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UNIFORMLY DISTRIBUTED MEASURES IN
EUCLIDEAN SPACES

BERND KIRCHHEIM and DAVID PREISS

For every complete metric space X there is, up to a constant multiple, at most
one Borel regular measure µ over X such that

0 < µ(B(x, r)) = µ(B(y, r)) <∞ whenever x, y ∈ X and r ∈ (0,∞);

where the symbol B(x, r) stands for the closed ball with center in x and ra-
dius r . In fact, the existence of such a measure imposes rather strong regularity
conditions on the space X itself (see [2], [7], [10]); in particular from [3] we
know that, if X is a bounded subset of Rn, then it is contained in a sphere. In
the case when X ⊆ Rn, regularity results about X turned out to be the most
important tool in the study of densities of measures in Rn (see [9], or, for a
more detailed but less complete account, [8]). One of our main results con-
siderably improves several results from [9] by showing that any X ⊆ Rn is an
analytic variety. Our proof is much simpler than those presented in [9], which
enables us to give as an application a simple proof of a remarkable result of
Marstrand [6] according to which the existence of non-trivial s-dimensional
densities (of a measure in Rn) implies that s is an integer. Our results, however,
do not seem to be strong enough to show the main result of [9] that measures
having s-dimensional density are s rectifiable, because they do not give any
information about the behaviour of X at infinity.

In addition to the analyticity result mentioned above, we also show thatX is
an algebraic variety provided that it is bounded and obtain more precise results
in the special cases n = 1 and n = 2.

For various reasons, including the political changes in Europe, this note has
not been published for many years, although our main approach has become
known and used in the literature. We would like to thank the Max Planck
Institute for bringing us together and thus enabling us to recover the manuscript
and prepare it for publication.
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Under a measure µ over Rn we will understand a monotone, σ -subadditive
mapping of the family of all subsets of Rn into [0,∞] such that µ(A) =
inf{µ(B);A ⊆ B and B Borel set} and that µ(A ∪ B) = µ(A) + µ(B)
whenever dist(A,B) positive (i.e., µ is a Borel regular metric outer measure).
The last property is equivalent to the σ -additivity of µ on the family of all
Borel sets, see [4], 2.3.2(9).

The support of the measure µ over Rn is defined by

spt(µ) = {x ∈ Rn ; µ(B(x, r)) > 0 for every r > 0}.
Since in our situation we will always have X = spt(µ) ⊆ Rn, we avoid the

use of any special symbol for the space by adopting the following definition.

Definition 0.1. A measure µ over Rn is said to be uniformly distributed
if there is a function fµ : (0,∞)→ [0,∞] such that

(i) µ(B(x, r)) = fµ(r) for every x ∈ spt(µ) and r > 0, and

(ii) fµ(r) <∞ for some r > 0.

1. Uniformly distributed measures in Rn

Lemma 1.1. Let µ be a uniformly distributed measure over Rn, x ∈ Rn,
and 0 < s < r <∞, then µ(B(x, r)) ≤ 5n(r/s)nfµ(s).

Proof. Let Z ⊆ B(x, r) be a maximal set such that ‖z1 − z2‖ > s/2
whenever z1, z2 ∈ Z and z1 �= z2. Since the balls B(z, s/4), z ∈ Z, are mu-
tually disjoint, by comparison of their volumes we infer that (s/4)n cardZ ≤
(5r/4)n. Hence cardZ ≤ 5n(r/s)n and

µ(B(x, r)) ≤
∑
z∈Z
µ(B(z, s/2)) ≤ fµ(s) cardZ ≤ 5n(r/s)nfµ(s)

sinceµ(B(z, s/2)) = 0 in case whenB(z, s/2)∩spt(µ) = ∅ andµ(B(z, s/2))
≤ µ(B(x, s)) if x ∈ B(z, s/2) ∩ spt(µ).

Corollary 1.2. Let µ be a uniformly distributed measure over Rn. Then

(i) fµ(r) <∞ for every r > 0,

(ii) spt(µ) is bounded if and only if µ(Rn) <∞,

(iii)
∫

Rn exp(−s‖z − x‖2) dµ(z) = ∫ 1
0 µ(B(x,

√−(ln r)/s )) dr converges
for all s > 0 and x ∈ Rn, and

(iv)
∫

Rn exp(−s‖z − x‖2) dµ(z) = ∫
Rn exp(−s‖z − y‖2) dµ(z) whenever

s > 0 and x, y ∈ spt(µ).
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Proof. Since fµ(s) < ∞ for some s > 0, (i) follows from Lemma 1.1.
If spt(µ) is unbounded then there is an infinite set Z ⊆ spt(µ) such that
‖z1 −z2‖ > 2 whenever z1, z2 ∈ Z and z1 �= z2. Since µ(B(z, 1)) = fµ(1) >
0 for every z ∈ Z, we have µ(Rn) = ∞.

The formula in (iii) follows from Fubini’s theorem (see, e.g., [8], The-
orem 1.15), and the finiteness statement follows by using Lemma 1.1 to es-
timate

∫ 1

0
µ

(
B

(
x,

√−(ln r)/s )) dr ≤ 5n
∫ 1

0

(−(ln r)/s)n/2fµ(1) dr <∞.

Finally, (iv) follows from the formula in (iii), since for x ∈ spt(µ),

∫ 1

0
µ

(
B

(
x,

√−(ln r)/s )) dr =
∫ 1

0
fµ

(√−(ln r)/s ) dr
does not depend on x.

Theorem 1.3. Let µ be a uniformly distributed measure over Rn and let
x0 ∈ spt(µ). For every x ∈ Rn and s > 0 let

F(x, s) =
∫

Rn
[exp(−s‖z− x‖2)− exp(−s‖z− x0‖2)] dµ(z).

Then

(i) F(x, s) is well-defined and finite for any x ∈ Rn and any s > 0;
moreover, its definition is independent of the choice of x0 ∈ spt(µ).

(ii) x ∈ spt(µ) if and only if F(x, s) = 0 for every s > 0, and

(iii) if x /∈ spt(µ) then there is an sx ∈ (0,∞) such that F(x, s) < 0 for
every s ≥ sx .

Proof. Statement (i) follows from Corollary 1.2, (iii) and (iv). Ifx ∈ spt(µ)
and s > 0 then F(x, s) = 0 according to Corollary 1.2, (iv). If x /∈ spt(µ), let
ε ∈ (0, 1) be such that B(x, ε) ∩ spt(µ) = ∅. Using Lemma 1.1, we estimate

∫
Rn

exp(−s‖z− x‖2) dµ(z) =
∞∑
k=1

∫
B(x,(k+1)ε)\B(x,kε)

exp(−s‖z− x‖2) dµ(z)

≤
∞∑
k=1

exp(−sk2ε2)µ(B(x, (k + 1)ε))

≤ (10)n
∞∑
k=1

exp(−sk2ε2)(k + 1)nfµ(ε/2).
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Hence

lim
s→∞

∫
Rn exp(−s‖z− x‖2) dµ(z)∫

Rn exp(−s‖z− x0‖2) dµ(z)
≤ lim
s→∞

∫
Rn exp(−s‖z− x‖2) dµ(z)

exp(−sε2/4)fµ(ε/2)

≤ lim
s→∞(10)n

∞∑
k=1

exp(−sk2(ε2 − ε2/4))(k + 1)n = 0.

Consequently, there is an sx ∈ (0,∞) such that for every s ≥ sx∫
Rn

exp(−s‖z− x‖2) dµ(z) <
1

2

∫
Rn

exp(−s‖z− x0‖2) dµ(z),

which proves (iii) as well as the remaining implication in (ii).

Theorem 1.4. Let µ be a uniformly distributed measure over Rn. Then

(i) spt(µ) is an analytic variety, and

(ii) there is an integerm ∈ {0, 1, . . . , n}, a constant c ∈ (0,∞) and an open
subset G of Rn such that

(1) G ∩ spt(µ) is an m-dimensional analytic submanifold of Rn,

(2) Rn \ G is the union of countably many analytic submanifolds of Rn

of dimensions less than m, µ(Rn \G) = H m(Rn \G) = 0.

(3) µ(A) = cH m(A∩G∩spt(µ)) = cH m(A∩spt(µ)) for every subset
A ⊆ Rn. (H m denotes the m-dimensional Hausdorff measure.)

Proof. (i) For a direct proof, letH(x) = ∫ ∞
1 exp(−s3)F 2(x, s) ds, where

F is the function defined in Theorem 1.3. We easily see that H is a well-
defined function on Rn and, using Theorem 1.3 (iii) and (iv), that spt(µ) =
{x ∈ Rn ;H(x) = 0}. Moreover, H is an analytic function, since the function
H̃ taking at (x1, . . . , xn) ∈ Cn the value

∫ ∞

1
e−s

3

[∫
Rn
(exp(−s

n∑
i=1

(zi − xi)2))− exp(−s
n∑
i=1

(zi − x0
i )

2)) dµ(z)

]2

ds

is well-defined and holomorphic on the whole complex n-space Cn.
An alternative proof is obtained by noting that, for each s > 0, the set

{x : F(x, s) = 0} is an analytic variety, and that the intersection of (an
arbitrary number of) analytic varieties is again an analytic variety.

(ii) Whenever U ⊆ Rn is an open set and U ∩ spt(µ) is a nonempty k-
dimensional analytic submanifold of Rn, then the Besicovitch Differentiation
Theorem (see [4], 2.9.7) implies that the limit

f (z) = lim
r↘0
µ(B(z, r)/(µ+ H k spt(µ))(B(z, r))
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exists at (µ+ H k spt(µ))-almost every z ∈ U and

µ(A) =
∫
A

f (z) d(µ+ H k spt(µ))(z) for any Borel set A ⊆ U. (∗)

(Here H k spt(µ)(M) = H k(M ∩ spt(µ)) for any set M .) Then clearly
f (z) = limr↘0 fµ(r)/(fµ(r) + α(k)rk) for any z ∈ U ∩ spt(µ) where α(k)
denotes the volume of the k-dimensional unit ball. Thus

c = lim
r↘0
fµ(r)/(α(k)r

k)

exists; moreover c �= 0 since otherwise (∗) would imply µ(U) = 0 and
c �= ∞ since otherwise (∗)would imply H k(U ∩ spt(µ)) = 0. Consequently,
f = c/(c+ 1) at (µ+ H k spt(µ))-almost every point of U ∩ spt(µ), from
which, using (∗) once more, we infer that µ(A) = c · H k spt(µ)(A) for
every Borel set A ⊆ U .

Since the statement (ii) is trivial if µ is the zero measure, we may assume
that spt(µ) �= ∅. Let G be a maximal open subset of Rn such that G ∩ spt(µ)
is an analytic submanifold of Rn. Since G ∩ spt(µ) �= ∅ (see [4], 3.4.8),
we infer from the above analysis that there is an integer m ∈ {0, 1, . . . , n}
such that 0 < c = limr↘0 fµ(r)/(α(m)r

m) < ∞. Since this integer m is
determined uniquely, we conclude thatG∩spt(µ) is anm-dimensional analytic
submanifold of Rn. Therefore, according to [4], 3.4.8, Rn \ G is a countable
union of analytic submanifolds of Rn, all of dimension less than m. Hence
H m(Rn \ G) = 0 and, since µ is absolutely continuous with respect to H m

(see [4], 2.10.19(1)), µ(Rn \G) = 0. This proves (2). The statement (3) is an
easy corollary of (2) and of the analysis at the beginning of the proof of (ii).

Theorem 1.5. Let µ be a uniformly distributed measure over Rn with
bounded support and let x0 ∈ spt(µ). Then x ∈ spt(µ) if and only if

Pk(x) =
∫

Rn

[〈z− x, z− x〉k − 〈z− x0, z− x0〉k
]
dµ(z) = 0

for every natural number k ≥ 1.

Proof. Because spt(µ) is a compact set,

F(x, s) =
∞∑
k=1

(−s)k
k!

∫
Rn

[〈z− x, z− x〉k − 〈z− x0, z− x0〉k
]
dµ(z)

and hence F(x, s) = 0 for every s > 0 if and only if Pk(x) = 0 for every
k = 1, 2, . . ..
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Corollary 1.6. Let µ be a uniformly distributed measure over Rn with
bounded support. Then this support is an algebraic variety.

Proof. According to Theorem 6, spt(µ) = ⋂∞
k=0{x ∈ Rn ; Pk(x) = 0}.

But each Pk(x) is a polynomial in the coordinates of the point x. Hence Hil-
bert’s theorem for polynomials over a Noetherian ring (see [1], chap. III,
§2.10, Corollary 2) implies that there are natural numbers k1, . . . , kl such
that spt(µ) = ⋂l

j=1{x ∈ Rn ; Pkj (x) = 0}. Hence the support of the measure

µ is the zero-set, for example, of the polynomial P(x) = ∑l
j=1 P

2
kj
(x).

By considering the condition P1(x) = 0 we obtain the following result
which is contained already in [3].

Proposition 1.7. Let µ be a uniformly distributed measure over Rn with
bounded support. Then this support is contained in some (n− 1)-dimensional
sphere.

Proof. P1(x) = 0 means∫
Rn

[〈x, x〉 − 2〈z, x〉] dµ(z) =
∫

Rn
[〈x0, x0〉 − 2〈z, x0〉] dµ(z).

We denote by c = ∫
Rn z dµ(z)/µ(R

n) the barycentr of the measure µ. Then
〈x, x〉− 2〈c, x〉 = 〈x0, x0〉− 2〈c, x0〉 and consequently ‖x− c‖2 = ‖x0 − c‖2

for any x ∈ spt(µ).

Remark 1.8. If spt(µ) is a discrete, bounded set, then it is clearly finite.
Let k denote its cardinality. Then

spt(µ) = {x ∈ Rn ; Pm(x) = 0 for every m ≤ k}.
This can be shown using the Newton identities for the sums of them-th powers.

2. Uniformly distributed measures in R and R2

Now we investigate uniformly distributed measures on the straight line and on
the plane.

Proposition 2.1. The support of a uniformly distributed measure over the
straight line R is either the whole R or a discrete set.

Proof. It suffices to assume that ∅ �= spt(µ) �= R and to show that spt(µ)
contains an isolated point. Let x0 /∈ spt(µ). Then there exists some x1 ∈ spt(µ)
such that |x0 − x1| = min{|x0 − x| ; x ∈ spt(µ)}. We assume x0 < x1; the
case x0 > x1 is similar. If x1 is an accumulation point of spt(µ) then there are
x2, x3 ∈ spt(µ) satisfying 0 < 2(x2 −x1) < x3 −x1 < x1 −x0. Hence we can
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choose an ε ∈ (x3 − x2, x3 − x1). Because spt(µ) ∩ [x0, x1) = ∅, we obtain
µ(B(x1, ε)) = µ([x1, x1 +ε]) ≤ µ([x1, x2 +ε]) ≤ µ(B(x2, ε)). That implies
µ((x1 + ε, x2 + ε)) = 0 but x3 is an interior point of (x1 + ε, x2 + ε). This
contradiction shows that x1 must be an isolated point of spt(µ) and hence that
spt(µ) is a discrete set.

A simple combinatorial proof of the following lemma and of its corollary
may be left to the reader.

Lemma 2.2. Let µ be a uniformly distributed measure over R with discrete
and unbounded support. Then there are positive reals a, b and a bijection
φ : Z → R mapping the integers onto spt(µ) such that

φ(i + 1)− φ(i) =
{
a for even i
b for odd i

Corollary 2.3. There are three kinds of nonzero uniformly distributed
measures over R. The first kind are multiples of the Lebesgue measure by
positive constants. The second kind are the unbounded and discrete uniformly
distributed measures described in Lemma 2.2. The last kind are bounded and
discrete uniformly distributed measures; by Proposition 2.1, such measures
may be supported either by a single point or by a pair of points.

The following proposition completely characterizes those uniformly dis-
tributed measures over the plane that have a bounded support. A number of
examples of such measures with unbounded support can be also constructed,
but a general description has not been found yet.

Proposition 2.4. There are three kinds of nonzero uniformly distributed
measures over R2 with bounded support.

(i) The support of the measure is a circle.

(ii) The support is formed by the vertices of a regular polygon.

(iii) The support is formed by the vertices of two regular n-gons having the
same center and radius.

Proof. Because of Proposition 1.7, we may assume that spt(µ) ⊆ {x ∈
R2 ; ‖x − c‖ = r}. Let φ : R → R2 be defined by φ(t) = c + (r cos t, r sin t)
and let g : R → R be such that g(t) = µ(φ(0, t]) for t ∈ [0, 2π) and
g(t + 2π) = g(t)+µ(R2) for every t ∈ R. Then g is the distribution function
of some uniformly distributed measure λ over R and x ∈ spt(λ) if and only if
φ(x) ∈ spt(µ). The statement now follows from Corollary 2.3.

Remark 2.5. Clearly, a measure over Rn is uniformly distributed provided
it is locally finite and fulfills the following homogeneity condition:
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For every pair x, y ∈ spt(µ) there is an isometry φ : Rn → Rn such that
φ(x) = y and φ#µ = µ, where (φ#µ)(A) = µ(φ−1(A)).

The measures described in Corollary 2.3 and Proposition 2.4 are homogeneous
in this sense. On the other hand, the three dimensional measure concentrated
on the set {(x1, x2, x3, x4) ∈ R4 ; x2

4 = x2
1 + x2

2 + x2
3 }

is uniformly distributed (see [5] or [9]) but not homogeneous. It is unknown
whether there are non-homogeneous uniformly distributed measures in R2 or
R3, or in any Rn with bounded support or with discrete support.

3. An application: Proof of Marstrand’s Theorem

Using our results we will present here an alternative proof of one of the main
results in [6] which roughly says that the “density dimension” is always an
integer.

Theorem 3.1. Let µ be a metric outer measure over Rn, n ≥ 1, s a
nonnegative real number and let the sets B ⊆ A ⊆ Rn satisfy

(i) µ(B) > 0, and

(i) limr↘0 r
−sµ(B(x, r)∩A) exists and is positive and finite for any x ∈ B.

Then s is an integer.

Proof. Using standard regularization methods, we infer the measurability
of both x → lim supr↘0 r

−sµ(B(x, r)∩A) and x → lim infr↘0 r
−sµ(B(x, r)

∩ A), and (ii) we may in addition assume that µ̃ = µ A is Borel regular
(i.e., a measure) and locally finite in some open superset U of A and that
B is a compact set on which the functions x → ksµ̃(B(x, 1

k
)) uniformly

converge, as k tends to infinity, to a continuous function d : B → (0,∞).
The Besicovitch Differentiation theorem ([4], 2.9.7) ensures the existence of
an x0 ∈ B with limr↘0 µ̃(B(x0, r)\B)/µ̃(B(x0, r)) = 0. For k ≥ 1 we define
µ̃k(M) = ksµ̃(x0 + 1

k
M) and Bk = k · (B−x0). Since limk→∞ µ̃k(B(0, i)) =

d(x0)i
s for any integer i ≥ 0, we infer from well-known weak compactness

results for measures, see e.g., [8], Theorem 1.23 or [9], Proposition 1.12, that
there is a sequence ki ↗ ∞ of integers and a Radon measure , over Rn

such that ,(C) ≥ lim supi→∞ µ̃ki (C) for any compact set C and ,(G) ≤
lim inf i→∞ µ̃ki (G) for any open setG. We show that, is a nonzero uniformly
distributed measure with f,(r) = rsd(x0). Then it easily follows that s = m
for the integer m from Theorem 1.4 (ii). This will finish our proof.

Since,(B(0, 1)) ≥ d(x0) > 0, we have ∅ �= spt(,). Let x ∈ spt(,), R >
0 and fix a positive ε <R. Then 0 < ,(B(x, ε/2)) ≤ lim inf i→∞ µ̃ki (B(x, ε)).
According to the choice of x0 we have limi→∞ µ̃ki (B(0, ‖x‖ + 2ε) \Bki ) = 0
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and therefore for any i sufficiently large we may find a point yi ∈ B(x, ε)∩Bki .
Consequently, we can estimate

,(B(x,R)) ≥ lim sup
i→∞

µ̃ki (B(x, R)) ≥ lim sup
i→∞

µ̃ki (B(yi, R − ε))
= lim sup

i→∞
ki
sµ̃(B(x0 + yi/ki, (R − ε)/ki)) ≥ d(x0)(R − ε)s

since all (x0 + yi/ki) belong to B and the “average density” uniformly con-
verges on B. Similarly, one estimates that the,-measure of the interior of the
ball B(x,R + ε) is at most d(x0)(R + 2ε)s and, tending with ε to zero, we
infer that ,(B(x,R)) = d(x0)R

s as required.
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