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CONVOLUTION WITH MEASURES ON
POLYNOMIAL CURVES

DANIEL M. OBERLIN∗

This paper is concerned with convolution estimates for certain measures on
degenerate curves in R2 and R3. Analogous estimates in Rn, n ≥ 4, were
recently obtained for the (nondegenerate) curve (t, t2, . . . , tn) in [4] – see also
[9] and [10]. Here is some of the history of this problem. Ideas going back
to [6] show, for example, that if µ is the measure given by dt on the circle
(cos(t), sin(t)) or on the parabola (t, t2), then

(1) µ ∗ L
3
2 (R2) ⊆ L3(R2).

And it is easy to see that these estimates are optimal – see [7] for more on
this. The feature, common to these two curves, which in retrospect gives rise
to (1) is the fact that on both of them the measure dt is a multiple of the
measure κ

1
3 (s)ds where ds is arclength and κ is curvature. Drury [5] was

the first to notice the importance of the measures µ given by dµ = κ
1
3 (s)ds

in the context of (1). In particular, it was Drury’s idea to obtain (1) for the
measure dµ = κ

1
3 (s)ds on degenerate curves. His result (Theorem 1 in [5])

applies to curves of the form (t, p(t)), so that dµ = |p′′(t)| 1
3 dt , where the

convex functionp satisfies certain regularity conditions. The paper [8] contains
a similar result, valid for any real-valued polynomial p. And that estimate is
uniform for polynomials of a fixed degree. Theorem 1 below generalizes this:
the estimate (1) holds for curves (p1(t), p2(t)) with dµ = κ

1
3 (s)ds if p1 and

p2 are real-valued polynomials, and the convolution bounds are uniform in p1

and p2 if the degree of these polynomials is fixed.
Part of the motivation for the above-mentioned work of Drury stems from

the fact that convolution estimates for curves in R2 can be used to obtain
convolution estimates for curves in R3 – see [7]. The main result in [7] is
the following: suppose that p1(t) and p2(t) are polynomials and that the two
vectors (p

(j)

1 (t), p
(j)

2 (t)), j = 1, 2, are linearly independent for every t ∈
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[a, b]. Then the measure µ given by χ[a,b]dt on the curve (t, p1(t), p2(t))

satisfies

(2) µ ∗ L
3
2 (R3) ⊆ L2(R3).

This result, and its proof, were generalized in several papers, e.g., [12], [13],
[5], where the main emphasis was the study of the curves

(3) (t, tα, tβ)

with the measures t (1+α+β)/6−1dt . (The method of [7] is not the only one
applicable to the curves (3)– see [9] and, in particular, [15] where the definitive
result is obtained by modifying a homogeneity argument of Christ [3].)

If γ (t) is a curve in R3 , we will write D(t) for the absolute value of the
determinant of the matrix (

γ ′(t)
γ ′′(t)
γ (3)(t)

)
.

When γ (t) is given by (3), a computation shows that, up to a constant,
D(t) = t1+α+β−6. The convolution results for these curves lead to the conjec-
ture that, under mild additional hypotheses, the measure µ given by D1/6(t) dt

on the curve γ (t) will satisfy (2). Theorem 2 below shows that this conjecture
is true for curves γ (t) = (t, p1(t), p2(t)) when p1 and p2 are real-valued
polynomials.

The recent papers [1] and [2] contain, among other interesting results, spe-
cial cases of our Theorems 1 and 2 obtained by specializing to compact or
homogenenous curves.

The remainder of this paper, then, is devoted to the proofs of the following
results:

Theorem 1. Fix a positive integerN . There is a positive constantC(N) such
that if p1(t) and p2(t) are real-valued polynomials of degree not exceeding N

and if µ is the measure on the curve (p1(t), p2(t)), −∞ < t < ∞, given by

|p′
1(t) p

′′
2(t) − p

′′
1(t) p

′
2(t) | 1

3 dt,

then ‖µ ∗ f ‖L3(R2) ≤ C(N) ‖f ‖
L

3
2 (R2)

for functions f on R2.

Theorem 2. Suppose p1(t) and p2(t) are real-valued polynomials. Let µ
be the measure on the curve (t, p1(t), p2(t)), −∞ < t < ∞, given by

|p′′
1(t) p

(3)
2 (t) − p

(3)
1 (t) p

′′
2(t)|

1
6 dt.
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Then there is a positive constant C such that

‖µ ∗ f ‖L2(R3) ≤ C ‖f ‖
L

3
2 (R3)

for functions f on R3.

It seems likely that the convolution bound in Theorem 2 is, as in Theorem 1,
a function only of the degrees of p1 and p2. A uniform version of Lemma 4
below would give this, but our current proof of that lemma does not seem to
yield such an estimate.

The following lemma furnishes a Fourier transform estimate used in the
proof of Theorem 1. It is an extension of the case n = 2 of Theorem 2 in [8]
and we postpone its proof until after the proofs of our main results.

Lemma 3. Given N = 2, 3, ... and λ ∈ R there is a constant C(N, λ)

such that if s ∈ R and if p and q are real-valued polynomials of degree not
exceeding N , then we have

∣∣∣∣
∫ b

a

eip(t)|p′′(t)| 1
2 +is |q(t)|iλsdt

∣∣∣∣ ≤ C(N, λ)(1 + |s|) 1
2

independently of a, b ∈ R.

Proof of Theorem 1. Let (a, b) be any interval on which bothp
′
1p

′′
2−p

′′
1p

′
2

and
p

′′
1p

(3)
2 − p

(3)
1 p

′′
2 are of constant sign. Write κ(t) for |(p′

1p
′′
2 − p

′′
1p

′
2)(t)| and

define

Tf (x1, x2) =
∫ b

a

f
(
x1 − p1(t), x2 − p2(t)

)
κ

1
3 (t) dt.

It is enough to show that

‖Tf ‖3 ≤ C(N) ‖f ‖ 3
2
.

We will treat the case where the signs of p
′
1p

′′
2 −p

′′
1p

′
2 and p

′′
1p

(3)
2 −p

(3)
1 p

′′
2 are

opposite. The other case is similar. Roughly following [5] (where, on p. 92,
calculations similar to those which follow are done in more detail), we define
an analytic family of operators by

Tzf (x1, x2)

= 1

!
(
z+1

2

)∫ ∞

0

∫ b

a

f
(
x1−p1(t)−up

′′
1(t), x2−p2(t)−up

′′
2(t)

)
(κ(t))1+ 2z

3 dt |u|zdu.
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Since T−1 is a multiple of T , it will suffice, by analytic interpolation, to observe
that

(4) ‖Tisf ‖∞ ≤ C(N) ‖f ‖1

and

(5) ‖T− 3
2 +isf ‖

2
≤ C(N) (1 + |s|) 1

2 ‖f ‖2.

To see (4), just observe that the absolute value of the Jacobian of the map

(t, u) → (p1(t), p2(t)) + u(p
′′
1(t), p

′′
2(t))

is ∣∣(p′
1p

′′
2 − p

′′
1p

′
2) − u(p

′′
1p

(3)
2 − p

(3)
1 p

′′
2)
∣∣

which, by our assumption on the signs of p
′
1p

′′
2 − p

′′
1p

′
2 and p

′′
1p

(3)
2 − p

(3)
1 p

′′
2,

exceeds κ . For (5) we must estimate the Fourier transform ofT−3/2+is at ξ ∈ R2.
If we write p(t) = ξ · (p1(t), p2(t)) and q(t) = (p

′
1p

′′
2 − p

′′
1p

′
2)(t), then a

well-known calculation shows that this Fourier transform is a multiple of∫ b

a

eip(t)|p′′(t)| 1
2 −is |q(t)| 2is

3 dt.

This integral is controlled by Lemma 3, and so the proof of Theorem 1 is
complete.

The proof of Theorem 2 is an adaptation of the proof in [7]. It depends on
Theorem 1 and on Lemma 4 below. The proof of Lemma 4 is elementary but
tedious, and we postpone it until the end of the paper.

Lemma 4. Suppose f and g are real-valued polynomials on R. Define

G(a, b) = (f ′g′′ − f ′′g′)(a)(f ′g′′ − f ′′g′)(b),

F (a, b) = (f (b) − f (a))(g′(b) − g′(a)) − (f ′(b) − f ′(a))(g(b) − g(a))

(b − a)2

if a, b ∈ R, a �= b, and

F(a, a) = (f ′g′′ − f ′′g′)(a).

Then there are a finite partition of R into a union of intervals Ij and a positive
constant M such that |G(a, b)| 1

2 ≤ M|F(a, b)|
whenever a and b are both in the same Ij .
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Proof of Theorem 2. Fix polynomials p1 and p2, take f = p
′
1 and

g = p
′
2, and let Ij be as in Lemma 4. If Ij = [a, b], γ (t) = (t, p1(t), p2(t)),

and D(t) = |p′′
1(t)p

(3)
2 (t) − p

(3)
1 (t)p

′′
2(t)|, define

Tf (x) =
∫ b

a

f (x − γ (t))D
1
6 (t) dt

for x ∈ R3 and functions f on R3. It is enough to prove that T maps L3/2(R3)

into L2(R3). We will do this by applying Theorem 1 in conjunction with the
method of [7]. By the “method of T ∗T ”, it is enough to show that, if S is the
operator given by

Sf (x) =
∫ b

a

∫ b

a

f (x − γ (t) + γ (s) )D
1
6 (t)D

1
6 (s) dt ds,

then S maps L3/2(R3) into L3(R3). Writing x = (x1, x
′) for x ∈ R3 = R × R2

and φ(t) = (p1(t), p2(t)) and then changing variables leads to

Sf (x1, x
′) =

∫ b−a

a−b

∫
Iu

f (x1−u, x ′−φ(s+u)+φ(s) )D
1
6 (s+u)D

1
6 (s) ds du,

where Iu is the appropriate subinterval of [a − b, b − a]. Writing

p1,u(s) = p1(s + u) − p1(s)

and similarly for p2,u, the conclusion of Lemma 4 shows that |Sf (x)| is ma-
jorized by

Pf (x1, x
′) =∫ b−a

a−b

∫
Iu

|f |(x1−u, x ′−(p1,u(s), p2,u(s))
)∣∣(p′

1,up
′′
2,u−p

′′
1,up

′
2,u)(s)

∣∣ 1
3 ds|u|− 2

3 du.

For fixed x1 and u, Theorem 1 shows that∥∥∥∥
∫
Iu

|f |(x1 − u, x ′ − (p1,u(s), p2,u(s))
)∣∣(p′

1,up
′′
2,u − p

′′
1,up

′
2,u)(s)

∣∣ 1
3 ds

∥∥∥∥
3,x ′

is bounded by a constant times ‖f (x1 − u, ·)‖3/2, and so

‖Pf ‖3 ≤ C

∥∥∥∥
∫ b−a

a−b

‖f (x1 − u, ·)‖3/2|u|− 2
3 du

∥∥∥∥
3,x1

.

The boundedness of the one-dimensional Riesz potential of order 1
3 as a map-

ping of L3/2(R) into L3(R) now completes the proof of Theorem 2.
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The two lemmas which follow are used in the proof of Lemma 3. The first
is Lemma 3 in [8].

Lemma 5. Fix a positive integer N . There are positive constants K = K(N)

and L = L(N) such that if

r(t) =
J1∏

j=1

(t − aj )

J2∏
j=J1+1

[(t − aj )
2 + bj

2]

is a monic polynomial of degree not exceeding N with the aj ’s distinct and
each bj real, then there exists a collection {Il}L1

l=1, with L1 ≤ L, of pairwise
disjoint subintervals of R satisfying∫

R∼∪Il

∣∣∣∣ r ′

r

∣∣∣∣ ≤ K

and such that for each l there areC =C(l)∈ (0,∞), j = j (l) ∈ {1, 2, . . . , J2},
and a nonnegative integer n = n(l) with

C

K
|t − aj |n ≤ |r(t)| ≤ CK|t − aj |n, t ∈ Il,

and 1

K|t − aj | ≤
∣∣∣ r ′

r

∣∣∣ ≤ K

|t − aj | , t ∈ Il.

Lemma 6. Given a positive integerN , there is a positive constantC = C(N)

such that if p(t) is a real-valued polynomial of degree not exceeding N , then,
for any ρ > 1,K > 0,∫

{K≤|tp(t)|≤ρK}
dt

|t | ≤ C · (log(ρ) + 1).

Proof of Lemma 6. Without loss of generality we can write

tp(t) = t l1
∏

(t − aj )
∏

((t − bj )
2 + c2

j )
∏

(t2 + d2
j )

.= t l1
∏

pj (t)

where the number of factors pj does not exceed N . Let C be a constant de-
pending only on N , but which may not be the same at each occurrence. For
nonnegative numbers A and B, we will write A ∼ B if B/C ≤ A ≤ CB. We
begin by observing that for each pj there is a partition

R = Ij ∪
(⋃

l

I l
j

)
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of R into at most ten intervals such that∫
Ij

dt

|t | ≤ C

and such that on each I
j

l either |pj | ∼ c
j

l for some positive constant cjl or
|pj (t)| ∼ |t | or |pj (t)| ∼ t2. (For example, if pj (t) = t − aj with aj > 0, then

|pj (t)| ∼ |t | if t ≤ −aj

2
, |pj (t)| ∼ |aj | if

−aj

2
≤ t ≤ aj

2
,

∫ 3aj
2

aj

2

dt

|t | ≤ log(3),

and
|pj (t)| ∼ |t | if

3aj
2

≤ t.)

It is a consequence of this observation that the complement of ∪Ij can be
represented as a union of at most C disjoint intervals Jl on each of which
|tp(t)| ∼ cl|t |nl for some positive cl and some nonnegative integer nl . Then∫

{K≤|tp(t)|≤ρK}∩Jl

dt

|t | ≤
∫{

K
(Ccl )

≤|t |nl ≤ ρKC

cl

} dt

|t | ≤ C(log(ρ) + 1).

Proof of Lemma 3. This is similar to, but more complicated than, the
proof of Theorem 2 in [8]. We begin with some reductions: replacing q by a
power of q shows that we can assume 0 < λ ≤ 1. It is clear that we may
asssume that q(t) is monic, and a scaling argument shows that we may assume
p′(t) to be monic. Then an approximation argument shows that it is enough
to prove Lemma 3 under the additional hypothesis that both r(t)

.= p′(t) and
r(t)

.= q(t) meet the other requirements of Lemma 5. Finally, it will suffice
to show that the conclusion of Lemma 3 holds if p′, p′′, and∣∣∣∣ p′′

(p′)2

∣∣∣∣− 1

10(1 + |s|)
are of constant sign on (a, b)

.= I .
Case 1: 1

10(1+|s|) ≤ ∣∣ p′′
(p′)2

∣∣ on I . The argument here is identical to that for
Case II in the proof of Theorem 2 in [8].

Case 2:
∣∣ p′′
(p′)2

∣∣ ≤ 1
10(1+|s|) on I . After making the change of variables u =

p(t), we need to estimate an integral of the form

(6)
∫
J

ei(u+2s log |p′(p−1(u))|+λs log |q(p−1(u))|)
∣∣∣∣ p′′(p−1(u))

p′(p−1(u))2

∣∣∣∣
1
2 +is

du,
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where J = p(I). The derivative of the phase function is

(7) 1 + 2s
p′′(p−1(u))

p′(p−1(u))
2 + λs

q ′(p−1(u))

q(p−1(u))p′(p−1(u))
.

For any subinterval J ′ of J we have

∫
J ′

∣∣∣∣ ddu
∣∣∣∣ p′′(p−1(u))

p′(p−1(u))2

∣∣∣∣
1
2 +is ∣∣∣∣ du = 2

∣∣ 1
2 + is

∣∣ ∫
J ′

∣∣∣∣ ddu
∣∣∣∣ p′′(p−1(u))

p′(p−1(u))2

∣∣∣∣
1
2
∣∣∣∣ du

≤ C(N)
∣∣ 1

2 + is
∣∣ sup

{∣∣∣∣ p′′(p−1(u))

p′(p−1(u))2

∣∣∣∣
1
2

: u ∈ J ′
}

≤ C(N)(1 + |s|) 1
2 .

Here the first inequality follows from the fact that, since p is a polynomial of
degree not exceeding N ,

d

du

∣∣∣∣ p′′(p−1(u))

p′(p−1(u))2

∣∣∣∣
1
2

will have at most C(N) sign changes on J ′. The second inequality is a con-
sequence of the Case 2 assumption. It follows from a variant of van der Corput’s
lemma ([16], p. 334), that if J ′ is a subinterval of J on which the absolute value
of (7) exceeds, say, 1

10 , then the part of (6) corresponding to J ′ is bounded by

C(N)(1 + |s|) 1
2 . Since J is a union of at most C(N) intervals on each of which

either |(7)| > 1
10 or |(7)| ≤ 1

10 , it suffices to estimate (6) with J replaced by
some J ′ on which |(7)| ≤ 1

10 . From the Case 2 assumption it follows that then

(8)
7

10|s|λ ≤
∣∣∣∣ q ′(p−1(u))

q(p−1(u))p′(p−1(u))

∣∣∣∣ ≤ 13

10|s|λ
on J ′ and again that

(9)

∣∣∣∣ p′′(p−1(u))

(p′(p−1(u)))2

∣∣∣∣ ≤ 1

10(1 + |s|) ≤ 7

10|s|λ ≤
∣∣∣∣ q ′(p−1(u))

q(p−1(u))p′(p−1(u))

∣∣∣∣
on J ′. Now take r = q in Lemma 5 and let the intervals I ′

l be such that

(10)
∫

R∼∪I ′
l

∣∣∣q ′

q

∣∣∣ ≤ C.

Let I ′ = p−1(J ′) so that on I ′ we have the inequalities

(8′)
7

10|s|λ ≤
∣∣∣∣ q ′(t)
q(t)p′(t)

∣∣∣∣ ≤ 13

10|s|λ
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and

(9′)
∣∣∣∣ p′′(t)
(p′(t))2

∣∣∣∣ ≤
∣∣∣∣ q ′(t)
q(t)p′(t)

∣∣∣∣
From (9′) and (8′) it follows that on I ′ we have

|p′′| ≤ C|p′|
∣∣∣∣q ′

q

∣∣∣∣, |p′| ≤ C|s|
∣∣∣∣q ′

q

∣∣∣∣,
and so

(11) |p′′| 1
2 ≤ C|s| 1

2

∣∣∣∣q ′

q

∣∣∣∣.
Now (10) and (11) give ∫

I ′∼∪I ′
l

|p′′| 1
2 ≤ C|s| 1

2 .

On the other hand, on an I ′
l we have, by Lemma 5,

(12)

∣∣∣∣q ′(t)
q(t)

∣∣∣∣ ∼ 1

|t − c|
for some c. With (8′) this gives the inequalities

1

C|s|λ ≤ 1

|p′(t)||t − c| ≤ C

|s|λ
on I ′ ∩ I ′

l . And with (11) and (12) this gives∫
I ′∩I ′

l

|p′′| 1
2 ≤ C|s| 1

2

∫
I ′∩I

′
l

∣∣∣∣q ′

q

∣∣∣∣ ≤ C|s| 1
2

∫{
1

C|s|λ ≤ 1
|(t−c)p′(t)| ≤ C

|s|λ
} dt

|t − c| .

Thus Lemma 6 completes the proof of Lemma 3.

Proof of Lemma 4. This is a consequence of the following two facts:

Sublemma A. If x0 ∈ R then there are δ > 0 and M < ∞ such that the
inequality

(13) |G(a, b)| 1
2 ≤ M |F(a, b)|

holds if a, b ∈ (x0 − δ, x0) or if a, b ∈ (x0, x0 + δ).

Sublemma B. There are positive constants P and M such that (13) holds
if a, b ≥ P or a, b ≤ −P .
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Proof of Sublemmas A and B. Without loss of generality we will take
x0 = 0. Let n be the maximum of the degrees of f and g. Write

f (x) =
n∑

j=0

cjx
j , g(x) =

n∑
j=0

djx
j .

Letting Tk stand for the sum

k∑
l=0

ak−lbl,

we see that

f (b) − f (a)

b − a
=

n∑
j=1

cjTj−1 and
g′(b) − g′(a)

b − a
=

n∑
j=2

jdjTj−2.

With similar expressions for

f ′(b) − f ′(a)
b − a

and
g(b) − g(a)

b − a

this leads to

(14) F (a, b) =
n,n∑

j1=1, j2=2

(cj1dj2 − dj1cj2)j2Tj1−1Tj2−2.

Let n(j1, j2, l) stand for the cardinality of the set{
(l1, l2) : 0 ≤ l1 ≤ j1 − 1, 0 ≤ l2 ≤ j2 − 2, l1 + l2 = l

}
.

Then the coefficient of ajbl in (14) is

n,n∑
j1=1, j2=2

j1+j2−3=j+l

(cj1dj2 − dj1cj2)j2n(j1, j2, l)
.=

n∑
j1, j2=1
j1<j2

j1+j2−3=j+l

(cj1dj2 − dj1cj2)m(j1, j2, l).

Thus

(15) F (a, b) =
∑
J≥0

∑
j+l=J

ajbl

n∑
j1, j2=1
j1<j2

j1+j2−3=J

(cj1dj2 − dj1cj2)m(j1, j2, l).
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We will need to know that the termm(j1, j2, l) is positive if 0 ≤ l ≤ j1+j2−3.
Since m(j1, j2, l) = j2n(j1, j2, l) − j1n(j2, j1, l) and j2 > j1, it is enough to
check that n(j1, j2, l) ≥ n(j2, j1, l) > 0. But, by definition,

n(j1, j2, l) = ∣∣{(l1, l2) : l1 + l2 = l, 0 ≤ l1 ≤ j1 − 1, 0 ≤ l2 ≤ j2 − 2
}∣∣

and so

n(j2, j1, l) = ∣∣{(l1, l2) : l1 + l2 = l, 0 ≤ l1 ≤ j1 − 2, 0 ≤ l2 ≤ j2 − 1
}∣∣.

A picture in the l1l2-plane now shows that n(j1, j2, l) ≥ n(j2, j1, l) > 0 as
desired.

In addition to (15) we will use

(16) (f ′g′′ − f ′′g′)(x) =
∑
J≥0

xJ

n∑
j1, j2=1
j1<j2

j1+j2−3=J

j1j2(j2 − j1)(cj1dj2 − dj1cj2).

We will also need the following fact:

Sublemma C. For some fixed J suppose that either

(17) cj1dj2 − dj1cj2 = 0 whenever j1 + j2 − 3 < J,

or

(18) cj1dj2 − dj1cj2 = 0 whenever j1 + j2 − 3 > J.

Then there is at most one pair (j1, j2)with 1 ≤ j1 < j2 ≤ n and j1+j2−3 = J

such that cj1dj2 − dj1cj2 �= 0.

Proof of Sublemma C. Suppose that (17) holds (the proof under the
hypothesis (18) is similar) and that c1dJ+2 − cJ+2d1 �= 0. Then either c1 �= 0
or d1 �= 0. Without loss of generality, assume c1 �= 0. Suppose also that
1 < j1 < j2 ≤ n and that j1 + j2 − 3 = J . We will start by observing that
cj1dj2 −dj1cj2 = 0. Since 1+j1−3 < 1+j2−3 < J , we have c1dj2 −cj2d1 = 0
and c1dj1 − cj1d1 = 0 by assumption. Multiplying the first of these by cj1 and
the second by cj2 and subtracting leads to cj1dj2 −dj1cj2 = 0 as desired. Thus our
conclusion holds if c1dJ+2 −cJ+2d1 �= 0. The next case, c2dJ+1 −cJ+1d2 �= 0,
and all subsequent cases, are handled similarly.

Conclusion of proof of Sublemma A. Let J1 be the first J such there
are j1 and j2 with j1 + j2 − 3 = J and cj1dj2 − dj1cj2 �= 0. Then, by (15) and
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Sublemma C, there are j1 and j2 with j1 + j2 − 3 = J1 and

F(a, b) = (cj1dj2 − dj1cj2)
∑

j+l=J1

ajblm(j1, j2, l) + O

( ∑
j+l=J1+1

ajbl

)
.

It follows from (16) that

(f ′g′′ − f ′′g′)(x) = O(|x|J1).

Thus Sublemma A follows from the fact that the m(j1, j2, l)’s are positive
along with the inequality

|ab| J1
2 ≤

∑
j+l=J1

ajbl.

The proof of Sublemma B is similar, starting with the choice of J1 as the
greatest J such that there are j1 and j2 with j1+j2−3 = J and cj1dj2 −dj1cj2 �=
0.
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