CONVOLUTION WITH MEASURES ON POLYNOMIAL CURVES

DANIEL M. OBERLIN*

This paper is concerned with convolution estimates for certain measures on degenerate curves in R^{2} and R^{3}. Analogous estimates in $R^{n}, n \geq 4$, were recently obtained for the (nondegenerate) curve $\left(t, t^{2}, \ldots, t^{n}\right)$ in [4]- see also [9] and [10]. Here is some of the history of this problem. Ideas going back to [6] show, for example, that if μ is the measure given by $d t$ on the circle $(\cos (t), \sin (t))$ or on the parabola $\left(t, t^{2}\right)$, then

$$
\begin{equation*}
\mu * L^{\frac{3}{2}}\left(\mathrm{R}^{2}\right) \subseteq L^{3}\left(\mathrm{R}^{2}\right) . \tag{1}
\end{equation*}
$$

And it is easy to see that these estimates are optimal - see [7] for more on this. The feature, common to these two curves, which in retrospect gives rise to (1) is the fact that on both of them the measure $d t$ is a multiple of the measure $\kappa^{\frac{1}{3}}(s) d s$ where $d s$ is arclength and κ is curvature. Drury [5] was the first to notice the importance of the measures μ given by $d \mu=\kappa^{\frac{1}{3}}(s) d s$ in the context of (1). In particular, it was Drury's idea to obtain (1) for the measure $d \mu=\kappa^{\frac{1}{3}}(s) d s$ on degenerate curves. His result (Theorem 1 in [5]) applies to curves of the form $(t, p(t))$, so that $d \mu=\left|p^{\prime \prime}(t)\right|^{\frac{1}{3}} d t$, where the convex function p satisfies certain regularity conditions. The paper [8] contains a similar result, valid for any real-valued polynomial p. And that estimate is uniform for polynomials of a fixed degree. Theorem 1 below generalizes this: the estimate (1) holds for curves ($p_{1}(t), p_{2}(t)$) with $d \mu=\kappa^{\frac{1}{3}}(s) d s$ if p_{1} and p_{2} are real-valued polynomials, and the convolution bounds are uniform in p_{1} and p_{2} if the degree of these polynomials is fixed.

Part of the motivation for the above-mentioned work of Drury stems from the fact that convolution estimates for curves in R^{2} can be used to obtain convolution estimates for curves in R^{3} - see [7]. The main result in [7] is the following: suppose that $p_{1}(t)$ and $p_{2}(t)$ are polynomials and that the two vectors $\left(p_{1}^{(j)}(t), p_{2}^{(j)}(t)\right), j=1,2$, are linearly independent for every $t \in$

[^0]$[a, b]$. Then the measure μ given by $\chi_{[a, b]} d t$ on the curve $\left(t, p_{1}(t), p_{2}(t)\right)$ satisfies
\[

$$
\begin{equation*}
\mu * L^{\frac{3}{2}}\left(\mathrm{R}^{3}\right) \subseteq L^{2}\left(\mathrm{R}^{3}\right) \tag{2}
\end{equation*}
$$

\]

This result, and its proof, were generalized in several papers, e.g., [12], [13], [5], where the main emphasis was the study of the curves

$$
\begin{equation*}
\left(t, t^{\alpha}, t^{\beta}\right) \tag{3}
\end{equation*}
$$

with the measures $t^{(1+\alpha+\beta) / 6-1} d t$. (The method of [7] is not the only one applicable to the curves (3)- see [9] and, in particular, [15] where the definitive result is obtained by modifying a homogeneity argument of Christ [3].)

If $\gamma(t)$ is a curve in R^{3}, we will write $D(t)$ for the absolute value of the determinant of the matrix

$$
\left(\begin{array}{c}
\gamma^{\prime}(t) \\
\gamma^{\prime \prime}(t) \\
\gamma^{(3)}(t)
\end{array}\right)
$$

When $\gamma(t)$ is given by (3), a computation shows that, up to a constant, $D(t)=t^{1+\alpha+\beta-6}$. The convolution results for these curves lead to the conjecture that, under mild additional hypotheses, the measure μ given by $D^{1 / 6}(t) d t$ on the curve $\gamma(t)$ will satisfy (2). Theorem 2 below shows that this conjecture is true for curves $\gamma(t)=\left(t, p_{1}(t), p_{2}(t)\right)$ when p_{1} and p_{2} are real-valued polynomials.

The recent papers [1] and [2] contain, among other interesting results, special cases of our Theorems 1 and 2 obtained by specializing to compact or homogenenous curves.

The remainder of this paper, then, is devoted to the proofs of the following results:

Theorem 1. Fix a positive integer N. There is a positive constant $C(N)$ such that if $p_{1}(t)$ and $p_{2}(t)$ are real-valued polynomials of degree not exceeding N and if μ is the measure on the curve $\left(p_{1}(t), p_{2}(t)\right),-\infty<t<\infty$, given by

$$
\left|p_{1}^{\prime}(t) p_{2}^{\prime \prime}(t)-p_{1}^{\prime \prime}(t) p_{2}^{\prime}(t)\right|^{\frac{1}{3}} d t
$$

then

$$
\|\mu * f\|_{L^{3}\left(\mathrm{R}^{2}\right)} \leq C(N)\|f\|_{L^{\frac{3}{2}}\left(\mathrm{R}^{2}\right)}
$$

for functions f on R^{2}.
Theorem 2. Suppose $p_{1}(t)$ and $p_{2}(t)$ are real-valued polynomials. Let μ be the measure on the curve $\left(t, p_{1}(t), p_{2}(t)\right),-\infty<t<\infty$, given by

$$
\left|p_{1}^{\prime \prime}(t) p_{2}^{(3)}(t)-p_{1}^{(3)}(t) p_{2}^{\prime \prime}(t)\right|^{\frac{1}{6}} d t
$$

Then there is a positive constant C such that

$$
\|\mu * f\|_{L^{2}\left(\mathrm{R}^{3}\right)} \leq C\|f\|_{L^{\frac{3}{2}}\left(\mathrm{R}^{3}\right)}
$$

for functions f on R^{3}.
It seems likely that the convolution bound in Theorem 2 is, as in Theorem 1, a function only of the degrees of p_{1} and p_{2}. A uniform version of Lemma 4 below would give this, but our current proof of that lemma does not seem to yield such an estimate.

The following lemma furnishes a Fourier transform estimate used in the proof of Theorem 1. It is an extension of the case $n=2$ of Theorem 2 in [8] and we postpone its proof until after the proofs of our main results.

Lemma 3. Given $N=2,3, \ldots$ and $\lambda \in \mathrm{R}$ there is a constant $C(N, \lambda)$ such that if $s \in \mathrm{R}$ and if p and q are real-valued polynomials of degree not exceeding N, then we have

$$
\left.\left|\int_{a}^{b} e^{i p(t)}\right| p^{\prime \prime}(t)\right|^{\frac{1}{2}+i s}|q(t)|^{i \lambda s} d t \left\lvert\, \leq C(N, \lambda)(1+|s|)^{\frac{1}{2}}\right.
$$

independently of $a, b \in \mathrm{R}$.
Proof of Theorem 1. Let (a, b) be any interval on which both $p_{1}^{\prime} p_{2}^{\prime \prime}-p_{1}^{\prime \prime} p_{2}^{\prime}$ and $p_{1}^{\prime \prime} p_{2}^{(3)}-p_{1}^{(3)} p_{2}^{\prime \prime}$ are of constant sign. Write $\kappa(t)$ for $\left|\left(p_{1}^{\prime} p_{2}^{\prime \prime}-p_{1}^{\prime \prime} p_{2}^{\prime}\right)(t)\right|$ and define

$$
T f\left(x_{1}, x_{2}\right)=\int_{a}^{b} f\left(x_{1}-p_{1}(t), x_{2}-p_{2}(t)\right) \kappa^{\frac{1}{3}}(t) d t
$$

It is enough to show that

$$
\|T f\|_{3} \leq C(N)\|f\|_{\frac{3}{2}} .
$$

We will treat the case where the signs of $p_{1}^{\prime} p_{2}^{\prime \prime}-p_{1}^{\prime \prime} p_{2}^{\prime}$ and $p_{1}^{\prime \prime} p_{2}^{(3)}-p_{1}^{(3)} p_{2}^{\prime \prime}$ are opposite. The other case is similar. Roughly following [5] (where, on p. 92, calculations similar to those which follow are done in more detail), we define an analytic family of operators by

$$
\begin{aligned}
& T_{z} f\left(x_{1}, x_{2}\right) \\
& =\frac{1}{\Gamma\left(\frac{z+1}{2}\right)} \int_{0}^{\infty} \int_{a}^{b} f\left(x_{1}-p_{1}(t)-u p_{1}^{\prime \prime}(t), x_{2}-p_{2}(t)-u p_{2}^{\prime \prime}(t)\right)(\kappa(t))^{1+\frac{2 z}{3}} d t|u|^{z} d u
\end{aligned}
$$

Since T_{-1} is a multiple of T, it will suffice, by analytic interpolation, to observe that

$$
\begin{equation*}
\left\|T_{i s} f\right\|_{\infty} \leq C(N)\|f\|_{1} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|T_{-\frac{3}{2}+i s} f\right\|_{2} \leq C(N)(1+|s|)^{\frac{1}{2}}\|f\|_{2} \tag{5}
\end{equation*}
$$

To see (4), just observe that the absolute value of the Jacobian of the map

$$
(t, u) \rightarrow\left(p_{1}(t), p_{2}(t)\right)+u\left(p_{1}^{\prime \prime}(t), p_{2}^{\prime \prime}(t)\right)
$$

is

$$
\left|\left(p_{1}^{\prime} p_{2}^{\prime \prime}-p_{1}^{\prime \prime} p_{2}^{\prime}\right)-u\left(p_{1}^{\prime \prime} p_{2}^{(3)}-p_{1}^{(3)} p_{2}^{\prime \prime}\right)\right|
$$

which, by our assumption on the signs of $p_{1}^{\prime} p_{2}^{\prime \prime}-p_{1}^{\prime \prime} p_{2}^{\prime}$ and $p_{1}^{\prime \prime} p_{2}^{(3)}-p_{1}^{(3)} p_{2}^{\prime \prime}$, exceeds κ. For (5) we must estimate the Fourier transform of $T_{-3 / 2+i s}$ at $\xi \in \mathrm{R}^{2}$. If we write $p(t)=\xi \cdot\left(p_{1}(t), p_{2}(t)\right)$ and $q(t)=\left(p_{1}^{\prime} p_{2}^{\prime \prime}-p_{1}^{\prime \prime} p_{2}^{\prime}\right)(t)$, then a well-known calculation shows that this Fourier transform is a multiple of

$$
\int_{a}^{b} e^{i p(t)}\left|p^{\prime \prime}(t)\right|^{\frac{1}{2}-i s}|q(t)|^{\frac{2 i s}{3}} d t
$$

This integral is controlled by Lemma 3, and so the proof of Theorem 1 is complete.

The proof of Theorem 2 is an adaptation of the proof in [7]. It depends on Theorem 1 and on Lemma 4 below. The proof of Lemma 4 is elementary but tedious, and we postpone it until the end of the paper.

Lemma 4. Suppose f and g are real-valued polynomials on R. Define

$$
\begin{aligned}
& G(a, b)=\left(f^{\prime} g^{\prime \prime}-f^{\prime \prime} g^{\prime}\right)(a)\left(f^{\prime} g^{\prime \prime}-f^{\prime \prime} g^{\prime}\right)(b), \\
& F(a, b)=\frac{(f(b)-f(a))\left(g^{\prime}(b)-g^{\prime}(a)\right)-\left(f^{\prime}(b)-f^{\prime}(a)\right)(g(b)-g(a))}{(b-a)^{2}}
\end{aligned}
$$

if $a, b \in \mathrm{R}, a \neq b$, and

$$
F(a, a)=\left(f^{\prime} g^{\prime \prime}-f^{\prime \prime} g^{\prime}\right)(a)
$$

Then there are a finite partition of R into a union of intervals I_{j} and a positive constant M such that

$$
|G(a, b)|^{\frac{1}{2}} \leq M|F(a, b)|
$$

whenever a and b are both in the same I_{j}.

Proof of Theorem 2. Fix polynomials p_{1} and p_{2}, take $f=p_{1}^{\prime}$ and $g=p_{2}^{\prime}$, and let I_{j} be as in Lemma 4. If $I_{j}=[a, b], \gamma(t)=\left(t, p_{1}(t), p_{2}(t)\right)$, and $D(t)=\left|p_{1}^{\prime \prime}(t) p_{2}^{(3)}(t)-p_{1}^{(3)}(t) p_{2}^{\prime \prime}(t)\right|$, define

$$
T f(x)=\int_{a}^{b} f(x-\gamma(t)) D^{\frac{1}{6}}(t) d t
$$

for $x \in \mathrm{R}^{3}$ and functions f on R^{3}. It is enough to prove that T maps $L^{3 / 2}\left(\mathrm{R}^{3}\right)$ into $L^{2}\left(\mathrm{R}^{3}\right)$. We will do this by applying Theorem 1 in conjunction with the method of [7]. By the "method of $T^{*} T$ ", it is enough to show that, if S is the operator given by

$$
S f(x)=\int_{a}^{b} \int_{a}^{b} f(x-\gamma(t)+\gamma(s)) D^{\frac{1}{6}}(t) D^{\frac{1}{6}}(s) d t d s
$$

then S maps $L^{3 / 2}\left(\mathrm{R}^{3}\right)$ into $L^{3}\left(\mathrm{R}^{3}\right)$. Writing $x=\left(x_{1}, x^{\prime}\right)$ for $x \in \mathrm{R}^{3}=\mathrm{R} \times \mathrm{R}^{2}$ and $\phi(t)=\left(p_{1}(t), p_{2}(t)\right)$ and then changing variables leads to
$S f\left(x_{1}, x^{\prime}\right)=\int_{a-b}^{b-a} \int_{I_{u}} f\left(x_{1}-u, x^{\prime}-\phi(s+u)+\phi(s)\right) D^{\frac{1}{6}}(s+u) D^{\frac{1}{6}}(s) d s d u$,
where I_{u} is the appropriate subinterval of $[a-b, b-a]$. Writing

$$
p_{1, u}(s)=p_{1}(s+u)-p_{1}(s)
$$

and similarly for $p_{2, u}$, the conclusion of Lemma 4 shows that $|S f(x)|$ is majorized by

$$
\begin{aligned}
& \operatorname{Pf}\left(x_{1}, x^{\prime}\right)= \\
& \int_{a-b}^{b-a} \int_{I_{u}}|f|\left(x_{1}-u, x^{\prime}-\left(p_{1, u}(s), p_{2, u}(s)\right)\right)\left|\left(p_{1, u}^{\prime} p_{2, u}^{\prime \prime}-p_{1, u}^{\prime \prime} p_{2, u}^{\prime}\right)(s)\right|^{\frac{1}{3}} d s|u|^{-\frac{2}{3}} d u
\end{aligned}
$$

For fixed x_{1} and u, Theorem 1 shows that

$$
\left\|\int_{I_{u}}|f|\left(x_{1}-u, x^{\prime}-\left(p_{1, u}(s), p_{2, u}(s)\right)\right)\left|\left(p_{1, u}^{\prime} p_{2, u}^{\prime \prime}-p_{1, u}^{\prime \prime} p_{2, u}^{\prime}\right)(s)\right|^{\frac{1}{3}} d s\right\|_{3, x^{\prime}}
$$

is bounded by a constant times $\left\|f\left(x_{1}-u, \cdot\right)\right\|_{3 / 2}$, and so

$$
\|P f\|_{3} \leq C\left\|\int_{a-b}^{b-a}\right\| f\left(x_{1}-u, \cdot\right)\left\|_{3 / 2}|u|^{-\frac{2}{3}} d u\right\|_{3, x_{1}}
$$

The boundedness of the one-dimensional Riesz potential of order $\frac{1}{3}$ as a mapping of $L^{3 / 2}(\mathrm{R})$ into $L^{3}(\mathrm{R})$ now completes the proof of Theorem 2 .

The two lemmas which follow are used in the proof of Lemma 3. The first is Lemma 3 in [8].

Lemma 5. Fix a positive integer N. There are positive constants $K=K(N)$ and $L=L(N)$ such that if

$$
r(t)=\prod_{j=1}^{J_{1}}\left(t-a_{j}\right) \prod_{j=J_{1}+1}^{J_{2}}\left[\left(t-a_{j}\right)^{2}+b_{j}^{2}\right]
$$

is a monic polynomial of degree not exceeding N with the a_{j} 's distinct and each b_{j} real, then there exists a collection $\left\{I_{l}\right\}_{l=1}^{L_{1}}$, with $L_{1} \leq L$, of pairwise disjoint subintervals of R satisfying

$$
\int_{\mathrm{R} \sim \cup I_{l}}\left|\frac{r^{\prime}}{r}\right| \leq K
$$

and such that for each l there are $C=C(l) \in(0, \infty), j=j(l) \in\left\{1,2, \ldots, J_{2}\right\}$, and a nonnegative integer $n=n(l)$ with

$$
\frac{C}{K}\left|t-a_{j}\right|^{n} \leq|r(t)| \leq C K\left|t-a_{j}\right|^{n}, \quad t \in I_{l}
$$

and

$$
\frac{1}{K\left|t-a_{j}\right|} \leq\left|\frac{r^{\prime}}{r}\right| \leq \frac{K}{\left|t-a_{j}\right|}, \quad t \in I_{l}
$$

Lemma 6. Given a positive integer N, there is a positive constant $C=C(N)$ such that if $p(t)$ is a real-valued polynomial of degree not exceeding N, then, for any $\rho>1, K>0$,

$$
\int_{\{K \leq|t p(t)| \leq \rho K\}} \frac{d t}{|t|} \leq C \cdot(\log (\rho)+1)
$$

Proof of Lemma 6. Without loss of generality we can write

$$
t p(t)=t^{l_{1}} \prod\left(t-a_{j}\right) \prod\left(\left(t-b_{j}\right)^{2}+c_{j}^{2}\right) \prod\left(t^{2}+d_{j}^{2}\right) \doteq t^{l_{1}} \prod p_{j}(t)
$$

where the number of factors p_{j} does not exceed N. Let C be a constant depending only on N, but which may not be the same at each occurrence. For nonnegative numbers A and B, we will write $A \sim B$ if $B / C \leq A \leq C B$. We begin by observing that for each p_{j} there is a partition

$$
\mathrm{R}=I_{j} \cup\left(\bigcup_{l} I_{j}^{l}\right)
$$

of R into at most ten intervals such that

$$
\int_{I_{j}} \frac{d t}{|t|} \leq C
$$

and such that on each I_{l}^{j} either $\left|p_{j}\right| \sim c_{l}^{j}$ for some positive constant c_{l}^{j} or $\left|p_{j}(t)\right| \sim|t|$ or $\left|p_{j}(t)\right| \sim t^{2}$. (For example, if $p_{j}(t)=t-a_{j}$ with $a_{j}>0$, then

$$
\begin{gathered}
\left|p_{j}(t)\right| \sim|t| \quad \text { if } t \leq \frac{-a_{j}}{2}, \quad\left|p_{j}(t)\right| \sim\left|a_{j}\right| \quad \text { if } \frac{-a_{j}}{2} \leq t \leq \frac{a_{j}}{2} \\
\int_{\frac{a_{j}}{2}}^{\frac{3 a_{j}}{2}} \frac{d t}{|t|} \leq \log (3)
\end{gathered}
$$

and

$$
\left.\left|p_{j}(t)\right| \sim|t| \text { if } \frac{3 a_{j}}{2} \leq t .\right)
$$

It is a consequence of this observation that the complement of $\cup I_{j}$ can be represented as a union of at most C disjoint intervals J_{l} on each of which $|t p(t)| \sim c_{l}|t|^{n_{l}}$ for some positive c_{l} and some nonnegative integer n_{l}. Then

$$
\int_{\{K \leq|t p(t)| \leq \rho K\} \cap J_{l}} \frac{d t}{|t|} \leq \int_{\left\{\frac{K}{\left(C C_{l}\right)} \leq|t|^{\left.n_{l} \leq \frac{\rho K C}{c_{l}}\right\}}\right.} \frac{d t}{|t|} \leq C(\log (\rho)+1)
$$

Proof of Lemma 3. This is similar to, but more complicated than, the proof of Theorem 2 in [8]. We begin with some reductions: replacing q by a power of q shows that we can assume $0<\lambda \leq 1$. It is clear that we may asssume that $q(t)$ is monic, and a scaling argument shows that we may assume $p^{\prime}(t)$ to be monic. Then an approximation argument shows that it is enough to prove Lemma 3 under the additional hypothesis that both $r(t) \doteq p^{\prime}(t)$ and $r(t) \doteq q(t)$ meet the other requirements of Lemma 5. Finally, it will suffice to show that the conclusion of Lemma 3 holds if $p^{\prime}, p^{\prime \prime}$, and

$$
\left|\frac{p^{\prime \prime}}{\left(p^{\prime}\right)^{2}}\right|-\frac{1}{10(1+|s|)}
$$

are of constant sign on $(a, b) \doteq I$.
Case 1: $\frac{1}{10(1+|s|)} \leq\left|\frac{p^{\prime \prime}}{\left(p^{\prime}\right)^{2}}\right|$ on I. The argument here is identical to that for Case II in the proof of Theorem 2 in [8].

Case $2:\left|\frac{p^{\prime \prime}}{\left(p^{\prime}\right)^{2}}\right| \leq \frac{1}{10(1+|s|)}$ on I. After making the change of variables $u=$ $p(t)$, we need to estimate an integral of the form

$$
\begin{equation*}
\int_{J} e^{i\left(u+2 s \log \left|p^{\prime}\left(p^{-1}(u)\right)\right|+\lambda s \log \left|q\left(p^{-1}(u)\right)\right|\right)}\left|\frac{p^{\prime \prime}\left(p^{-1}(u)\right)}{p^{\prime}\left(p^{-1}(u)\right)^{2}}\right|^{\frac{1}{2}+i s} d u \tag{6}
\end{equation*}
$$

where $J=p(I)$. The derivative of the phase function is

$$
\begin{equation*}
1+2 s \frac{p^{\prime \prime}\left(p^{-1}(u)\right)}{p^{\prime}\left(p^{-1}(u)\right)^{2}}+\lambda s \frac{q^{\prime}\left(p^{-1}(u)\right)}{q\left(p^{-1}(u)\right) p^{\prime}\left(p^{-1}(u)\right)} \tag{7}
\end{equation*}
$$

For any subinterval J^{\prime} of J we have

$$
\begin{aligned}
& \int_{J^{\prime}}\left|\frac{d}{d u}\right| \left.\left.\frac{p^{\prime \prime}\left(p^{-1}(u)\right)}{p^{\prime}\left(p^{-1}(u)\right)^{2}}\right|^{\frac{1}{2}+i s}|d u=2| \frac{1}{2}+i s\left|\int_{J^{\prime}}\right| \frac{d}{d u}\left|\frac{p^{\prime \prime}\left(p^{-1}(u)\right)}{p^{\prime}\left(p^{-1}(u)\right)^{2}}\right|^{\frac{1}{2}} \right\rvert\, d u \\
& \quad \leq C(N)\left|\frac{1}{2}+i s\right| \sup \left\{\left|\frac{\left.p^{\prime \prime}\left(p^{-1}(u)\right)\right)}{p^{\prime}\left(p^{-1}(u)\right)^{2}}\right|^{\frac{1}{2}}: u \in J^{\prime}\right\} \leq C(N)(1+|s|)^{\frac{1}{2}}
\end{aligned}
$$

Here the first inequality follows from the fact that, since p is a polynomial of degree not exceeding N,

$$
\frac{d}{d u}\left|\frac{p^{\prime \prime}\left(p^{-1}(u)\right)}{p^{\prime}\left(p^{-1}(u)\right)^{2}}\right|^{\frac{1}{2}}
$$

will have at most $C(N)$ sign changes on J^{\prime}. The second inequality is a consequence of the Case 2 assumption. It follows from a variant of van der Corput's lemma ([16], p. 334), that if J^{\prime} is a subinterval of J on which the absolute value of (7) exceeds, say, $\frac{1}{10}$, then the part of (6) corresponding to J^{\prime} is bounded by $C(N)(1+|s|)^{\frac{1}{2}}$. Since J is a union of at most $C(N)$ intervals on each of which either $|(7)|>\frac{1}{10}$ or $|(7)| \leq \frac{1}{10}$, it suffices to estimate (6) with J replaced by some J^{\prime} on which $|(7)| \leq \frac{1}{10}$. From the Case 2 assumption it follows that then

$$
\begin{equation*}
\frac{7}{10|s| \lambda} \leq\left|\frac{q^{\prime}\left(p^{-1}(u)\right)}{q\left(p^{-1}(u)\right) p^{\prime}\left(p^{-1}(u)\right)}\right| \leq \frac{13}{10|s| \lambda} \tag{8}
\end{equation*}
$$

on J^{\prime} and again that

$$
\begin{equation*}
\left|\frac{p^{\prime \prime}\left(p^{-1}(u)\right)}{\left(p^{\prime}\left(p^{-1}(u)\right)\right)^{2}}\right| \leq \frac{1}{10(1+|s|)} \leq \frac{7}{10|s| \lambda} \leq\left|\frac{q^{\prime}\left(p^{-1}(u)\right)}{q\left(p^{-1}(u)\right) p^{\prime}\left(p^{-1}(u)\right)}\right| \tag{9}
\end{equation*}
$$

on J^{\prime}. Now take $r=q$ in Lemma 5 and let the intervals $I^{\prime}{ }_{l}$ be such that

$$
\begin{equation*}
\int_{\mathrm{R} \sim \cup I_{l}^{\prime}}\left|\frac{q^{\prime}}{q}\right| \leq C \tag{10}
\end{equation*}
$$

Let $I^{\prime}=p^{-1}\left(J^{\prime}\right)$ so that on I^{\prime} we have the inequalities

$$
\frac{7}{10|s| \lambda} \leq\left|\frac{q^{\prime}(t)}{q(t) p^{\prime}(t)}\right| \leq \frac{13}{10|s| \lambda}
$$

and

$$
\begin{equation*}
\left|\frac{p^{\prime \prime}(t)}{\left(p^{\prime}(t)\right)^{2}}\right| \leq\left|\frac{q^{\prime}(t)}{q(t) p^{\prime}(t)}\right| \tag{9'}
\end{equation*}
$$

From (9^{\prime}) and (8^{\prime}) it follows that on I^{\prime} we have

$$
\left|p^{\prime \prime}\right| \leq C\left|p^{\prime}\right|\left|\frac{q^{\prime}}{q}\right|, \quad\left|p^{\prime}\right| \leq C|s|\left|\frac{q^{\prime}}{q}\right|,
$$

and so

$$
\begin{equation*}
\left|p^{\prime \prime}\right|^{\frac{1}{2}} \leq C|s|^{\frac{1}{2}}\left|\frac{q^{\prime}}{q}\right| \tag{11}
\end{equation*}
$$

Now (10) and (11) give

$$
\int_{I^{\prime} \sim \cup I_{l}^{\prime}}\left|p^{\prime \prime}\right|^{\frac{1}{2}} \leq C|s|^{\frac{1}{2}}
$$

On the other hand, on an $I^{\prime}{ }_{l}$ we have, by Lemma 5,

$$
\begin{equation*}
\left|\frac{q^{\prime}(t)}{q(t)}\right| \sim \frac{1}{|t-c|} \tag{12}
\end{equation*}
$$

for some c. With $\left(8^{\prime}\right)$ this gives the inequalities

$$
\frac{1}{C|s| \lambda} \leq \frac{1}{\left|p^{\prime}(t)\right||t-c|} \leq \frac{C}{|s| \lambda}
$$

on $I^{\prime} \cap I^{\prime}{ }_{l}$. And with (11) and (12) this gives

$$
\int_{I^{\prime} \cap I_{l}^{\prime} l}\left|p^{\prime \prime}\right|^{\frac{1}{2}} \leq C|s|^{\frac{1}{2}} \int_{I^{\prime} \cap I_{l}^{\prime}}\left|\frac{q^{\prime}}{q}\right| \leq C|s|^{\frac{1}{2}} \int_{\left\{\frac{1}{C| | \mid \lambda} \leq \frac{1}{\left|(t-c) p^{\prime}(t)\right|} \leq \frac{c}{|s| \lambda}\right\}} \frac{d t}{|t-c|}
$$

Thus Lemma 6 completes the proof of Lemma 3.
Proof of Lemma 4. This is a consequence of the following two facts:
Sublemma A. If $x_{0} \in \mathrm{R}$ then there are $\delta>0$ and $M<\infty$ such that the inequality

$$
\begin{equation*}
|G(a, b)|^{\frac{1}{2}} \leq M|F(a, b)| \tag{13}
\end{equation*}
$$

holds if $a, b \in\left(x_{0}-\delta, x_{0}\right)$ or if $a, b \in\left(x_{0}, x_{0}+\delta\right)$.
Sublemma B. There are positive constants P and M such that (13) holds if $a, b \geq P$ or $a, b \leq-P$.

Proof of Sublemmas A and B. Without loss of generality we will take $x_{0}=0$. Let n be the maximum of the degrees of f and g. Write

$$
f(x)=\sum_{j=0}^{n} c_{j} x^{j}, \quad g(x)=\sum_{j=0}^{n} d_{j} x^{j}
$$

Letting T_{k} stand for the sum

$$
\sum_{l=0}^{k} a^{k-l} b^{l}
$$

we see that

$$
\frac{f(b)-f(a)}{b-a}=\sum_{j=1}^{n} c_{j} T_{j-1} \quad \text { and } \quad \frac{g^{\prime}(b)-g^{\prime}(a)}{b-a}=\sum_{j=2}^{n} j d_{j} T_{j-2}
$$

With similar expressions for

$$
\frac{f^{\prime}(b)-f^{\prime}(a)}{b-a} \quad \text { and } \quad \frac{g(b)-g(a)}{b-a}
$$

this leads to

$$
\begin{equation*}
F(a, b)=\sum_{j_{1}=1, j_{2}=2}^{n, n}\left(c_{j_{1}} d_{j_{2}}-d_{j_{1}} c_{j_{2}}\right) j_{2} T_{j_{1}-1} T_{j_{2}-2} \tag{14}
\end{equation*}
$$

Let $n\left(j_{1}, j_{2}, l\right)$ stand for the cardinality of the set

$$
\left\{\left(l_{1}, l_{2}\right): 0 \leq l_{1} \leq j_{1}-1,0 \leq l_{2} \leq j_{2}-2, l_{1}+l_{2}=l\right\}
$$

Then the coefficient of $a^{j} b^{l}$ in (14) is

$$
\sum_{\substack{j_{1}=1, j_{2}=2 \\ j_{1}+j_{2}-3=j+l}}^{n, n}\left(c_{j_{1}} d_{j_{2}}-d_{j_{1}} c_{j_{2}}\right) j_{2} n\left(j_{1}, j_{2}, l\right) \doteq \sum_{\substack{j_{1}, j_{2}=1 \\ j_{1}<j_{2} \\ j_{1}+j_{2}-3=j+l}}^{n}\left(c_{j_{1}} d_{j_{2}}-d_{j_{1}} c_{j_{2}}\right) m\left(j_{1}, j_{2}, l\right)
$$

Thus
(15) $\quad F(a, b)=\sum_{J \geq 0} \sum_{j+l=J} a^{j} b^{l} \sum_{\substack{j_{1}, j_{2}=1 \\ j_{1}<j_{2} \\ j_{1}+j_{2}-3=J}}^{n}\left(c_{j_{1}} d_{j_{2}}-d_{j_{1}} c_{j_{2}}\right) m\left(j_{1}, j_{2}, l\right)$.

We will need to know that the term $m\left(j_{1}, j_{2}, l\right)$ is positive if $0 \leq l \leq j_{1}+j_{2}-3$. Since $m\left(j_{1}, j_{2}, l\right)=j_{2} n\left(j_{1}, j_{2}, l\right)-j_{1} n\left(j_{2}, j_{1}, l\right)$ and $j_{2}>j_{1}$, it is enough to check that $n\left(j_{1}, j_{2}, l\right) \geq n\left(j_{2}, j_{1}, l\right)>0$. But, by definition,

$$
n\left(j_{1}, j_{2}, l\right)=\left|\left\{\left(l_{1}, l_{2}\right): l_{1}+l_{2}=l, 0 \leq l_{1} \leq j_{1}-1,0 \leq l_{2} \leq j_{2}-2\right\}\right|
$$

and so

$$
n\left(j_{2}, j_{1}, l\right)=\left|\left\{\left(l_{1}, l_{2}\right): l_{1}+l_{2}=l, 0 \leq l_{1} \leq j_{1}-2,0 \leq l_{2} \leq j_{2}-1\right\}\right| .
$$

A picture in the $l_{1} l_{2}$-plane now shows that $n\left(j_{1}, j_{2}, l\right) \geq n\left(j_{2}, j_{1}, l\right)>0$ as desired.

In addition to (15) we will use

$$
\begin{equation*}
\left(f^{\prime} g^{\prime \prime}-f^{\prime \prime} g^{\prime}\right)(x)=\sum_{\substack{ \\J \geq 0}} x^{J} \sum_{\substack{j_{1}, j_{2}=1 \\ j_{2}<j_{2} \\ j_{1}+j_{2}-3=J}}^{n} j_{1} j_{2}\left(j_{2}-j_{1}\right)\left(c_{j_{1}} d_{j_{2}}-d_{j_{1}} c_{j_{2}}\right) . \tag{16}
\end{equation*}
$$

We will also need the following fact:
Sublemma C. For some fixed J suppose that either

$$
\begin{equation*}
c_{j_{1}} d_{j_{2}}-d_{j_{1}} c_{j_{2}}=0 \quad \text { whenever } \quad j_{1}+j_{2}-3<J \tag{17}
\end{equation*}
$$

or

$$
\begin{equation*}
c_{j_{1}} d_{j_{2}}-d_{j_{1}} c_{j_{2}}=0 \quad \text { whenever } \quad j_{1}+j_{2}-3>J \tag{18}
\end{equation*}
$$

Then there is at most one pair $\left(j_{1}, j_{2}\right)$ with $1 \leq j_{1}<j_{2} \leq n$ and $j_{1}+j_{2}-3=J$ such that $c_{j_{1}} d_{j_{2}}-d_{j_{1}} c_{j_{2}} \neq 0$.

Proof of Sublemma C. Suppose that (17) holds (the proof under the hypothesis (18) is similar) and that $c_{1} d_{J+2}-c_{J+2} d_{1} \neq 0$. Then either $c_{1} \neq 0$ or $d_{1} \neq 0$. Without loss of generality, assume $c_{1} \neq 0$. Suppose also that $1<j_{1}<j_{2} \leq n$ and that $j_{1}+j_{2}-3=J$. We will start by observing that $c_{j_{1}} d_{j_{2}}-d_{j_{1}} c_{j_{2}}=0$. Since $1+j_{1}-3<1+j_{2}-3<J$, we have $c_{1} d_{j_{2}}-c_{j_{2}} d_{1}=0$ and $c_{1} d_{j_{1}}-c_{j_{1}} d_{1}=0$ by assumption. Multiplying the first of these by $c_{j_{1}}$ and the second by $c_{j_{2}}$ and subtracting leads to $c_{j_{1}} d_{j_{2}}-d_{j_{1}} c_{j_{2}}=0$ as desired. Thus our conclusion holds if $c_{1} d_{J+2}-c_{J+2} d_{1} \neq 0$. The next case, $c_{2} d_{J+1}-c_{J+1} d_{2} \neq 0$, and all subsequent cases, are handled similarly.

Conclusion of proof of Sublemma A. Let J_{1} be the first J such there are j_{1} and j_{2} with $j_{1}+j_{2}-3=J$ and $c_{j_{1}} d_{j_{2}}-d_{j_{1}} c_{j_{2}} \neq 0$. Then, by (15) and

Sublemma C, there are j_{1} and j_{2} with $j_{1}+j_{2}-3=J_{1}$ and

$$
F(a, b)=\left(c_{j_{1}} d_{j_{2}}-d_{j_{1}} c_{j_{2}}\right) \sum_{j+l=J_{1}} a^{j} b^{l} m\left(j_{1}, j_{2}, l\right)+O\left(\sum_{j+l=J_{1}+1} a^{j} b^{l}\right)
$$

It follows from (16) that

$$
\left(f^{\prime} g^{\prime \prime}-f^{\prime \prime} g^{\prime}\right)(x)=O\left(|x|^{J_{1}}\right)
$$

Thus Sublemma A follows from the fact that the $m\left(j_{1}, j_{2}, l\right)$'s are positive along with the inequality

$$
|a b|^{\frac{J_{1}}{2}} \leq \sum_{j+l=J_{1}} a^{j} b^{l}
$$

The proof of Sublemma B is similar, starting with the choice of J_{1} as the greatest J such that there are j_{1} and j_{2} with $j_{1}+j_{2}-3=J$ and $c_{j_{1}} d_{j_{2}}-d_{j_{1}} c_{j_{2}} \neq$ 0 .

REFERENCES

1. Choi, Y., Convolution operators with affine arclength measures on plane curves, Internat. Math. Res. Notices 19 (1998), 1033-1048.
2. Choi, Y., Convolution operators with affine arclength measures on space curves, preprint.
3. Christ, M., Endpoint bounds for singular fractional integral operators, preprint.
4. Christ, M., Convolution, Curvature and Combinatorics: a case study, J. Korean Math. Soc. 36 (1999), 193-207.
5. Drury, S. W., Degenerate curves and harmonic analysis, Math. Proc. Cambridge Philos. Soc. 108 (1990), 89-96.
6. Littman, W., $L^{p}-L^{q}$ estimates for singular integral operators, Proc. Sympos. Pure Math. 23 (1973).
7. Oberlin, D., Convolution estimates for some measures on curves, Proc. Amer. Math. Soc. 99 (1987), 56-60.
8. Oberlin, D., Oscillatory integrals with polynomial phase, Math. Scand. 69 (1991), 45-56.
9. Oberlin, D., A convolution estimate for a measure on a curve in R^{4}, Proc. Amer. Math. Soc. 125 (1997), 1355-1361.
10. Oberlin, D., A convolution estimate for a measure on a curve in R^{4}, II, Proc. Amer. Math. Soc., to appear.
11. Oberlin, D., Convolution with measures on curves in R^{3}, Canad. Math. Bull., to appear.
12. Pan, Y., A remark on convolution with measures supported on curves, Canad. Math. Bull. 36 (1993), 245-250.
13. Pan, Y., Convolution estimates for some degenerate curves, Math. Proc. Cambrige Philos. Soc. 116 (1994), 143-146.
14. Pan, Y., L^{p}-improving properties for some measures supported on curves, Math. Scand. 78 (1996), 121-132.
15. Secco, S., Fractional integration along homogeneous curves in R 3, Math. Scand. 85 (1999), 259-270
16. Stein, E. M., Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, 1993.

DEPARTMENT OF MATHEMATICS
THE FLORIDA STATE UNIVERSITY
TALLAHASSEE, FL 322306-4510
USA
E-mail: oberlin@math.fsu.edu

[^0]: * Partially supported by a grant from the National Science Foundation.

 Received May 29, 1998; in revised form December 4, 1998.

