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ON SOME SEMILINEAR EQUATIONS
OF SCHRÖDINGER TYPE

ROSSELLA AGLIARDI and DANIELA MARI

Abstract

We study the initial value problem for some semilinear pseudo-differential equations of the form
∂tu+ iH(x,Dx)u = F(u,∇u). The assumptions we make on H are trivially satisfied by �, thus
our equations generalize Schrödinger type equations. A local existence theorem is proved in some
weighted Sobolev spaces.

0. Introduction

In this paper we consider the initial value problem for some nonlinear evolution
equations of the form

(1) ∂tu + iH(x,Dx)u = F(u,∇u)

where H is a uniformly elliptic pseudo-differential operator of order 2 with
real symbol.

We assume that the nonlinear term F : C × Cn → C satisfies: F(u, q) ∈
C ∞(R2 × R2n) and |F(u, q)| ≤ C(|u|2 + |q|2) near the origin.

The simplest model we have in mind is the one with H(x, ξ) = |ξ |2, that
is (1) generalizes semilinear Schrödinger equations.

Most papers on semilinear Schrödinger equations are concerned with the
case F(u) or F(u,∇u) but Im ∂F

∂qj
= 0, j = 1, . . . , n. Some troubles arise

when one works with classical energy methods in the general case: even in the
linear case some difficulties arise owing to the imaginary part of the coeffi-
cients of ∂xj u. Correspondingly all the papers about the wellposedness of the
Cauchy problem inL2 or Sobolev spaces for linear Schrödinger equations give
necessary or sufficient conditions on the imaginary part of the first order terms
of the operator. (See [7], [8], [9], [12]).

In [2] Chihara succeeded in proving local existence in some weighted So-
bolev spaces for the semilinear Schrödinger equations in the case n = 1. In [3]
he generalized the result to higher space dimension. Our paper studies more
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general operators of Schrödinger type and thus it generalizes [3]. We need the
following additional assumption on H :

(2) ∃ c > 0 such that {H,p}(x, ξ) ≥ c〈x〉−2|ξ | for large |ξ |,
where p(x, ξ) = 〈ξ〉−1∑n

j=1 ξj arctg xj and {., .} denotes the Poisson’s brac-
ket, i.e. {H,p} = ∑n

j=1(∂ξjH∂xj p − ∂ξj p∂xjH).
A condition similar to (2) can be found in the literature on Schrödinger

equations (see (A2) in [5] for example). Such conditions are used to eliminate
– in some sense – the bad first order term.

1. Notation

For x ∈ Rn let 〈x〉 = (1 + |x|2)1/2 and 〈Dx〉 = (1 − �x)
1/2.

Let ‖‖ denote the L2-norm.
For m,p ∈ R let ‖f ‖m,p = ‖〈x〉p〈Dx〉mf ‖ and let Hm,p = {f ∈ S ′(Rn);

‖f ‖m,p < ∞}.
Note that Hm,0 is the usual Sobolev space Hm.
In the sequel if � is a sufficiently large integer we shall denote Hm+�,0 ∩

Hm+1,1 ∩ Hm,2 by �m,�.

We shall use the following notation for pseudo-differential operators. The
space of the symbols σ(x, ξ) ∈ C ∞(Rn × Rn) such that

sup
x,ξ∈Rn

α,β∈Nn

∣∣∂αξ Dβ
x σ (x, ξ)

∣∣〈ξ〉|α|−m < ∞

will be denoted by Sm. The calculus for the corresponding pseudo-differential
operators can be found in Kumano-go’s book [11].

2. The main result

Consider the following Cauchy problem for an equation of Schrödinger type:

(3) ∂tu + iH(x,Dx)u = F(u,∇xu) in ]0,∞) × Rn, u(t = 0) = u◦

We make the following assumptions:

(H1) H has a real symbol;

(H2) there exists c◦ > 0 such that |H(x, ξ)| ≥ c◦|ξ |2 ∀x, ξ ∈ Rn ;

(H3) ∃c > 0 such that {H,p}(x, ξ) ≥ c〈x〉−2|ξ | for large |ξ |, where {., .}
denotes the Poisson’s bracket and p(x, ξ) = 〈ξ〉−1∑n

j=1 ξj arctg xj .

(H4) sup
x,ξ∈Rn

∣∣∂αξ Dβ
x H(x, ξ)

∣∣.〈ξ〉|α+β|−2 < ∞, ∀α, β ∈ Nn.
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Moreover we make the following assumptions on the nonlinear term:

(F1) F : C × Cn → C belongs to C ∞(R2 × R2n);

(F2) there exists C > 0 such that |F(u, q)| ≤ C(|u|2 + |q|2) near (u, q) =
(0, 0).

In the following section we prove the following

Theorem 2.1. For any initial datum u◦ ∈ �m,� (where m and � are suffi-
ciently large integers) there exists a time T > 0 such that the Cauchy problem
(3) has a solution u ∈ C ([0, T ];�m,�).

To prove this theorem at first we consider a parabolic regularization of
our problem which depends on a viscosity parameter ε > 0. The regularized
problem is solved by linearization in §4. Finally a solution of (3) is obtained
as a zero limit of the solution of the regularized problem.

3. Parabolic regularization

For any ε ∈]0, 1] let us consider

(4)

{
∂tu

ε − ε�xu
ε + iH(x,Dx)u

ε = F(uε,∇xu
ε)

uε(0, x) = uo(x)

in ]0,+∞) × Rn, where H , F and u◦ are as in §2.
LetPε denote the linear operator ∂t−ε�x+iH(x,Dx). Let us first construct

a fundamental solution Sε(t) for Pε. Consider the following eikonal equation:

(5)

{
∂tφ(t, s; x, ξ) + H(x,∇xφ(t, s; s, ξ))
φ(s, s; x, ξ) = x.ξ

Then we have the following

Lemma 3.1. If H satisfies (H1) and (H4), then there exists T > 0 such that
for every t, s ∈ [−T , T ] the following estimate is true:

(6) sup
x∈Rn

∣∣∂αξ ∂βx (φ(t, s; x, ξ) − x.ξ)
∣∣ ≤ C ′

α,β |t − s|〈ξ〉2−|α+β|

∀α, β ∈ Nn, ∀ξ ∈ Rn with large |ξ |, and for some C ′
α,β .

Proof. The proof follows the lines of Theorem 4.1 in [11]. At first we prove
inductively that the solutions q(t, s; y, ξ) and p(t, s; y, ξ) of the Hamilton’s
equations 


dq

dt
= ∇ξH(q, p)

dp

dt
= −∇xH(q, p)

(q, p)|t=s = (y, ξ)
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satisfy the following estimates, for every α, β ∈ Nn:

sup
y∈Rn

∣∣∂αξ ∂βy (q(t, s; y, ξ) − y)
∣∣ ≤ C ′′

α,β |t − s|〈ξ〉1−|α+β|

sup
y∈Rn

∣∣∂αξ ∂βy (p(t, s; x, ξ) − ξ)
∣∣ ≤ C ′′

α,β |t − s|〈ξ〉1−|α+β|

Denoting the inverse mapping of y → x = q(t, s; y, ξ) by Y (t, s; x, ξ),
we can prove that, if T > 0 is sufficiently small, then for every α, β ∈ Nn,
t, s ∈ [−T , T ], ξ ∈ Rn with large |ξ |, and for some Aα,β , the following
inequality holds:

sup
y∈Rn

∣∣∂αξ ∂βx (Y (t, s; x, ξ) − x)
∣∣ ≤ Aα,β |t − s|〈ξ〉1−|α+β|

Finally we construct the solution of (5) setting

φ(t, s; x, ξ) = ψ(t, s;Y (t, s; x, ξ), ξ),
where

ψ(t, s; y, ξ) = y.ξ +
∫ t

s

(p.∇ξH − H)(τ, q(τ, s; y, ξ), p(τ, s; y, ξ)) dτ.

Consequently, we get (6).

Now we are going to construct a Fourier integral operator whose phase
is φ(t, s; x, ξ) and whose amplitude σ(t, s; x, ξ) ∼ ∑∞

j=0 σ2j (t, s; x, ξ) is
found by solving the following transport equations:

(T0)

{
∂tσ0(t) + ∇ξH(x,∇xφ(t, s; x, ξ)).∇xσ0(t) + cε(t, x, ξ)σ0(t) = 0

σ0(s) = 1

where

cε(t, x, ξ)

= 1

2

∑
ki

∂2
ξkξi

H(x,∇xφ(t, s; x, ξ))∂2
xkxi

φ(t, s; x, ξ) + ε|∇xφ(t, s; x, ξ)|2,

and for j ≥ 1

(T2j )



∂tσ2j (t) + ∇ξH(x,∇xφ(t, s; x, ξ)).∇xσ2j (t)

+ cε(t, x, ξ)σ2j (t) = −ibj (t, x, ξ)

σ2j (s) = 0
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with

bj (t, x, ξ)

=
j∑

k=1

∑
|γ |=k+1

1

γ !
Dγ

z

{
∂
γ

ξ H(x, ∇̃xφ(t, s; x, z, ξ))σ2j−2k(t, s; z, ξ)
}
z=x

− 2ε∇xφ(t, s; x, ξ).∇xσ2j−2(t, s; x, ξ)
+ iε�xσ2j−2(t, s; x, ξ)
− ε�xφ(t, s; x, ξ)σ2j−2(t, s; x, ξ)

being ∇̃xφ(t, s; x, z, ξ) = ∫ 1
0 ∇xφ(t, s; θz + (1 − θ)x, ξ) dθ.

We can prove inductively that there exists an increasing sequence C∗
n such

that:

(7)
∣∣∂αξ ∂βx σ2j (t, s; x, ξ)

∣∣ ≤ exp
(−3ε|t − s||ξ |2/4

)
.C|α+β|+6j

∗ 〈ξ〉−|α+β|−2j

·
|α+β|+2j∑

k=0

{2ε|t − s||ξ |2}k
k!

for every α, β ∈ Nn and for every j ∈ N. We can write:

|α+β|+2j∑
k=0

{2ε|t − s||ξ |2}k
k!

≤ 8|α+β|+2j exp
(
ε|t − s||ξ |2/4

)
,

so that (7) becomes:∣∣∂αξ ∂βx σ2j (t, s; x, ξ)| ≤ exp
(−ε|t − s||ξ |2/2)C∗∗

α,β,j 〈ξ〉−|α+β|−2j .

Finally, as in Lemma 3.2 in [11], we can construct a symbol which is equivalent
to the formal series of the symbols σ2j . Thus we obtain a fundamental solution
ofPε in the form of a Fourier integral operatorSε(t)with phaseφ and amplitude
σ ε such that:

(8)
∣∣∂αξ ∂βx σ ε(t, s; x, ξ)∣∣ ≤ exp

(−ε|t − s||ξ |2/2).Cα,β〈ξ〉−|α+β|.

Now we can prove the following

Proposition 3.2. If m, � are sufficiently large then for any uo ∈ �m,� there
exists a time Tε = T (ε, ‖uo‖�m, �) > 0 such that (4) has a unique solution
uε ∈ C ([0, Tε];�m,�).
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Proof. Let ϕ(x) be 1, xj (j = 1, . . . , n) or |x|2 and let α ∈ Nn be such that

|α| ≤


m + � if φ(x) = 1

m + 1 if φ(x) = xj

m if φ(x) = |x|2
We fix u in a class that will be defined in the continuation of this proof and
consider

(9)

{
∂tv − ε�xv + iH(x,Dx)v = F(u,∇xu)

v(0, x) = uo(x)

Applying ϕ(x)∂αx to (9) we get:

(10) ∂t (ϕ(x)∂
α
x v) − ε�x(ϕ(x)∂

α
x v) + iH(x,Dx)(ϕ(x)∂

α
x v)

= −ε(�xϕ(x)∂
α
x v + 2∇xϕ(x).∇x∂

α
x v) − i

[
ϕ(x)∂αx ,H(x,Dx)

]
v

+ ϕ(x)∂αx F (u,∇xu)

and

(11) ϕ(x)∂αx v(0, x) = ϕ(x)∂αx uo(x),

where [., .] denotes the usual commutator.
Let us consider the fundamental solution Sε(t) of Pε that we constructed

above. Then going back to (10) we can write:

ϕ∂αx v(t) = Sε(t)(ϕ∂αx uo) + ε

∫ t

0
Sε(t − τ)

(
�xϕ∂

α
x v + 2∇xϕ.∇x∂

α
x v
)
(τ ) dτ

− i

∫ t

0
Sε(t − τ)

[
ϕ∂αx ,H(x,Dx)

]
v(τ) dτ

+
∫ t

0
Sε(t − τ)

(
ϕ∂αx F (u,∇xu)

)
(τ ) dτ.

Let 4ε be a solution operator of (9) defined by 4ε(u) = v; then

ϕ∂αx 4
ε(u)(t) = Sε(t)(ϕ∂αx uo)

+ ε

∫ t

0
Sε(t − τ)

(
�xϕ∂

α
x 4

ε(u) + 2∇xϕ.∇x∂
α
x 4

ε(u)
)
(τ ) dτ

− i

∫ t

0
Sε(t − τ)

[
ϕ∂αx ,H(x,Dx)

]
4ε(u)(τ ) dτ

+
∫ t

0
Sε(t − τ)

(
ϕ∂αx F (u,∇xu)

)
(τ ) dτ.



on some semilinear equations of schrödinger type 145

Taking (8) into account and adapting Th. 2.3 in Ch. 10 of [11] we obtain, for
some constant cσ > 0, the following estimate:

∥∥ϕ∂αx 4ε(u)(t)
∥∥ ≤ cσ

(∥∥ϕ∂αx uo∥∥+ε

∫ t

0
I1(τ ) dτ+

∫ t

0
IH (τ) dτ

)
+
∫ t

0
IF (τ ) dτ,

where

I1(τ ) = ∥∥�xϕ∂
α
x 4

ε(u)(τ )
∥∥+ 2

∥∥∇xϕ.∇x∂
α
x 4

ε(u)(τ )
∥∥

IH (τ) = ∥∥[ϕ ∂αx ,H(x,Dx)
]
4ε(u)(τ )

∥∥
IF (τ ) = ∥∥Sε(t − τ)

(
ϕ(x)∂αx F (u,∇xu)

)
(τ )
∥∥.

Let Br(T ) = {u ∈ L∞([0, T ]),�m,�); ‖u‖m,�,T = supt∈[0,T ] ‖u(t)‖�m, � ≤
r} where r > 0 is such that ‖uo‖�m, � < r/(2cσ ), and assume u ∈ Br(T ). It
follows immediately that

I1(τ ) ≤ c′∥∥4ε(u)
∥∥
m,�,T

and since, in view of (H4), we can write[
ϕ(x)∂αx , H(x,Dx)

] = ϕ(x)R|α|(x,Dx)+∇ϕ(x).R′
|α|+1(x,Dx)+R′′

α|(x,Dx),

where the subscripts denote the order of the operators, then we have

IH (τ) ≤ C ′′∥∥4ε(u)
∥∥
m,�,T

.

If we choose ϕ(x) = 1, xj , |x|2 and |α| < m+ �,m+ 1,m respectively, then
we have:

IF (τ ) ≤ C ′
r

∥∥ϕ〈Dx〉|α|+1u(τ)
∥∥ ≤ C ′′

r ‖u(τ)‖�m, �.
In the cases |α| = m + �,m + 1,m respectively, we can obtain the following
estimates. Let α̂ = (α1, . . . , αk − 1, . . . , αn) for some k ∈ {1, . . . , n}. Then

IF (τ ) ≤ ∥∥Sε(t − τ)
(
∂xk (ϕ∂

α̂
x F (u,∇xu))(τ )

)∥∥
+ ∥∥Sε(t − τ)

(
∂xkϕ∂

α̂
x F (u,∇xu)(τ )

)∥∥
≤ sup

ξ∈Rn

(|ξ |e−ε|ξ |2(t−τ)/2
)
Ĉ
∥∥ϕ∂α̂x F (u,∇xu)(τ )

∥∥
+ cσ

∥∥∂xkϕ∂α̂x F (u,∇xu)(τ )
∥∥

≤ Ĉ/
(√

ε(t − τ)
)∥∥ϕ∂α̂x F (u,∇xu)(τ )

∥∥+ cσ
∥∥∂xkϕ∂α̂x F (u,∇xu)(τ )

∥∥
≤ C̃r

(
1 + 1/

√
ε(t − τ)

)‖u(τ)‖�m, �.
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Summing up we get the following estimate:∥∥4ε(u)
∥∥
m,�,T

≤ cσ‖uo‖�m, � + C∗T ‖4ε(u)‖m,�,T + Cr

(
T + 2

√
T/ε

)
r.

Hence, if we choose a sufficiently small Tε, we get

‖4ε(u)‖m,�,T ≤ r ∀T ≤ Tε.

If u, u′ ∈ Br(T ) a similar computation gives:∥∥4ε(u) − 4ε(u′)
∥∥
m,�,T

≤ (Cr/(1 − C∗T ))
(
T +√

T/ε)‖u − u′‖m,�,T .
Then 4ε is a contraction mapping on Br(T ), ∀T ≤ Tε.

4. Linearization and uniform energy estimates

In this section we write (4) in the form of a system. Then we diagonalize the
system. Finally we are able to obtain energy estimates by applying a method
which is now almost classic in the theory of linear equations of Schrödinger
type.

Let w = t
(
ϕ∂αx u, ϕ∂

α
x ū). Then (4) can be written in the following form:

(12) (∂t − ε� + iH − iB)w = G(u)

where

H (x,Dx) =
(
H(x,Dx) 0

0 −H(x,Dx)

)

B(x,Dx) =




n∑
j=1

∂F

∂qj
(u,∇u)Dxj

n∑
j=1

∂F

∂q̄j
(u,∇u)Dxj

n∑
j=1

∂F

∂qj
(u,∇u)Dxj

n∑
j=1

∂F

∂q̄j
(u,∇u)Dxj



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and G(u) = t (g(u), g(u)) with
(13)
g(u)

= −ε
(
�xϕ(x)∂

α
x u + 2∇xϕ(x).∇x∂

α
x u
)− i

[
ϕ(x)∂αx ,H(x,Dx)

]
u

+ ϕ(x)
∑
γ≤α̂

(
α̂

γ

)(
∂γx

(
∂F

∂u
(u,∇xu)

)
∂α−γ
x + ∂γx

(
∂F

∂ū
(u,∇xu)

)
∂α−γ
x ū

)

+ ϕ(x)

n∑
j=1

∑
0<γ≤α̂

(
α̂

γ

)(
∂γx

(
∂F

∂qj
(u,∇xu)

)
∂xj ∂

α−γ u

+ ∂γx

(
∂F

∂q̄j
(u,∇xu)

)
∂xj ∂

α−γ ū

)

−
n∑

j=1

∂xj ϕ(x)

(
∂F

∂qj
(u,∇xu)∂

α
x u + ∂F

∂q̄j
(u,∇xu)∂

α
x ū

)

if |α| > 0 and α̂ = (α1, . . . , αk − 1, . . .) for some k ∈ {1, . . . , n}.
Let u(t) ∈ �m,� be such that supt∈[0,T ] ‖u(t)‖�m−1,� ≤ r . Since F is quad-

ratic, there exists a constant cr such that

(14)

∣∣∣∣ ∂F∂qj (u,∇u)(t, x)

∣∣∣∣ ≤ cr(|u(t, x)| + |∇xu(t, x)|)
≤ Ccr〈x〉−2‖〈x〉2u(t, x)‖H [n/2]+2

≤ Ccr〈x〉−2‖u(t)‖�m−1,�

if m ≥ [n/2] + 3 and analogously∣∣∣∣ ∂F∂q̄j (u,∇u)(t, x)

∣∣∣∣ ≤ Ccr〈x〉−2‖u(t)‖�m−1,� .

Moreover taking (14) into account we can prove

(15) ‖G(u(t))‖ ≤ C ′
r‖u(t)‖�m,� .

Now define the operator L(t) = L(t, x,Dx) whose symbol is

�(t, x, ξ) =
(
H(x, ξ) − b11(t, x, ξ) −b12(t, x, ξ)

−b21(t, x, ξ) −H(x, ξ) − b22(t, x, ξ)

)
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where (bik)i,k=1,2 are the entries ofB. Note thatbik(t, x, ξ)=∑n
j=1 bikj (t, x)ξj

with |bikj (t, x)| ≤ rcr〈x〉−2 ∀t ∈ [0, T ] in view of (14). Let

λ̃(t, x, ξ) =

 0 1

2b12(t, x, ξ)/H(x, ξ)

− 1
2b21(t, x, ξ)/H(x, ξ) 0




In view of (H2) λ̃(t) ∈ (S−1
)2×2 ∀t ∈ [0, T ]. Letλ(t, x, ξ) = I+λ̃(t, x, ξ) and

λ′(t, x, ξ) = I − λ̃(t, x, ξ) where I is the identity, and let >̃(t) = λ̃(t, x,Dx),
>(t) = λ(t, x,Dx), >′(t) = λ′(t, x,Dx) denote the corresponding pseudo-
differential operators. Then we have the following

Lemma 4.1. Under the assumptions above there exists co(t) ∈ (
S0
)2×2

∀t ∈ [0, T ] such that

>(t)(L(t)v) = Ld(t)>(t)v + co(t)v

where Ld(t) = �d(t, x,Dx) and

�d(t, x, ξ) =
(
h(x, ξ) − b11(t, x, ξ) 0

0 −h(x, ξ) − b22(t, x, ξ)

)
.

Proof. In what follows we shall denote the symbol of a pseudo-differential
operator, say Q, by σ(Q). Since >′> = I − >̃2 we have

(16) >L = >L(>′> + >̃2) = >L>′> + >L>̃2.

where σ(>L>̃2)(t) ∈ (S0)2×2 ∀t ∈ [0, T ]. Moreover

(17)
σ (>L>′)(t) = σ(L − L>̃ + >̃L − >̃L>̃)(t)

= �(t, ., .) + σ(>̃L − L>̃)(t) − σ(>̃L>̃)(t)

where σ(>̃L>̃)(t) ∈ (S0)2×2 ∀t ∈ [0, T ]. Then we have:

σ(>̃L − L>̃)(t) = σ(>̃H − H >̃)(t) + σ(>̃B − B>̃)(t)

where σ(>̃B − B>̃)(t) ∈ (S0)2×2 ∀t ∈ [0, T ]. Moreover, if b denotes the
symbol of B and bd its diagonal, we have:

σ(>̃H − H >̃)(t) = b(t) − bd(t) + r0(t),

with r0(t) ∈ (S0)2×2. Denoting r0 −σ(>̃L>̃)+σ(>̃B−B>̃) by z, we obtain

σ(>L>′)(t) = �(t) + b(t) − bd(t) + z(t) = �d(t) + z(t).
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Denoting Z(t)>(t) + >(t)L(t)>̃2(t) by Co(t) and its symbol by c0(t), we
prove our claim in view of (16), (17).

Now we derive energy estimates for the diagonalized system. Define

(18) k(x, ξ) =
(
e−Mp(x,ξ) 0

0 eMp(x,ξ)

)

where p(x, ξ) = 〈ξ〉−1∑n
j=1 ξj arctg xj and M ≥ rcr/c, with cr as in (14),

and c as in (H3). Denote the corresponding operator by K(x,Dx). Applying
K>(t) to (12) we get

d

dt
‖K>(t)w(t)‖2 = 2 Re〈K∂t(>(t)w(t)),K>(t)w(t)〉

= 2 Re〈K(ε�>(t) − i>(t)L(t) + ε[>(t),�]

+ [∂t ,>(t)])w(t) + K>(t)G(u(t)),K>(t)w(t)〉
which, in view of Lemma 4.1, is equal to

2 Re〈K((ε� − iLd(t))>(t) + rε(t))w(t) + K>(t)G(u(t)),K>(t)w(t)〉
where rε(t) = ε[>(t),�] + [∂t ,>(t)] − ico(t) with co(t) ∈ (S0)2×2 ∀t ∈
[0, T ]. Since the first term in the asymptotic expansion of σ([>(t),�])(x, ξ)
is




0 −
0∑

j=1

ξjDxj (b12(t, x, ξ)/H(x, ξ))

0∑
j=1

ξjDxj (b21(t, x, ξ)/H(x, ξ)) 0




which belongs to (S0)2×2, then co(t) ∈ (S0)2×2 ∀t ∈ [0, T ].
Let us now examine the symbol of the diagonal matrix K(ε�− iLd (t))−

(ε� − iLd (t))K . A simple calculation shows that it is of the form

M




{p,H }(x, ξ)
+ 2εiξ.∇xp(x, ξ) 0

+ so(t, x, ξ)

{p,H }(x, ξ)
0 − 2εiξ.∇xp(x, ξ)

+ s̃o(t, x, ξ)


 k(x, ξ)
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with so(t), s̃o(t) ∈ S0. Thus

d

dt
‖K>(t)w(t)‖2

≤ −2 Re〈(iLd(t) − ε� + M{H,p})K>(t)w(t),K>(t)w(t)〉
+ (C ′

ε‖w(t)‖ + ‖K>(t)G(u)‖)‖K>(t)w(t)‖
In view of the assumption (H3) and of (14), we have

Im bkk(t, x, ξ) + M{H,p}(x, ξ) ≥ (−crr + Mc)〈x〉−2|ξ | ≥ 0,

for k = 1, 2. Then by applying the sharp Gårding inequality we obtain

Re〈(iLd(t) + M{H,p})K>(t)w(t),K>(t)w(t)〉 ≥ −C̃r‖K>(t)w(t)‖2,

for some C̃r > 0. Hence

−2 Re〈(iLd(t) − ε� + M{H,p})K>(t)w(t),K>(t)w(t)〉
≤ 2C̃r‖K>(t)w(t)‖2 − 2ε‖∇K>(t)w(t)‖2 ≤ 2C̃r‖K>(t)w(t)‖2.

Then we get

(19)

d

dt
‖K>(t)w(t)‖2 ≤ 2C̃r‖K>(t)w(t)‖2

+ (C ′
ε‖w(t)‖ + ‖K>(t)G(u)‖)‖K>(t)w(t)‖

5. End of the proof of the theorem

Let

Ẽ(u(t)) =
∑

|α|=m+�

∥∥K>(t)∂αx u(t)
∥∥+

n∑
j=1

∑
|α|=m+1

∥∥K>(t)(xj ∂
α
x u(t))

∥∥
+
∑

|α|=m

∥∥K>(t)(|x|2∂αx u(t))
∥∥

Let ε ∈]0, 1] and let uε ∈ C ([0, T ];�m,�) be a solution of (4) such that
supt∈[0,T ] ‖uε(t)‖�m−1,� ≤ r . Let

E(uε(t)) = Ẽ(uε(t)) + ‖uε(t)‖�m−1,� .

As in the proof of (4.3) in [3], one can see that E(uε(t)) is equivalent to
‖uε(t)‖�m,� ; specifically, if ‖uε(t)‖�m−1,� ≤ r , then there exists Mr > 1 such
that

M−1
r ‖uε(t)‖�m,� ≤ E(uε(t)) ≤ Mr‖uε(t)‖�m,� .
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Now from (19) and (15) we have

d

dt
‖K>(t)w(t)‖2 ≤ C∗∗

r E(uε(t))‖K>(t)w(t)‖,

and summing up on ϕ(x) and α we obtain

d

dt
Ẽ(uε(t)) ≤ C∗

r E(uε(t)).

Thus we finally obtain

E(uε(t)) ≤ E(uo)e
C∗
r t

withC∗
r which is independent of ε ∈]0, 1]. Then there exists a time T > 0 such

that {uε}ε∈]0,1] is bounded in C ([0, T ];�m,�), and thus by a standard argument
we get a solution u(t) ∈ �m,� ∀t ∈ [0, T ] of (3).
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