 2

−ω2 1 − √
2ω

)

This subgroup is identified as a subgroup of the corresponding Bianchi group
in Table 5.

6.3. Parabolic and order 6

In this case we consider the group generated by the images of the following
six parabolic matrices:

X1 =
(

1 1
0 1

)

X3 =
( 1 + √

3ω 1

−3ω2 1 − √
3ω

)

X5 =
( 1 + 2

√
3ω 4

−3ω2 1 − 2
√

3ω

)

X2 =
(

1 0
−ω2 1

)

X4 =
( 1 + 2

√
3ω 3

−4ω2 1 − 2
√

3ω

)

X6 =
( 1 + √

3ω 3

−ω2 1 − √
3ω

)
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Table 5. Groups generated by 4 parabolics.

d ω Subgroup generators I

−1 1+i√
2

a, bcb−1, a−1cbcb−1c−1a, a−1cba−1c−1babcabc−1a 1

−1 3+i√
2

a, ba4c3b−1, ba3cb−1ab−1a−3c−1b, a−1ba−2cbcb−1a2c−1b−1a ∞

−1 i
√

2 a, ba−2b−1, cbc−2babc2bc−1, cba−2b−1c−1 ∞
−1

√
2 + i√2 a, bc4b−1, b−1c2ba−1b−1c−2a−4b−1, cba2bc−1b−1a−2b ∞

−2 i a, ba−1b−1, cbc−1babcbc−1, cba−1b−1c−1 ∞
−2

√
2 + i a, bac2b−1, b−1acba−3c−1b, a−1cba−1c−1ba−2b 24

−2 2
√

2 + i a, ba7c4b−1, b−1a3cba−5c−1b, bab−1a−1cba−1c−1b−1a−3b−1 ∞
−3 1+i√3√

2
a, bc2a−2b−1, bc2b−1abc−2b−1, bcb−1a2bc−1b−1 60

−3 3+i√3√
2

a, bc6b−1, ba2c2b−1aba−2c−2b−1, bacb−1a2ba−1c−1b−1 ∞

−5 1+i√5√
2

a, bc2a−2b−1, bcb−1a−2c−1b, bce−1
2 a−1c−1b−1 ∞

−5 3+i√5√
2

a, ba−3c−3b−1, bace−1
2 a−2c−1b−1, ba2cba−1b−1abab−1a−2c−1b−1 ∞

−6 i
√

3 a, ba−3b−1, bce−1
2 a−1c−1b−1, ba−1cba−1b−1abab−1ac−1b−1 ∞

−6
√

2 + i√3 a, ba−1c2b−1, bcae−1
2 c−1a−2b−1, bacba−1b−1abab−1a−1c−1b−1 ∞

Next, for the various parameters ω we identify this subgroup of the appro-
priate Bianchi group.

Only two of the values of ω in this case give a subgroup of finite index. In
the interests of avoiding unnecessary tedium, we suppress the details of all the
cases except these two given in Table 6.

Table 6. Groups generated by 6 parabolics.

d ω Subgroup generators I

−3
√

3+i
2

a, bcb−1, bacb−1aba−1c−1b−1, bcbc−2b−1c−1bc2b−1c−1b−1,

a−2cb−1cba2c−1, bacba2c−1b−1cba−2cb−1a−1c−1b−1
1

−15
√

3+i√5
2

a, ba−1cb, bcba−2c−1b, bcbc−1bcbabc−1b,

bceba−1b, a−1cbc−1ba−1b
6

Completion of the proof of the Main Theorem: We have established
that there are fourteen groups. The Dehn filling descriptions of the groups are
obtained using SNAPPEA [39].

For |g| = 2, the groups are Z2-extensions of the two bridge knot and link
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complements (5/3), (8/3), (10/3), (12/5) (see §5.1 and [10]) and are gener-

ated by the images of the matrices X and

(
0 1
z 0

)
where z is given in [10].

Up to conjugacy, this group will lie in PGL(2,Od) if and only if z ∈ O∗
d . This

only occurs in the case of (5/3) where z = (1 + i√3)/2 and in that case the
group G lies in Gd .

For |g| = 3, the results follow immediately from §6.1.
For |g| = 4, let H be the subgroup generated by the 4 parabolic elements

whose index in the Bianchi group is given in Table 5, so thatH is normal inG

and |G/H | | 4. Whenω = (1+i)/√2, note that g is the image of

(
0 −1
i 1 + i

)
so that G is a subgroup of PGL(2,O1). Now G properly contains G1 and
since PGL(2,O1) is a maximal discrete subgroup of PSL(2, C), it follows that
G = PGL(2,O1). For ω = √

2 + i, it is easy to check that g2 �∈ G2 so that
|G/H | = 4. With a bit of extra calculation, one can show that no conjugate of
〈f, g2〉 can lie inside PGL(2,O2). For ω = (

1 + i√3
)
/
√

2, note that H lies
in the congruence subgroup

G3(1 − i√3) = P

{(
a b

c d

)
∈ SL(2,O3) | c ≡ 0

(
mod

(
1 − i√3

)
O3
)}
.

But then one can show that g2 �∈ G3
(
1 − i√3

)
so that |G/H | = 4. Now

g2 = P

( −1 −1+i√3
2

1 + i√3 1

)
, gfg−1 = P

( 1 0

1 − i√3 1

)

so that there is a subgroup of index 2 which lies inside G3.
For |g| = 6, ω = (

√
3 + i)/2, then

g = P

(
0

(
1 − i√3

)
/2(−1 + i√3

)
/2 i

√
3

)
∈ PGL(2,O3).

As above for ω = (1+ i)/√2, we obtain thatG = PGL(2,O3). The case ω =(√
3 + i√5

)
2 is of arithmetic interest. In contrast to the cases d = 1, 2, 3, 7,

there are two conjugacy classes of maximal orders in M2
(
Q
(√−15

))
as the

class number of Q
(√−15

)
is two. One is represented by 2 = M2(O15), so

that G15 = P21. The other is represented by

 =
{(
a b

c d

)
∈ M2

(
Q
(√−15

)) | a, d ∈ O15, c ∈ I, b ∈ I−1

}
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where I = 〈2, (3 + i√15)/2〉. Let G′
15 = P 1. Now G15,G

′
15 are commen-

surable, have the same covolume but are not isomorphic. One can show that
G∩G′

15 has index 2 in bothG andG′
15. Furthermore,G∩G′

15 is not conjugate
to a subgroup of G15. Examples of link complements in G′

15 which are not
conjugate to subgroups of G15 were given in [34].

7. Infinite index subgroups

A central task in obtaining the results presented in §6 is to decide whether or
not a given subgroup of a finitely-presented group has infinite index.

As a first step, we sought to prove that a subgroup H has finite index in a
groupG. We used the coset enumeration process of Havas [15] as implemented
in the computational algebra system Magma [3] to carry out these enumera-
tions. If the number of cosets defined exceeded some pre-assigned limit, we
aborted this process, and then attempted to prove that the subgroup has infinite
index by using one of the two techniques presented below.

7.1. A low-index strategy

This strategy relies on the following result.

Theorem 7.1. IfH is anm-generator subgroup of finite index in a groupG,
then for any intermediate subgroup K of G containing H the abelianisation
K/K ′ = K/[K,K] has rank at most m.

Proof. Since H has finite index in G, it also has finite index in K and
therefore H [K,K]/[K,K] has finite index in K/[K,K]. It follows that if
K/[K,K] is isomorphic to Zn × A where A is finite, then H [K,K]/[K,K]
must be isomorphic to Zn × B where B is finite. But H is an m-generator
group and can therefore have no abelian quotients of rank greater than m, so
this implies n ≤ m.

How can we exploit this result to prove that a given m-generator subgroup
H of a group G has infinite index? It suggests the following approach:

(1) Search in G for some subgroups K which contain H .

(2) For each such subgroup K , determine its abelian quotient invariants.
If K has more than m infinite cycles in its abelianisation, then H has
infinite index in G.

How can we find intermediate subgroups K of G which contain H? One
approach is to use the low-index subgroup algorithm. It constructs some or all
of those subgroups ofG of index up to a selected value which contain a given
subgroup. A description of the algorithm can be found in [33, Chapter 5].
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We used the algorithm in [16] to determine the abelian quotient invariants
of each subgroup produced.

Again, we used Magma to carry out these computations. In particular,
we implemented a procedure in the Magma language, which searched for a
limited number of subgroups of index lying between prescribed bounds which
contain the given subgroupH . The abelian quotient invariants of the resulting
subgroups were then computed. If no subgroup having the desired number
of infinite cycles was found, we then resumed our search, after adjusting the
search parameters.

This general approach was applied successfully to the subgroups inGd for
d = 2, 5, 6, 7, 11.

On occasion, the low-index algorithm failed to construct any useful sub-
groups of G containing H . In these cases, we used an alternative approach
to find subgroups K of G which contain H : namely, we chose K to be the
subgroup generated by H and some random words in the generators of G.
This random subgroup approach was necessary when we considered Gd for
d = 3, 15.

These approaches allowed us to determine the index of all subgroups in all
families, excluding G1.

7.2. Automatic coset systems

The concept of an automatic coset system was introduced in [28]. Its origins lie
in the theory of automatic groups. It is potentially a powerful tool for exploring
the subgroups of an automatic group.

Here we provide only the briefest summary. We refer the interested reader
to [6] for a general discussion of automatic groups and to [18] for a detailed
discussion of automatic coset systems.

Let G be a group with monoid generating set A and let H be a subgroup
of G. For our present limited purpose, the central relevant component of an
automatic coset system is a finite state automata W called the coset word
acceptor. The alphabet ofW is A.

For each right coset ofH inG, the coset word acceptorW has the property
that it accepts the unique minimal word (under some specific ordering) that
lies in each right coset of H in G. The size of the language accepted by W is
the index of H in G; if the language accepted is infinite, then H has infinite
index in G.

If an automatic coset system containing such a W exists for a specified
subgroup H of a group G, then G is coset automatic with respect to the sub-
group H . As one example, it is shown in [28] that the quasiconvex subgroups
of word-hyperbolic groups have automatic coset systems.



178 m. d. e. conder, c. maclachlan, g. j. martin and e. a. o’brien

In [18] an algorithm is presented for computing the finite state automata
that constitute an automatic coset system. Holt has implemented this algorithm
and it is distributed as part of his package KBMAG.

Two of the subgroups in PSL(2,O1) have finite index. We used KBMAG to
construct automatic coset systems for the remainder; in all cases, the language
accepted was infinite, and hence these subgroups have infinite index.

The list of subgroups used in establishing infinite index in each of the cases
above is quite long, and some of the generating sets are quite complicated. Thus
we have not listed these groups. However the interested reader can obtain this
list from the authors.
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