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PITT’S THEOREM FOR OPERATORS BETWEEN
GENERAL LORENTZ SEQUENCE SPACES

J. A. LÓPEZ MOLINA∗

Abstract

We characterize the pairs of general Lorentz sequence spaces �u,v(ν), �p,q (µ), 0 < u, v, p, q <

∞ such that all continuous linear maps from the first space into the second one are compact.

1. Introduction

It is well known that a good characterization of compact operators between
Banach spaces E and F can be used as a powerful tool for the study of the
structure of these spaces. Pitt’s theorem is the oldest and perhaps the most
spectacular result along these lines and raises the question of finding more
pairs (E, F ) of Banach spaces such that every continuous linear map from E

into F is compact. Recently new pairs with this property have been found ([4],
[13]) and the problem has been extended to the class of quasi Banach spaces
(see [5]), because of its importance in the theory of interpolation spaces. In
this paper we study Pitt’s theorem between general Lorentz sequence spaces
�p,q(µ) where 0 < p, q < ∞ and µ is a general measure on N. This study
is a natural continuation (and the culmination in the case of Lorentz spaces
�p,q(µ)) of the work developed in [5].

Given quasi Banach spaces E and F , a continuous linear map T : E → F ,
(an operator in the sequel for short) is said to be compact if it sends bounded
subsets of E into relatively compact subsets of F . If all operators from E into
F are compact, we shall simply write (E, F ) ∈ K . The main purpose of this
paper is to characterize the relation (�u,v(ν), �p,q(µ)) ∈ K .

Section 2 contains basic facts about Lorentz sequence spaces and some
preparatory results which we shall need in the following sections. In section 3
we prove some structural propositions concerning the behaviour of sequences
and operators on Lorentz sequence spaces and we prove the main theorem of
the paper. The symbol ‖.‖E will be the quasinorm on a given quasi Banach
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space E. We shall say that {zn}∞n=1 ⊂ E is a seminormalized sequence in E if
it is bounded and there is a number ε > 0 such that ‖zn‖E ≥ ε for every n ∈ N.

2. Basic facts on Lorentz sequence spaces

Let (�, �, µ) be a σ -finite measure space. Let M (�, µ) denote the collection
of all extended scalar-valued (real or complex) �-measurable functions on �

and which are finite µ-a.e. The distribution function µf of a function f in
M (�, µ) is given by

µf (λ) := µ {x ∈ � | |f (x)| > λ} , (λ ≥ 0).

The decreasing rearrangement of f ∈ M (�, µ) is the function f ∗
µ defined on

[0, ∞[ by
f ∗

µ(t) := inf
{
λ ≥ 0 | µf (λ) ≤ t

}
, (t ≥ 0).

Suppose 1 < p < ∞, 1 ≤ q < ∞. The Lorentz space Lp,q(�, µ) consists of
all f in M (�, µ) for which the quantity

(1) ‖f ‖µ,p,q :=
(∫ ∞

0

(
t1/pf ∗(t)

)q dt

t

)1/q

is finite. It can be proved that ‖.‖µ,p,q is a norm if 1 ≤ q ≤ p (see for
instance Chapter 4, Theorem 4.3 in [2]). However we shall not need this fact
but only that ‖.‖µ,p,q is a quasinorm for every 0 < p, q < ∞. Indeed, since
the decreasing rearrangement of the sum of two functions has the property

∀t > 0, (f + g)∗(t) ≤ f ∗
( t

2

)
+ g∗

( t

2

)
(see Chapter 2, Proposition 1.7 in [2]), with an easy change of variable and
Hölder’s inequality with exponents 1

q
and 1

1−q
if q < 1, we get

(2) ‖f + g‖µ,p,q ≤ max
(
2

1
p , 2

1
p
+ 1

q
−1)

(‖f ‖µ,p,q + ‖g‖µ,p,q).

An important consequence of (2) is the r−normability of Lp,q(µ) where

2
1
r = max(21+ 1

p , 2
1
p
+ 1

q ) (Aoki-Rolewicz’s theorem, see for instance The-
orem 1.3 in [7]), i.e. there is in Lp,q(µ) an equivalent quasinorm ‖.‖µ,(p,q)

such that

(3) ∀f, g ∈ Lp,q(µ), ‖f + g‖r
µ,(p,q) ≤ ‖f ‖r

µ,(p,q) + ‖g‖r
µ,(p,q).

We refer the reader to [2] and [10] for more details on Lorentz spaces.
From now on, we shall work only with the particular case � = N and a

purely atomic measure µ on N defined by µ({i}) = µi ∈]0, ∞[ for every
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i ∈ N. Then Lp,q(N, µ) is a Lorentz sequence space which will be denoted
by �p,q(µ) or simply by �p,q if µi = 1 for every i ∈ N. If there is no risk of
confusion, we shall write ‖.‖p,q instead of ‖.‖µ,p,q , or ‖.‖�p,q (µ) if we want to
call attention to the space.

Let ρ = {ρi}∞i=1 be a sequence of strictly positive numbers. In some in-
stances we shall need weighted spaces

�p,q(ρ, µ) := {
(xi) | (xiρi) ∈ �p,q(µ)

}
.

In such cases, the canonical quasinorm of (xi) ∈ �p,q(ρ, µ) is ‖(xiρi)‖�p,q (µ).
Given α > 0, the symbol µα will denote the sequence (µα

i ). Analogously, we
define ρ/µ := (ρi/µi), 1/ρ := (1/ρi) and ρµ := (ρiµi).

For every i ∈ N, the sequence (0, 0, . . . , 1, 0, 0, . . .) with 1 in the i-th place
will always be denoted by the symbol ei and Pi : �p,q(µ) −→ K will be the
canonical projection from �p,q(µ) onto the scalar field K where each sequence
is projected onto its i-th component.

In order to make concrete computations we shall need an explicit formula
for the quasinorm ‖x‖p,q of a sequence x = (xi) ∈ c0 ∩ �p,q(µ) with respect
to the measure µ = (µi) on N. Let σ : N → N be such that

|xσ(1)| = max {|xn| | n ∈ N} ,

and if i > 1,

|xσ(i)| = max {|xn| | n /∈ {σ(1), σ (2), . . . , σ (i − 1)}} .

Then, the decreasing rearrangement of x is the function x∗(t) given by

(4) x∗(t) = |xσ(1)| if t ∈ [0, µσ(1)[

and

(5) ∀i > 1, x∗(t) = |xσ(i)| if t ∈
[ i−1∑

j=1

µσ(j),

i∑
j=1

µσ(j)

[

and its quasinorm is

(6) ‖x‖p,q =
(

p

q

∞∑
i=1

|xσ(i)|q
(( i∑

j=1

µσ(j)

) q

p

−
( i−1∑

j=1

µσ(j)

) q

p
)) 1

q

,

where
∑0

j=1 µσ(j) is defined to be equal to 0, and hence

‖x‖p,q =
(

p

q

∞∑
i=1

|xσ(i)|q
( i∑

j=1

µσ(j)

) q

p
(

1 −
(

1 − µσ(i)∑i
j=1 µσ(j)

) q

p
)) 1

q

.
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Since the function F(α) := (1 − (1 − α)
q

p )α−1 is strictly positive, monotone
and continuous in ]0, 1] and limα→0 F(α) = q

p
, we have min(1,

q

p
) ≤ F(α) ≤

max(1,
q

p
) for every α ∈]0, 1]. If we define for every x ∈ �p,q(µ) ∩ c0

(7) |||x|||p,q :=
( ∞∑

i=1

|xσ(i)|qµσ(i)

( i∑
j=1

µσ(j)

) q

p
−1) 1

q

we have that

(8) p ≤ q �⇒
(

p

q

) 1
q

|||x|||p,q ≤ ‖x‖p,q ≤ |||x|||p,q

and

(9) p > q �⇒ |||x|||p,q ≤ ‖x‖p,q ≤
(

p

q

) 1
q

|||x|||p,q .

Then |||.|||p,q is a quasinorm equivalent to ‖.‖p,q on �p,q(µ) ∩ c0, which will
be more easy to use in some problems. Since ‖.‖p,q is monotone in �p,q(µ),
(10)

∀ x, y ∈ �p,q(µ)∩ c0, |x| ≤ |y| �⇒



|||x|||p,q ≤ (
p

q

) 1
q |||y|||p,q if q ≤ p

|||x|||p,q ≤ (
q

p

) 1
q |||y|||p,q if q ≥ p.

The strict inclusions

(11) �p,q ⊂ �u,v ∀0 < q, v < ∞ ∀0 < p < u < ∞
and

(12) �p,q ⊂ �p,v ∀0 < q ≤ v < ∞ ∀0 < p < ∞
are well known (see [2] and [14]) and will be used in the sequel. Unfortunately
these inclusions are not true for arbitrary measures µ in N. For instance, if µ =
(µi) verifies limi→∞ µi = 0 and u < p, if the inclusion �u,v(µ) ⊂ �p,q(µ)

were true, it would be continuous by the closed graph theorem. However

∀i ∈ N

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

ei

µ
1
u

i

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
�u,v(µ)

= 1 but lim
i→∞

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

ei

µ
1
u

i

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
�p,q (µ)

= lim
i→∞

1

µ
1
u
− 1

p

i

= ∞

which is a contradiction. This situation will be a source of complications in
our future developments.
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The next technical lemma on pairwise disjoint elements of a Lorentz se-
quence space will be basic:

Lemma 2.1. Let {zn}∞n=1 be a sequence of elements of �p,q(µ) of finite
pairwise disjoint supports and let {an}∞n=1 ⊂ KN. Let r := min{p, q} and
s := max{p, q}.

1) If there is M > 0 such that ‖zn‖p,q ≤ M for every n ∈ N, then

(13) ∀n, ∈ N

∥∥∥∥
n∑

i=1

aiz
i

∥∥∥∥
p,q

≤ M

( n∑
i=1

|ai |r
) 1

r

.

2) If there is ε > 0 such that ‖zn‖p,q ≥ ε for every n ∈ N, then

(14) ∀n, ∈ N

∥∥∥∥
n∑

i=1

aiz
i

∥∥∥∥
p,q

≥ ε

( n∑
i=1

|ai |s
) 1

s

.

Proof. Both statements are inmediate consequences of the known fact that
�p,q(µ) satisfies an upper r-estimate and a lower s-estimate (see for instance
[8] for a more explicit proof).

The next definition will be useful in order to simplify both the exposition and
the proofs of our results. Let {zn}∞n=1 := {(zn

i )}∞n=1 be a sequence in �p,q(µ).

Definition 2.2. a) A sequence of type

wm =
nm∑

i=nm−1+1

z
km

i ei ∀m ∈ N,

where {km}∞m=1 and {nm}∞m=0 are strictly increasing sequences in N with k1 =
1, n0 = 0, will be called a diagonal subsequence of consecutive linear sections
of {zn}∞n=1.

b) A sequence of type

wm =
∑
i∈Sm

z
km

i ei ∀m ∈ N,

where Sm ⊂ [nm−1 + 1, nm] ⊂ N for every m ∈ N, will be called a diagonal
subsequence of general sections of {zn}∞n=1.

c) We say that {zn}∞n=1 is a coordinatewise null sequence if

∀i ∈ N, lim
n→∞ zn

i = 0.
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Corollary 2.3. Let {zn}∞n=1 be a coordinatewise null seminormalized
sequence in �p,q(µ).

1) Let s : = max{p, q}. There are M1 > 0 and a subsequence {znk }∞k=1 such
that

(15) ∀n ∈ N, ∀a1, a2, . . . , an ∈ K,

∥∥∥∥
n∑

k=1

akz
nk

∥∥∥∥
p,q

≥ M1

( n∑
k=1

|ak|q
) 1

q

.

2) Let r := min{p, q}. There are M2 > 0 and a subsequence {znk }∞k=1 such
that

(16) ∀n ∈ N, ∀a1, a2, . . . , an ∈ K,

∥∥∥∥
n∑

k=1

akz
nk

∥∥∥∥
p,q

≤ M2

( n∑
k=1

|ak|q
) 1

q

.

Proof. Let t > 0 be such that there is an equivalent t−norm ‖.‖ on �p,q(µ)

and α > 0 satisfying

(17) ∀x ∈ �p,q(µ), α‖x‖ ≤ ‖x‖p,q ≤ 1

α
‖x‖.

Suppose that

(18) ∀n ∈ N, 0 < ε ≤ ‖zn‖p,q ≤ M.

Since

(19) ∀i ∈ N, lim
n→∞ zn

i = 0,

by (18), starting with k1 = 1, n0 = 0 and using the method of gliding hump,
we obtain two strictly increasing sequences of natural numbers (km)∞

m=1 and
(nm)∞

m=0, such that, putting

f 1 = 0, ∀m ≥ 2, f m :=
nm−1∑
i=1

zkmei ∈ �p,q(µ)

∀m ≥ 1, um :=
nm∑

i=nm−1+1

z
km

i ei ∈ �p,q(µ)

and
∀m ≥ 1, gm := zkm − f m − um ∈ �p,q(µ),
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we have

(20) ∀m ≥ 1, ∀h ≥ nm,

∥∥∥∥
h∑

i=nm−1+1

z
km

i ei

∥∥∥∥
p,q

≥ ε

2

(21) ∀m ≥ 2, ‖f m‖t
p,q ≤ 1

αt

nm−1∑
i=1

|zkm

i |t‖ei‖t
p,q ≤ εtα2t

2m+2t+1 + 2tα2t
,

(22) ∀m ≥ 1, ‖gm‖t
p,q =

∥∥∥∥
∞∑

i=nm+1

z
km

i ei

∥∥∥∥
t

p,q

≤ εtα2t

2m+2t+1 + 2tα2t
.

1) For every n ∈ N and every finite sequence (ai)
n
i=1 ⊂ Kn, by (17), (20),

Lemma 2.1.2, (21) and (22) we have∥∥∥∥
n∑

i=1

aiz
ki

∥∥∥∥
t

p,q

≥ αt

∥∥∥∥
n∑

i=1

aif
i +

n∑
i=1

aiu
i +

n∑
i=1

aig
i

∥∥∥∥
t

≥ αt

∥∥∥∥
n∑

i=1

aiu
i

∥∥∥∥
t

− αt

∥∥∥∥
n∑

i=1

aif
i

∥∥∥∥
t

− αt

∥∥∥∥
n∑

i=1

aiu
i

∥∥∥∥
t

≥
(

ε

2

)t

α2t

( n∑
i=1

|ai |s
) t

s

− 2εtα2t

n∑
i=1

|ai |t
2i+2t+1

=
(

ε

2

)t

α2t

( n∑
i=1

|ai |s
) t

s

− εtα2t

( n∑
i=1

|ai |s
) t

s

(
n∑

i=1

|ai |t(∑n
i=1 |ai |s

) t
s

1

2i+2t

)

≥ εtα2t 2t − 1

22t

( n∑
i=1

|ai |s
) t

s

which proves our assertion.
2) The proof is analogous using Lemma 2.1.1.

To end this introductory section we need to mention the fundamental relation
between Lorentz spaces and interpolation spaces. Given quasi Banach spaces
Ei , i = 0, 1, such that each Ei is continuously embedded in some Hausdorff
topological vector space E, we consider on E0 +E1 the quasinorm defined by

‖x‖E0+E1 = inf
{‖x0‖E0 + ‖x1‖E1 | x = x0 + x1, x0 ∈ E0, x1 ∈ E1

}
.
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The classical theory of the real interpolation method of Banach spaces (see [1]
and [3]) has been extended by Sagher (see [16]) to the case of quasi Banach
spaces. Since we shall never use the explicit definition of the quasinorm in
such interpolated quasi Banach spaces (E0, E1)θ,q , 0 < θ < 1, 0 < q ≤ ∞,
we simply refer the interested reader to the original paper [16]. However, we
shall use next a theorem which is part of a more general important result of
Freitag (see [6]).

Theorem 2.4 (Freitag, [6]). Let 0 < θ < 1, 0 < p < ∞, 0 < q < ∞
and 0 < p0 < p1 < ∞ satisfying the equation 1

p
= 1−θ

p0
+ θ

p1
. The following

isomorphisms hold by means of the identity map:

a) �p,q(µ) ≈ (
�p(1−θ)(µ), �∞(µ)

)
θ,q

≈ (
�p0(µ), �p1(µ)

)
θ,q

.

b) Given strictly positive weights ρ := (ρi), η := (ηi) we have

(
�p(1−θ)(ρ, µ), �∞(η, µ)

)
θ,q

≈ �p,q

(
η,

(
ρ

η

)p(1−θ)

µ

)
.

c) For every 0 < η < 1,

(
�p(1−η)(µ), �∞(µ)

)
η,∞ ≈ (

�p0(µ), �p1(µ)
)
θ,∞.

This theorem gives us some information about Lorentz sequence spaces.
For instance, an easy consequence is that every sectional subspace of �p,q(µ)

is again another Lorentz space �p,q(ν). Also, by elementary considerations,
we obtain from Theorem 2.4:

Proposition 2.5. {ei}∞i=1 is a Schauder basis in every space �p,q(µ).

Another application ofTheorem 2.4 concerns duality. Given �p,q(µ), choose
a number 0 < θ < 1 such that p(1 − θ) < 1. By Theorem 2.4, �p,q(µ) is
isomorphic to (�p(1−θ)(µ), �∞(µ))θ,q . Since the normed dual of �s, 0 < s ≤ 1
is �∞, denoting by µ0 the ordinary measure on N, we have the isometries

(
�p(1−θ)(µ)

)′ = (
�p(1−θ)

(
µ

1
p(1−θ) , µ0

))′ = �∞(µ1− 1
p(1−θ) , µ

)
with duality bilinear form given by
(23)

∀(xi) ∈ �p(1−θ)(µ), ∀(yi) ∈ �∞(µ1− 1
p(1−θ) , µ

) 〈(xi), (yi)〉 =
∞∑

i=1

xiyiµi.
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With exactly the same method of proof used in [1], pages 59-65, and using
Theorem 2.4, if q ≤ 1 we can prove the isomorphisms
(24)(

�p,q(µ)
)′ ≈ (

�p(1−θ)(µ), �∞(µ)
)′
θ,q

≈ (
�∞(µ1− 1

p(1−θ) , µ
)
, �1(µ)

)
θ,∞

= (
�1(µ), �∞(µ1− 1

p(1−θ) , µ
))

1−θ,∞

with the same duality pairing given by (23), and analogously(
�p,q(µ)

)′′ ≈ �
1

1−θ
,1
(
µ

1
p(1−θ)

−1
, µ

1
p(1−θ)

)
.

Arguing in the same way with obvious changes if q > 1, we obtain
(25)(

�p,q(µ)
)′ ≈ (

�p(1−θ)(µ), �∞(µ)
)′
θ,q

≈ (
�1(µ), �∞(µ1− 1

p(1−θ) , µ
))

1−θ,
q

q−1

and in all cases

(26)
(
�p,q(µ)

)′′ ≈ �
1

1−θ
,q
(
µ

1
p(1−θ)

−1
, µ

1
p(1−θ)

)
where q = q if q > 1, and q = 1 if q ≤ 1.

We shall often need to find subspaces isomorphic to �q in certain concrete
special situations. Our main tool here will be an extension to the quasi Banach
spaces setting of a classical theorem by Levy in [9] which has been obtained
in [11]:

Theorem 2.6. Let 0 < q < ∞ and let Ei, i = 0, 1 be quasi Banach
spaces. Let {xn}∞n=1 be a seminormalized sequence in the interpolation space
(E0, E1)θ,q , such that limn→∞xn = 0 in E0 +E1. Then there is a subsequence
{xnk

}∞k=1 such that its closed linear span in (E0, E1)θ,q is isomorphic to �q .

Levy’s result has been improved by Brudnyi and Krugljak in Theorem
4.6.22) of [3], where it is shown that a Banach space of type �p,q(µ) has
complemented subspaces isomorphic to �q . The extension of this result to the
general quasinormed case is given in [12]:

Proposition 2.7. Every Lorentz sequence space �p,q(µ) has a comple-
mented subspace isomorphic to �q .

3. On necessary conditions

Lemma 3.1. If v ≤ q then (�u,v(ν), �p,q(µ)) /∈ K holds.

Proof. By Proposition 2.7, �v and �q are complemented subspaces of
(�u,v(ν) and �p,q(µ)) respectively. The proof follows from the classical Pitt’s
theorem.
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Lemma 3.2. Let the measures ν = (νi) and µ = (µi) on N be such that the
sequences {νi}∞i=1 and {µi}∞i=1 have some adherent point in ]0, ∞[. If u < p,
then (�u,v(ν), �p,q(µ)) /∈ K .

Proof. There are α > 0, β > 0 in R and infinite subsets Jν, Jµ of N such
that

∀n ∈ Jnu, ∀m ∈ Jµ α ≤ νn ≤ β and α ≤ µm ≤ β.

Projecting onto suitable complemented sectional subspaces, we can assume
that Jν = Jµ = N. Given (αi) ∈ �u,v(ν) and n ∈ N, if σ : {1, 2, . . . , n} −→ N
is an injective map giving the decreasing rearrangement of the finite sequence
(αi)

n
i=1, we have for u ≤ v

1

β
1
u
− 1

v

( n∑
i=1

|ασ(i)|v
( i∑

j=1

νσ(j)

)v
u
−1 )1

v

≤
( n∑

i=1

|ασ(i)|vi v
u
−1

) 1
v

≤ 1

α
1
u
− 1

v

( n∑
i=1

|ασ(i)|v
( i∑

j=1

νσ(j)

)v
u
−1 )1

v

.

We can make a similar computation in the case u > v. These inequalities with
Proposition 2.5 show that �u,v(ν) is isomorphic to �u,v . Analogously, �p,q(µ)

is isomorphic to �p,q . Now, as u < p the inclusion map �u,v ⊂ �p,q is not
compact.

Lemma 3.3. Let ν = (νi) and µ = (µi) be measures in N such that {νi}∞i=1
has a finite strictly positive adherent point, limi→∞ µi = 0 and

∑∞
i=1 µi = ∞.

If u < p we have that

a) (�u,v(ν), �p,q(µ)) /∈ K and

b) (�u,v(µ), �p,q(ν)) /∈ K .

Proof. As in Lemma 3.2, projecting onto suitable complemented sectional
subspaces of �u,v(ν) and �p,q(µ) we can assume that

∀i ∈ N, 0 < µi+1 ≤ µi < 1

and that �u,v(ν) and �p,q(ν) are identically isomorphic to �u,v and �p,q respect-
ively.

By the hypothesis on µ, the sequence {nk}∞k=0 such that n0 := 0 and

∀k ≥ 1, nk = min

{
h ∈ N

∣∣∣∣
h∑

i=nk−1+1

µi ≥ 1

}
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is well defined. From this definition we obtain

(27) ∀k ∈ N, 1 ≤
nk∑

i=nk−1+1

µi =
nk−1∑

i=nk−1+1

µi + µnk
< 1 + µnk

≤ 2.

Let Jk := {i ∈ N | nk−1 + 1 ≤ i ≤ nk} for every k ∈ N and let u <

s < p. By Theorem 2.4, given a number 0 < θ < 1, the spaces �u,v, �s,q

and �p,q(µ) are isomorphic to the spaces (�(1−θ)u, �∞)θ,v, (�(1−θ)s , �∞)θ,q and
(�(1−θ)p(µ), �∞(µ))θ,q respectively.

a) We consider the map T : �(1−θ)s + �∞ −→ �(1−θ)p(µ) + �∞(µ) defined
by the rule T ((αi)) := (βi) where

∀(αi) ∈ �(1−θ)s + �∞, ∀i, k ∈ N, βi = αk if i ∈ Jk.

By (27) we have

∀(αi) ∈ �(1−θ)s , ‖T ((αi))‖�(1−θ)p(µ) =
( ∞∑

k=1

|αk|(1−θ)p
∑
i∈Jk

µi

) 1
(1−θ)p

≤ 2‖(αi)‖�(1−θ)p ≤ 2‖(αi)‖�(1−θ)s

and
∀(αi) ∈ �∞, ‖T ((αi))‖�∞(µ) ≤ ‖(αi)‖�∞ .

Then, by the interpolation theorem (see [16]), T is continuous from (�(1−θ)s ,

�∞)θ,q into (�(1−θ)p(µ), �∞(µ))θ,q .
Now, let J be the inclusion �u,v ⊂ �s,q . We have |||ei |||u,v = 1 for each

i ∈ N but

∀i ∈ N, ‖T J (ei)‖p

�p,q (µ) =
∥∥∥∥

ni∑
j=ni−1+1

ej

∥∥∥∥
p

�p,q (µ)

=
(

p

q

) p

q
ni∑

j=ni−1+1

µj ≥
(

p

q

) p

q

and limi→∞ PjT J (ei) = 0 for every j ∈ N. Hence T J is not compact.
b) By Lemma 3.1, we can suppose moreover that v > q. By Proposition 2.7,

�v is a complemented topological subspace of �u,v(µ). Moreover, if v < p, we
have the continuous inclusion �v ⊂ �p,q and hence (�u,v(ν), �p,q(µ)) /∈ K .
Hence we only need to consider the case u < p ≤ v, q < v.

b.1) Suppose u ≤ 1. Choose a number 0 < θ < 1 such that p(1 −
θ) < 1. By Theorem 2.4, �u,v(µ) is isomorphic to the interpolation space
(�u(1−θ)(µ), �∞(µ))θ,v . Define for later use w = w if w > 1 and w = 1 if
w ≤ 1.
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Now we consider the map S from KN into KN defined by

∀(αi) ∈ KN, S((αi)) =
(∑

i∈Jk

αiµ
1

u(1−θ)

i

)∞

k=1

.

Choose a number r such that u < r < p. Since r(1 − θ) > u(1 − θ), the
restriction of S to �u(1−θ)(µ) is continuous from this space into �r(1−θ). To see
this compute

( ∞∑
k=1

∣∣∣∣∑
i∈Jk

αiµ
1

u(1−θ)

i

∣∣∣∣
r(1−θ)) 1

r(1−θ)

≤
( ∞∑

k=1

∣∣∣∣∑
i∈Jk

αiµ
1

u(1−θ)

i

∣∣∣∣
u(1−θ)) 1

u(1−θ)

≤
( ∞∑

k=1

∑
i∈Jk

|αi |u(1−θ)µi

) 1
u(1−θ)

= ‖(αi)‖�u(1−θ)(µ),

where we need the fact that u(1 − θ) < 1. On the other hand, by (27) we have

∑
i∈Jk

µ
1

u(1−θ)

i ≤
∑
i∈Jk

µi ≤ 2

and hence S is clearly continuous from �∞(µ) into �∞. By the interpol-
ation property, (see [16]) S is continuous from (�u(1−θ)(µ),�∞(µ))θ,v into
(�r(1−θ),�∞)θ,v and hence from �u,v(µ) into �r,v .

Let J be the inclusion �r,v ⊂ �p,q . Let R : �
1

1−θ
,v(µ

1
u(1−θ) ) −→ �u,v(µ)′′ be

the canonical isomorphism given by (recall (26))

∀(αi) ∈ �
1

1−θ
,v(µ

1
u(1−θ) ), R((αi)) = (αiµ

1− 1
u(1−θ)

i ).

Then J ′′S ′′R is not compact. In fact, by (1), for each k ∈ N, we have

∥∥∥∥∑
i∈Jk

ei

∥∥∥∥
�

1
(1−θ)

,1
(
µ

1
u(1−θ)

) = 1

(1 − θ)

(∑
i∈Jk

µ
1

u(1−θ)

i

)(1−θ)

≤ 1

1 − θ

∑
i∈Jk

µ
1
u

i

≤ 1

1 − θ

∑
i∈Jk

µi

≤ 2

1 − θ
.
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However, applying (26) to the space �p,q we obtain

∥∥∥∥J ′′S ′′R
(∑

i∈Jk

ei

)∥∥∥∥
1

1−θ

�
1

1−θ
,q

=
∥∥∥∥
(∑

i∈Jk

µi

)
ek

∥∥∥∥
1

1−θ

�
1

1−θ
,q

=
(

1

(1 − θ)q

) 1
(1−θ)q ∑

i∈Jk

µi

≥
(

1

(1 − θ)q

) 1
(1−θ)q

.

As a consequence, since the transposed map of a compact operator is also
compact, JS : �u,v(µ) −→ �p,q is not compact.

b.2) If 1 < u, choosing u < r < p, and defining the number 0 < θ < 1
such that 1 = (1 − θ)u < (1 − θ)r , by Theorem 2.4 and the interpolation
property of operators (see [16]) we can show in the same way as above that
the map S given by

∀(αi) ∈ �u,v(µ), S((αi)) =
(∑

i∈Jk

αiµi

)∞

k=1

is continuous from �u,v(µ) into �r,v and that JS is not compact.

4. Main results

Proposition 4.1. Let r := min{u, v}. Assume q ≤ p ≤ r . Let T

be an operator from �u,v(ν) into �p,q(µ). Assume {zn}∞n=1 ⊂ �u,v(ν) and
{T (zn)}∞n=1 ⊂ �p,q(µ) are coordinatewise null seminormalized sequences.
Then there is a subsequence of {T (zn)}∞n=1 which is equivalent to the standard
unit basis of �q .

Proof. If p = q the conclusion is easy by consecutive application of
corollaries 2.3.1 and 2.3.2.

Hence we assume q < p. There is a number θ ∈]0, 1[ such that q =
(1 − θ)p. By Theorem 2.4, �p,q(µ) is isomorphic to (�q(µ), �∞(µ))θ,q . Then,
by Theorem 2.6, it is enough to show that {vn}∞n=1 := {T (zn)}∞n=1 has a sub-
sequence convergent to 0 in �q(µ) + �∞(µ).

By the hypothesis on {vn}∞n=1, starting with s1 = 1, r0 = 0 and using the
standard gliding hump argument, we can determine ε > 0 and a diagonal
subsequence of consecutive linear sections

{
γ h
}∞

h=1 :=
{ rh∑

i=rh−1+1

v
sh

i ei

}∞

h=1
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generated by two strictly increasing subsequences {rh}∞h=0 and {sh}∞h=1 in N
such that

(28) ∀h ≥ 2,

∥∥∥∥
rh−1∑
i=1

v
sh

i ei

∥∥∥∥
p,q

≤ ε

2h+2

and

(29) ∀h ≥ 1,

∥∥∥∥
rh∑

i=rh−1+1

v
sh

i ei

∥∥∥∥
p,q

≥ ε

2
and

∥∥∥∥
∞∑

i=rh+1

v
sh

i ei

∥∥∥∥
p,q

≤ ε

2h+2
.

Hence, by the continuity of the inclusion map �p,q(µ) ⊂ �q(µ) + �∞(µ), the
proof will be finished if we show that limh→∞ γ h = 0 in �q(µ) + �∞(µ).

For every h ∈ N and δ > 0 we define Jh := {i ∈ N | rh−1 + 1 ≤ i ≤ rh},
Ph,δ := {i ∈ Jh | |vsh

i | ≤ δ}, Gh,δ = Jk\Pk,δ and

∀h ∈ N, yh,δ :=
∑

i∈Gh,δ

v
sh

i ei .

We now check that

(30) lim
h→∞

∥∥yh,δ
∥∥

�q (µ)
= 0.

If this were not the case, there would be ρ > 0 such that for some subsequence,
again denoted by {γ h}∞h=1,

(31) ∀h ∈ N,

(∑
i∈Gh,δ

|vsh

i |qµi

) 1
q

≥ ρ.

Since the set {γ h | h ∈ N} is bounded, denoting by |Gh,δ| the cardinal number
of the set Gh,δ , and using (10), (7) and (31), we would have for some fixed
K > 0 and some injective map σ : [1, |Gh,δ|] ⊂ N −→ N
(32)

K ≥
(

p

q

) 1
q

|||γ h|||p,q ≥
∣∣∣∣
∣∣∣∣
∣∣∣∣ ∑
i∈Gh,δ

v
sh

i ei

∣∣∣∣
∣∣∣∣
∣∣∣∣
p,q

=
(|Gh,δ |∑

i=1

|vsh

σ(i)|qµσ(i)(∑i
j=1 µσ(j)

)1− q

p

) 1
q

≥
(|Gh,δ |∑

i=1

|vsh

σ(i)|qµσ(i)

(
∑

j∈Gh,δ
µj )

1− q

p

) 1
q

≥ ρ(∑
j∈Gh,δ

µj

) 1
q
− 1

p

.
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Hence

(33)
∑

j∈Gh,δ

µj ≥
( ρ

K

) qp

p−q

.

On the other hand we have

K ≥
(|Gh,δ |∑

i=1

|vsh

σ(i)|qµσ(i)(∑i
j=1 µσ(j)

)1− q

p

) 1
q

≥ δ

(|Gh,δ |∑
i=1

µσ(i)(∑
j∈Gh,δ

µj

)1− q

p

) 1
q

= δ

(∑
j∈Gh,δ

µj

) 1
p

and hence

(34)
∑

j∈Gh,δ

µj ≤
(

K

δ

)p

.

The strict inclusion �r,q ⊂ �r,r = �r , holds. Since �p,q ⊂ �r,q , there exists
a strictly decreasing sequence (αi) ∈ �r\�p,q . Hence

(35)

∞∑
i=1

|αi |q
i

1− q

p

= ∞.

By Lemma 2.1.1, the set {∑n
h=1 αhzsh | n ∈ N} is bounded in �u,v(ν). Hence,

by (28) and (29), the set {∑n
h=1 αhγ sh | h ∈ N} is bounded in �p,q(µ). A fortiori

{∑n
h=1 αhyh,δ | h ∈ N} will be bounded in �p,q(µ). However, using (7), (10),

(33) and (34) we have
(36)(

p

q

) 1
q
∣∣∣∣
∣∣∣∣
∣∣∣∣

n∑
h=1

αhyh,δ

∣∣∣∣
∣∣∣∣
∣∣∣∣
p,q

≥ δ

∣∣∣∣
∣∣∣∣
∣∣∣∣

n∑
h=1

αh

∑
i∈Gh,δ

ei

∣∣∣∣
∣∣∣∣
∣∣∣∣
p,q

≥ δ

(
n∑

h=1

|αh|q
∑

i∈Gh,δ

µi(∑h
m=1

∑
j∈Gm,δ

µj

)1− q

p

) 1
q

≥ δ

(
n∑

h=1

|αh|q
∑

i∈Gh,δ
µi

h
1− q

p

(
K
δ

)p−q

) 1
q

≥ δ

(
ρ

K

) p

p−q
(

δ

K

) p

q
−1( n∑

h=1

|αh|q
h

1− q

q

) 1
q

which is unbounded with n by (35), which contradicts the continuity of T .
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As a consequence, given η > 0 there is h0 ∈ N such that for every h ≥ h0

‖γ h‖�q (µ)+�∞(µ) ≤
∥∥∥∥ ∑

i∈Gh,
η
2

v
sh

i ei

∥∥∥∥
�q (µ)

+
∥∥∥∥ ∑

i∈Ph,
η
2

v
sh

i ei

∥∥∥∥
�∞(µ)

≤ η

2
+ η

2
= η

and the proposition is proved.

Lemma 4.2. Every seminormalized coordinatewise null sequence in �p,q(µ)

has a subsequence equivalent to the canonical basis of �q in each of the fol-
lowing situations:

a) If the measure µ = (µn) in N satisfies limn→∞µn = ∞.

b) If µ(N) < ∞.

Proof. Let {wm}∞m=1 := {(wm
i )}∞m=1 ⊂ �p,q(µ) be a seminormalized co-

ordinatewise null sequence such that ‖wm‖p,q ≤ K for every m ∈ N and some
K > 0. Choose a number 0 < θ < 1. By Theorem 2.4, �p,q(µ) is isomorphic
to (�(1−θ)p(µ), �∞(µ))θ,q . Then, by Theorem 2.6 it is enough to find a sub-
sequence {wmk }∞k=1 such that limk→∞ wmk = 0 in �(1−θ)p(µ)+�∞(µ). With the
method and notations of Corollary 2.3, we choose a diagonal subsequence of
consecutive linear sections {um}∞m=1 of {wm}∞m=1 determined by certain strictly
increasing subsequences {km}∞m=1, {nm}∞m=0 in N and satisfying (20), (21) and
(22). Then we only have to show that {um}∞m=1 has a subsequence convergent
to 0 in �(1−θ)p(µ) + �∞(µ).

a) Given ε > 0 there is i0 ∈ N such that

∀i ≥ i0, ∀m ∈ N K ≥ ‖wm‖p,q ≥ ‖wm
i ei‖p,q =

(
p

q

) 1
q

|wm
i |µ

1
p

i ≥ |wm
i |
ε

.

Since {wm}∞m=1 is coordinatewise null, this means that limm→∞ wm = 0 in
�∞(µ) and hence in �(1−θ)p(µ) + �∞(µ) too.

b) Choose a number 0 < θ < 1 such that (1 − θ)p < q. Since µ(N) < ∞,
we have

(37)
(
�(1−θ)p(µ), �∞(µ)

)
θ,q

⊂ �p(1−θ)(µ) + �∞(µ) = �p(1−θ)(µ).

Now it is enough to show that limm→∞ um = 0 in �p(1−θ)(µ). If this were
not the case, there would be an ε > 0 such that for some subsequence, again
denoted by {um}∞m=1, the inequality ‖um‖�p(1−θ)(µ) ≥ ε holds for every m ∈ N.
If r := min{p, q}, selecting a sequence (αm) ∈ �r\�p(1−θ), by Lemma 2.1, the
set {∑m

i=1 αiw
i | m ∈ N} will be bounded in �p,q(µ) but it will be unbounded
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in �(1−θ)p(µ) since∥∥∥∥
m∑

k=1

αku
k

∥∥∥∥
�(1−θ)p(µ)

=
( m∑

k=1

|αk|(1−θ)p‖uk‖(1−θ)p

�(1−θ)p(µ)

) 1
(1−θ)p

≥ ε

( m∑
k=1

|αk|(1−θ)p

) 1
(1−θ)p

,

but this contradicts (37).

Proposition 4.3. Suppose p ≤ q ≤ u < v, and T ∈ L (�u,v(ν), �p,q(µ)).
Let {zn}∞n=1 be a coordinatewise null bounded sequence in �u,v(ν) such that
{T (zn)}∞n=1 is a coordinatewise null seminormalized sequence in �p,q(µ). Then
there is a diagonal subsequence {γ nk }∞k=1 of general sections of {zn}∞n=1 which
is equivalent to the standard unit basis of �v and such that {T (γ nk )}∞k=1 is a
seminormalized coordinatewise null sequence in �p,q(µ).

Proof. By the continuity of T , {zn}∞n=1 is also seminormalized in �u,v(ν).
Using the gliding hump method as in Corollary 2.3, we find a subsequence
{um}∞m=1 of consecutive linear sections of {zn}∞n=1 satisfying inequalities (20),
(21) and (22). As a consequence, by the triangle inequality of t-norms and the
continuity of projections Pi, i ∈ N, it is easy to see that {T (um)}∞m=1 is also a
seminormalized and coordinatewise null sequence in �p,q(µ). Hence we can
assume that the given sequence {zn}∞n=1 is already a sequence of consecutive
linear sections of a bounded sequence.

Let {nh}∞h=0 and {kh}∞h=1 be strictly increasing sequences in N with n0 =
0, k1 = 1 and let ε > 0, M > 0 in R be such that
(38)

∀ h ∈ N, ε < ‖T (zh)‖p,q ≤ ‖T ‖‖zh‖u,v := ‖T ‖
∥∥∥∥

nh∑
i=nh−1+1

z
kh

i ei

∥∥∥∥
u,v

≤ M.

This implies that ‖T ‖ > 0. Put Jh := {i ∈ N | nh−1 + 1 ≤ i ≤ nh} for every
h ∈ N. Fix a number k > 0 such that ku > 1. For every h ∈ N and δ > 0 we
define Ph,δ := {i ∈ Jh | |zkh

i | ≤ δ}, Gh,δ = {i ∈ Jh | δ < |zkh

i | ≤ 1
δk } and

∀h ∈ N, yh,δ :=
∑

i∈Gh,δ

z
kh

i ei and wh,δ :=
∑

i∈Jh\(Gh,δ∪Ph,δ)

z
kh

i ei .

Then, by (38), (1), (4) and (5) we have

M

‖T ‖ ≥ ∥∥yh,δ
∥∥

u,v
≥ δ

(
u

v

) 1
v
(∑

i∈Gh,δ

νi

) 1
u
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and hence

(39) ∀h ∈ N,
∑

i∈Gh,δ

νi ≤ Cδ :=
(

M

‖T ‖δ

)u(
v

u

) u
v

.

We now check that (βh
i ) := {T (yh,δ)}∞h=1 is coordinatewise null in �p,q(µ).

The set

R :=
{ n∑

h=1

αhyh,δ | ‖(αh)‖�u,v ≤ 1

}

is bounded in �u,v(ν) since by (7), (10) and (39), if σ : {1, 2, . . . , n} −→ N is
an injective mapping giving the decreasing rearrangement of (αi)

n
i=1, we have

(40)

∀n ∈ N,

∣∣∣∣
∣∣∣∣
∣∣∣∣

n∑
h=1

αhyh,δ

∣∣∣∣
∣∣∣∣
∣∣∣∣
v

u,v

≤ 1

δkv

v

u

n∑
h=1

∑
i∈Gσ(h),δ

|ασ(h)|vνi

( h∑
j=1

∑
m∈Gσ(j),δ

νm

) v
u
−1

≤ 1

δkv

v

u
C

v
u
−1

δ

n∑
h=1

|ασ(h)|vh v
u
−1

∑
i∈Gσ(h),δ

νi

≤ 1

δkv

v

u
C

v
u

δ

n∑
h=1

|ασ(h)|vh v
u
−1

< ∞.

Fix i ∈ N. Then, by boundedness of R

(41)

∀n ∈ N sup
‖(αh)‖�u,v ≤1

∣∣∣∣
n∑

h=1

αhβh
i

∣∣∣∣ = sup
‖(αh)‖�u,v ≤1

∣∣∣∣PiT

( n∑
h=1

αhyh,δ

)∣∣∣∣
≤ sup

ω∈R

|PiT (ω)| := ρ < ∞.

This means that the sequence (βh
i )∞

h=1 defines a continuous linear form on �u,v .
By (24) and (25), (�u,v)′ is isomorphic to (�1, �∞)1−θ,v , where v = v/(v − 1)

if v > 1 and v = ∞ if v ≤ 1. By Theorem 2.4, this space is isomorphic to
(�p0 , �p1)χ,v ⊂ �p1 where 0 < p0 < p1 < ∞, 0 < χ < 1 and θ = (1 −
χ)/p0 +χ/p1. Hence, by (23), we obtain (βh

i )∞
h=1 ∈ �p1 , and limh→∞ βh

i = 0
and {T (yh,δ)}∞h=1 is coordinatewise null in �p,q(µ).

Let us see now that

(42) lim
h→∞

∥∥T (yh,δ)
∥∥

p,q
= 0.
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In the other case, the coordinatewise null sequence {T (yh,δ)}∞h=1 would have a
seminormalized subsequence and there would be a further subsequence (again
denoted by {T (yh,δ)}∞h=1) such that Corollary 2.3.1 holds. Since the strict inclu-
sion �q ⊂ �u,v holds, we take a strictly decreasing sequence (αh) ∈ �u,v\�q . By
the computations of (40) we obtain that the set R0 := {∑n

h=1 αhyh,δ | n ∈ N}
is bounded in �u,v(ν). However, by Corollary 2.3.1, T (R0) is unbounded in
�p,q , since (αh) /∈ �q . This proves our assertion.

As a consequence, if s0 ∈ N satisfies 1
s0

< ε
2 , for every s ≥ s0 we can

determine inductively some hs ∈ N such that hs > hs−1 and

(43) ∀s ≥ s0,
∥∥T (yhs,

1
s

)∥∥t

p,q
≤ 1

s
.

Let us see now that the sequence

{γ s}∞s=s0
:=
{ ∑

i∈P
hs , 1

s

z
khs

i ei

}∞

s=s0

has a seminormalized subsequence. If not then

lim
s→∞ ‖γ s‖�u,v(ν) = 0.

Hence, by (42) and the continuity of T it follows that {T (whs,
1
s )}∞s=s0

is a
seminormalized coordinatewise null sequence in �p,q(µ). Put Fs := {i ∈ Jhs

|
i /∈ Phs,

1
s
∪ Ghs,

1
s
} for every s ≥ s0 and F := ∪∞

s=s0
Fs . By (38)

∀s ≥ s0, Mu ≥
∥∥∥∥∑

i∈Fs

z
khs

i ei

∥∥∥∥
u

u,v

≥
(u

v

) u
v

sku
∑
i∈Fs

νi

and hence

ν(F ) ≤ Mu
(v

u

) u
v

∞∑
s=s0

1

sku
< ∞.

Now {whs,
1
s }∞s=s0

can be viewed as a sequence in the Lorentz sequence space
�u,v(F, ν) defined over the finite measure space (F, ν). By Lemma 4.2.b, it
has a subsequence (again denoted by the same symbol), which is equivalent
to the standard unit vector basis of �v . By Corollary 2.3, we would get the
existence of another subsequence (for which we retain the same notation)
such that {T (whs,

1
s )}∞s=s0

satisfies (15). Choosing a sequence (αi) ∈ �v\�q ,

the set R1 := {∑n
s=1 αsw

hs,
1
s | n ∈ N} is bounded in �u,v(ν) while T (R1) is

unbounded in �p,q(µ) by Corollary 2.3.1. We have arrived at a contradiction
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which proves the existence of a seminormalized subsequence of {γ s}∞s=1 (again
denoted by the same symbol).

By Theorem 2.4, for every number 0 < θ < 1, �u,v(ν) is isomorphic with
the interpolation space (�(1−θ)u(ν), �∞(ν))θ,v . Since by construction

∥∥zhs − yhs,
1
s − whs,

1
s

∥∥
�∞(ν)

≤ 1

s
,

by Theorem 2.6, switching to a suitable subsequence, we can assume {γ s}∞s=1,
is equivalent to the canonical basis of �v . As a consequence, since �u,v ⊂ �v ,
the set

W :=
{ n∑

h=1

αsγ
s | ‖(αs)‖�u,v ≤ 1

}

is bounded in �u,v(ν). Then, arguing as in the previous case for the sequence
{T (yh,δ)}∞h=1, we can show that {T (γs)}∞s=1, is a coordinatewise null sequence
also. The proof is finished.

Proposition 4.4. Let T ∈ L (�u,v(ν), �p,q(µ)). Suppose that limi→∞ µi =
∞ or µ(N) < ∞ and q ≤ u < v. If {zn}∞n=1 ⊂ �u,v(ν) and {T (zn)}∞n=1 ⊂
�p,q(µ) are coordinatewise null seminormalized sequences, there is a sub-
sequence {γ n}∞n=1 of general sections {zn}∞n=1 which is equivalent to the stand-
ard unit basis of �v and such that {T (γ n)}∞n=1 is equivalent to the standard unit
basis of �q .

Proof. By Lemma 4.2.a or Lemma 4.2.b respectively, it is enough to find a
subsequence {γ n}∞n=1 of general sections equivalent to the canonical unit basis
of �v and such that {T (γ n)}∞n=1 is seminormalized and coordinatewise null in
�p,q(µ). The proof of this fact is exactly the same as the one given in Proposition
4.3 except for showing that (using the same notations of Proposition 4.3)
lims→∞

∥∥T (ys,δ)
∥∥

p,q
= 0. Now we argue as follows: If {T (ys,δ)}∞s=1 has a

seminormalized subsequence, by the gliding hump method used in Proposition
4.1, we can choose a diagonal subsequence of consecutive linear sections
{ωm}∞m=1 := {T (ysm,δ)}∞m=1 satisfying the analogous inequalities of (28) and
(29) for every m ∈ N. By Lemma 4.2.a or Lemma 4.2.b, {ωm}∞m=1 has a
subsequence (denoted by the same symbol) which is equivalent to the canonical
unit basis of �q . Now, taking an strictly decreasing sequence (αi) ∈ �u,v\�u,
the set R1 := {∑n

m=1 αmysm,δ | m ∈ N} is bounded in �u,v(ν) by (40) but
T (R1) is unbounded in �q , since (αi) /∈ �q . From here on, we can argue as in
Proposition 4.3 and get the desired subsequence.

Proposition 4.5. Let limi→∞ νi = ∞ or ν(N) < ∞. Let T be an operator
from �u,v(ν) into �p,q(µ)). If {zn}∞n=1 ⊂ �u,v(ν) and {T (zn)}∞n=1 ⊂ �p,q(µ) are
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coordinatewise null seminormalized sequences, there is a subsequence {un}∞n=1
of {zn}∞n=1 which is equivalent to the canonical unit basis of �v and such that
{T (un)}∞n=1 is equivalent to the canonical unit basis of �q in following cases:

a) If q ≤ p < v

b) If q < p ≤ v

Proof. By Lemma 4.2.a or Lemma 4.2.b respectively, passing to a suitable
subsequence, we assume that {zn}∞n=1 is equivalent to the standard unit basis
of �v . Now, retaining the notation of Proposition 4.1 concerning the sets Jh,
components of every zh and the selection of the sequence {sh}∞h=1 ⊂ N, as the
strict inclusion �p,q ⊂ �v holds in the two cases a) and b), the proof of our
proposition is exactly the same as that of Proposition 4.1 since now the set
{∑n

h=1 αhzsh | n ∈ N} is bounded in �u,v(ν) whatever the strictly decreasing
sequence (αi) ∈ �v may be (by the equivalence of {zn}∞n=1 with the canonical
basis of �v).

The crucial part of our main result will follow from a suitable application
of previous propositions:

Theorem 4.6. Let �u,v(ν) and �p,q(µ) be Lorentz sequence spaces.

1) If ν and µ are measures ρ = {ρi}∞i=1 such that ρ(N) < ∞ or limi→∞ ρi =
∞, (�u,v(ν), �p,q(µ)) ∈ K if and only if v > q.

2) If ν(N) < ∞ or limi→∞ νi = ∞, and µ is a measure such that µ(N) =
∞ and limi→∞ µi = 0, or {µi}∞i=1 has an adherent point in ]0, ∞[,
(�u,v(ν), �p,q(µ)) ∈ K if and only if v > q and v ≥ p.

3) If ν is a measure such that ν(N) = ∞ and limi→∞ νi = 0, or {νi}∞i=1
has an adherent point in ]0, ∞[, and µ(N) < ∞ or limi→∞ µi = ∞,
(�u,v(ν), �p,q(µ)) ∈ K if and only if v > q and u ≥ q.

4) If ν and µ are measures ρ = {ρi}∞i=1 such that ρ(N) = ∞and limi→∞ ρi =
0, or {ρi}∞i=1 has an adherent point in ]0, ∞[, (�u,v(ν), �p,q(µ)) ∈ K if
and only if v > q, v ≥ p, u ≥ p and u ≥ q.

Proof of the necessary condition. a) The necessity of condition v > q

in all cases follows from Lemma 3.1. The necessity of u ≥ p in the quoted
cases follows from Lemma 3.2 and Lemma 3.3.

b) Suppose v < p and that {µi}∞i=1 has an adherent point in ]0, ∞[. Arguing
as in Lemma 3.2 and projecting onto a suitable complemented subspace, we
may assume that �p,q(µ) is isomorphic to �p,q . By Proposition 2.7, �v is a
complemented subspace of �u,v(ν). Since the non compact inclusion �v ⊂ �p,q

holds, we have non compact maps from �u,v(ν) into �p,q .
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c) Suppose limi→∞ µi = 0 but µ(N) = ∞ and v < p. By Lemma 3.3.a
there is a non compact operator T from �v into �p,q(µ). We finish by composing
T with a continuous projection of �u,v(ν) onto its subspace �v (Proposition 2.7).

d) Suppose that {νi}∞i=1 has an adherent point in ]0, ∞[. Suppose moreover
u < q < v holds. Projecting onto a sectional subspace of �u,v(ν), we can
assume that �u,v(ν) is isomorphic to �u,v . Then we have the continuous non
compact inclusion I : �u,v ⊂ �q,q = �q . Since �q is a subspace of �p,q(µ)

(Proposition 2.7) there are non compact maps from �u,v(ν) into �p,q(µ).
e) Assume now that ν = (νi) is a measure on N such that limi→∞ νi = 0 but

ν(N) = ∞. Also assume u < q < v. By Lemma 3.3.b there is a non compact
map from �u,v(ν) into �q,q = �q . Since �q is a topological subspace of �p,q(µ)

(Proposition 2.7), we have finished.

Proof of the sufficient condition. Let T be an operator from �u,v(ν)

into �p,q(µ). We need to show that {T (zn)}∞n=1 has a convergent subsequence
for every bounded sequence {zn}∞n=1 = {(zn

i )}∞n=1 ⊂ �u,v(ν). As the projections
onto each axis are continuous, by a diagonalization procedure we can select a
subsequence, again denoted by {zn}∞n=1, such that

(44) ∀i ∈ N, lim
n→∞ zn

i exists.

Since every map PnT , n ∈ N, is compact, another application of the diagonaliz-
ation procedure, we can choose a subsequence, still denoted by {zn}, such that
{(wn

i )}∞n=1 : = {T ((zn
i ))}∞n=1 is coordinatewise convergent. The theorem will be

shown if we prove that {(wn
i )}∞n=1 is a Cauchy sequence in �p,q(µ). By a useful

and well known observation due to Pelcynski (see [15]) and (44), it is enough
to see that limn→∞ T (zn) = 0 in �p,q(µ) for every bounded coordinatewise
null sequence {zn}∞n=1 ⊂ �u,v(ν) such that {(wn

i )}∞n=1 is also coordinatewise
null in �p,q(µ).

Suppose that {T (zn)}∞n=1 does not converge to 0. Then we can choose a
seminormalized subsequence (again denoted by {T (zn)}∞n=1). A fortiori, by
the continuity of T , {(zn)}∞n=1 will be seminormalized also in �u,v(ν). From
now on we consider seven cases which covers all possibilities:

Case I. Suppose s := max{p, q} < r := min{u, v}. Choose a sequence
(αi) ∈ �r such that (αi) /∈ �s . By a successive application of Corollary 2.3.2
and Corollary 2.3.1 we get a subsequence {zkm}∞m=1 such that the set R :=
{∑h

m=1 αmzkm | h ∈ N} is bounded in �u,v(ν) but T (R) := {∑h
m=1 αmT (zkm) |

h ∈ N} is unbounded in �p,q(µ), contradicting the continuity of T .

Case II. Suppose q < p ≤ r = min{u, v}. By Proposition 4.1, by replacing
{zn}∞n=1 with a subsequence if necessary, we can suppose that {T (zn)}∞n=1 is
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equivalent to the standard unit basis of �q . Choosing a sequence (αi) ∈ �r such
that (αi) /∈ �q , we obtain a contradiction as above by Corollary 2.3.2.

Case III. Suppose p ≤ q ≤ u < v. Arguing as in Corollary 2.3 (gliding
hump method), we can find a diagonal subsequence {um}∞m=1 of consecutive
linear sections of {zn}∞n=1 satisfying the inequalities (20), (21) and (22). These
inequalities, the continuity of every projection Pi, i ∈ N, the actual hypothesis
on {T (zn)}∞n=1 and (17) imply that {T (um)}∞m=1 is again a seminormalized
coordinatewise null sequence in �p,q(µ). By Proposition 4.3, {um}∞m=1 has
a diagonal subsequence {γ ms }∞s=1 of general sections which is equivalent to
the standard unit basis of �v and such that {T (γ ms )}∞s=1 is a coordinatewise
null semi-normalized sequence in �p,q(µ). Selecting a suitable subsequence,
we may assume that {T (γ ms )}∞s=1 satisfies Corollary 2.3.1. Taking a sequence
(αi) ∈ �v\�q we finish the proof as in case II, using this Corollary.

Case IV. Suppose that limi→∞ νi = ∞, and q < v. By Lemma 4.2.a,
looking at a suitable subsequence, we may assume that {zm}∞m=1 is equivalent
to the canonical unit basis of �v . Clearly {T (zm)}∞m=1 is again a coordinatewise
null seminormalized sequence in �p,q(µ).

a) Suppose moreover that limi→∞ µi = ∞ or µ(N) < ∞. If p ≤ q,
{T (zm)}∞m=1 has a subsequence such that Corollary 2.3.1 holds. Then we finish
the proof as above choosing a sequence (αi) ∈ �v\�q . In the case q < p, by
Lemma 4.2.a and Lemma 4.2.b respectively, {T (zm)}∞m=1 has a subsequence
equivalent to the canonical unit basis of �q . We get a contradiction by choosing
a sequence (αi) ∈ �v\�q .

b) Now suppose p ≤ v. If p ≤ q, since q < v, we argue as in case IV.a.
If q < p ≤ v, by Proposition 4.5, {zm}∞m=1 can be chosen indeed such that
{T (zm)}∞m=1 is equivalent to the canonical basis of �q . We finish by choosing
(αi) ∈ �v\�q .

Case V. Suppose ν(N) = ∞ but limi→∞ νi = 0 and v > q, u ≥ q.
a) Let limi→∞ µi = ∞. If v ≤ u, by Corollary 2.3.2. and by Lemma 4.2.a,

by switching to a suitable subsequence, we may assume that {zm}∞m=1 satisfies
Corollary 3.2 and {T (zm)}∞m=1 is equivalent to the standard unit basis of �q .
Then we use a sequence (αi) ∈ �q\�v and Corollary 2.3.2.

If q ≤ u < v by Proposition 4.4, {zm}∞m=1 has a subsequence {γ m}∞m=1 of
diagonal general sections which is equivalent to the canonical unit basis of �v

and {T (γ m)}∞m=1 is equivalent to the canonical unit basis of �q . Then we finish
as above using the same sequence (αi).

b) If µ(N) < ∞, the proof is analogous to case V.a using Lemma 4.2.b and
Corollary 2.3.2 when q < v ≤ u, and Proposition 4.4 and Lemma 4.2.b if
q ≤ u < v.

Case VI. Suppose ν(N) < ∞ and v > q.
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a) Let µ(N) < ∞. By consecutive applications of Lemma 4.2.b in �u,v(ν)

and �p,q(µ), choosing a suitable subsequence, we can assume that {zm}∞m=1 is
equivalent to the canonical unit vector basis of �v and {T (zm)}∞m=1 is equivalent
to the canonical unit vector basis of �q . Then we finish in the known way using
a sequence (αi) ∈ �v\�q .

b) If limi→∞ µi = ∞, the proof is the same using Lemma 4.2.a.
c) Suppose now v > q, v ≥ p. If moreover q ≤ p < v or q < p ≤ v

holds, by Proposition 4.5, selecting suitable subsequences, we may assume
that {zm}∞m=1 and {T (zm)}∞m=1 are equivalent to the standard unit bases of �v

and �q respectively. We finish using a sequence (αi) ∈ �v\�q . Analogously, if
p ≤ q < v holds, by Lemma 4.2.b and Corollary 2.3.1, we can assume that
{zm}∞m=1 is equivalent to the canonical unit basis of �v and {T (zm)}∞m=1 satisfies
Corollary 2.3.1. Then we finish with the same (αi) in the customary way.

Case VII. To finish, suppose that v > q, u ≥ q, the measure ν is such that
the sequence {νi}∞i=1 has an adherent point in the open interval ]0, ∞[, and
limi→∞ µi = ∞ or µ(N) < ∞. Now the proof is the same as in case V.b using
Lemma 4.2.a and Lemma 4.2.b respectively.
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