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BRATTELI-VERSHIK MODELS FOR CANTOR MINIMAL
SYSTEMS ASSOCIATED TO INTERVAL EXCHANGE

TRANSFORMATIONS

RICHARD GJERDE and ØRJAN JOHANSEN

Abstract

We construct Bratteli-Vershik models for minimal interval exchange transformations. We use
this to show that the interval exchange transformations over quadratic fields, recently studied by
Boshernitzan and Carroll, actually are (conjugate to) substitution minimal systems. We also prove
a partial converse to this. Furthermore, these systems are orbit equivalent to Sturmian systems.

1. Minimal interval exchange transformations and their associated
Cantor minimal systems

Let ξ = (�1, . . . , �k) be a partition of [0, 1) into k ≥ 2 disjoint semi-intervals
(of the form [a, b)) numbered from left to right, and let π = (π1, . . . , πk) be a
permutation of the numbers (1, 2, . . . , k). A transformationT : [0, 1) → [0, 1),
which is a translation Tαi (x) = x+αi (mod 1) on each of the semi-intervals
�i (the number αi depends on i), such that

{ T�i = �′
i : i ∈ {1, . . . , k} }

is a semi-interval partition of [0, 1), where the �′
i adhere to each other in

the order �′
π1
, . . . , �′

πk
, is called an interval exchange transformation on k

intervals.
The notion of an interval exchange transformation was introduced by Keane

[8]. For a more complete discussion of interval exchange transformations we
refer to [2, Chapter 5].

We will assume throughout that the transformation T is minimal in the
sense that the orbit under T of any point in [0, 1) is dense in [0, 1). An obvious
necessary condition for T to be minimal is that π be irreducible, i.e. π does
not map any segment {1, 2, . . . , j}, j < k, into itself. A sufficient condition
is the so-called infinite distinct orbit condition; i.e. the orbit of any of the left
end points of the intervals is infinite, and for points other than 0, the orbits do
not intersect [2, Chapter 5, §4, Theorem 1].
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Let T : [0, 1) → [0, 1) be a minimal interval exchange transformation on k

intervals. We want to include [0, 1) densely in a Cantor setX and find a minimal
homeomorphism φ:X → X such that φ|[0,1) = T . Let ξ = {�1, . . . , �k} be
the intervals associated to T . Let L (T ) = {d1, d2, . . . , dk} be the set of left
endpoints of the intervals. It is clear that T is continuous from the right, but
discontinuous from the left at di 
= 0. We remedy this in the following fashion.
Let D(T ) denote the T -orbits of all di , and let

X = ([0, 1) \ D(T ))
⋃

{ x+, x− : x ∈ D(T ) }
where 0− = 1 and 0+ = 0. Letting x− < x+ for each x ∈ D(T ) (with
the exception that 0− ≥ x for all x), there is an obvious extension of the
linear ordering on [0, 1) to a linear ordering on X. We endow X with the order
topology and get a Cantor set, since D(T ) is dense in [0, 1) by minimality of T .
We may include [0, 1) inX by mapping x in D(T ) to x+. We define φ:X → X

by φ(y) = T (y) if y ∈ [0, 1) \ D(T ) and if x ∈ D(T ), φ(x−) = T (x)− and
φ(x+) = T (x)+. The interval�i = [ai, bi) in [0, 1) corresponds to the clopen
“interval” [a+

i , b
−
i ] in X.

We will henceforth call (X, φ) an interval exchange transformation on k

intervals (associated to T ).

2. Bratteli diagrams and dimension groups, ordered Bratteli diagrams
and Bratteli-Vershik models.

We give a brief survey of Bratteli diagrams and how they are employed to
give models for Cantor minimal systems. We also state some basic facts about
dimension groups and their relation to Bratteli diagrams and to Cantor minimal
systems. For further details, the reader should consult the references [3], [4],
[6], [7].

2.1. Bratteli diagrams

Definition 2.1. A Bratteli diagram is an infinite directed graph (V ,E),
where V is the vertex set and E is the edge set. These sets are partitioned into
non-empty disjoint finite sets V = V0 ∪ V1 ∪ . . . and E = E1 ∪ E2 ∪ . . . ,
where V0 = {v0} is a one-point set. There are two maps r, s:E → V such that
r(En) ⊆ Vn and s(En) ⊆ Vn−1 for n ∈ N. Furthermore, s−1(v) 
= ∅ for all
v ∈ V and r−1(v) 
= ∅ for all v ∈ V \ V0. We call r and s the range map and
the source map of (V ,E), respectively. We say that u ∈ Vn is connected to
v ∈ Vn+1 if there is an edge e ∈ En such that s(e) = u and r(e) = v.

If Vn = {u1, . . . , uk} and Vn+1 = {v1, . . . , vm}, we define an m× k matrix
An = (aij ), where aij is the number of edges connecting vi to uj . We call An

the nth incidence matrix of (V ,E).
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Given ek ∈ Ek , ek+1 ∈ Ek+1, . . ., ek+m ∈ Ek+m such that r(ei) = s(ei+1)

for i = k, k + 1, . . ., k + m − 1, we call the sequence (ek, . . . , ek+m) a
path (of length m + 1) in (V ,E) starting at s(ek) ∈ Vk−1 and terminating at
r(ek+m) ∈ Vk+m. In the same manner, we define infinite paths (e1, e2, e3, . . .),
starting from the top vertex v0 ∈ V0.

Let {nk}∞k=0 be a subsequence of {0, 1, 2, . . .}, where we assume thatn0 = 0.
We telescope (V ,E) into a new Bratteli diagram (V ′, E′) by letting V ′

k = Vnk

and lettingA′
k = Ank+1−1Ank+1−2 · · ·Ank be the new incidence matrices. Notice

that E′, r ′, and s ′ are obtained in a natural way from the incidence matrices
A′
k . Furthermore, we see that the edges E′

k from V ′
k−1 to V ′

k correspond to the
paths from Vnk−1 to Vnk in (V ,E).

A Bratteli diagram is simple if it can be telescoped so that all the incidence
matrices have only (strictly) positive entries.

2.2. Ordered Bratteli diagrams

For each v ∈ V \ V0 we may give r−1(v) a linear ordering. This induces
a partial order ≥ in E, and we obtain an ordered Bratteli diagram, which
we denote by (V ,E,≥). Let Emax and Emin denote the set of maximal and
minimal edges, respectively. An infinite path is maximal (minimal) if all the
edges making up the path are elements of Emax (Emin). An ordered Bratteli
diagram is properly ordered if it is simple and if it has a unique maximal
and a unique minimal path, denoted respectively by xmax and xmin. The partial
order induces a (lexicographic) order on infinite cofinal paths. Specifically, if
x = (e1, e2, . . .) 
= xmax, let k be the smallest integer such that ek /∈ Emax. Let
fk be the successor of ek (and so r(ek) = r(fk)). Then the successor of x is
the path (f1, f2, . . . , fk, ek+1, ek+2, . . .), where f1, . . . , fk−1 ∈ Emin.

An ordered Bratteli diagram is said to be left/right ordered (or vertex
ordered) if whenever e1 ≥ e2 (hence necessarily r(e1) = r(e2)) and s(e1) = vi ,
s(e2) = vj , we have i ≥ j . A left/right ordering is not preserved by telescoping,
as is easily seen by examples.

2.3. Bratteli-Vershik models for Cantor minimal systems

Let X be the set of all (infinite) paths associated to a properly ordered Bratteli
diagram (V ,E,≥). A cylinder set consists of those (infinite) paths that agree
from the top vertex v0 to some v ∈ Vn, n ∈ N. It is easily seen that if we
topologize X by choosing as a basis of open sets the cylinder sets, then X

becomes a Cantor set, and the cylinder sets will be clopen sets. (We will tacitly
assume that the Bratteli diagrams we consider are non-trivial, avoiding the
cases where X is a finite set.)

Let φ:X → X be the map that takes an infinite path to its successor in
the lexicographic ordering. This is well-defined for all paths except for the
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unique maximal path xmax, and we define φ(xmax) = xmin, the unique minimal
path. It is straightforward to verify that φ, called the Vershik map associated to
(V ,E,≥), is a minimal homeomorphism. Hence (X, φ) is a Cantor minimal
system which we call the Bratteli-Vershik system associated to (V ,E,≥).

It is a theorem [7, Theorem 4.7] that any Cantor minimal system (Y, ψ) is
conjugate to a Bratteli-Vershik system, which we will call a Bratteli-Vershik
model for (Y, ψ) . We briefly recapitulate the construction. We start by choos-
ing a decreasing sequence {Cn}∞n=0 of clopen sets, where C0 = Y , shrinking
down to a base point y, and constructing towers over these determined by first
returns. The floors of the towers over Cn will be a finite partition Pn of Y
consisting of clopen sets, which we will call the Kakutani-Rohlin partition
associated to Cn. The clopen set Cn will correspond to level n in the prop-
erly ordered Bratteli diagram (V ,E,≥) we construct. Each tower over Cn

corresponds to a vertex in Vn, and the way towers over Cn+1 traverse towers
over Cn determines the edges En+1 and the orders on these. If a tower over
Cn corresponds to the vertex v ∈ Vn, then the height of the tower equals the
number of paths from the top vertex v0 ∈ V0 to v. In the general case, we may
have to subdivide vertically the various towers to make sure that the Kakutani-
Rohlin partition Pn+1 is a refinement of Pn and that the floors of the towers
generate the topology of the space. In our situation, such a subdivision will
automatically be achieved by the way we construct the towers. By the above
construction, the base point y will correspond to the unique minimal path xmin

of the resulting Bratteli-Vershik system. (Note: In the references [6], [7], the
roles of the base and top floors are reversed, so that there y will correspond
to xmax.) It is important that the Bratteli-Vershik system we get is the same up
to conjugacy regardless of the choice of base point and the choice of the sets
shrinking down to the base point. This fact yields a great deal of freedom when
we are going to do the construction for concrete examples. A judicious choice
of the shrinking sequence may hugely simplify the construction and yield a
“nice” Bratteli-Vershik model.

2.4. Dimension groups

To the Bratteli diagram (V ,E) is associated a dimension groupG = K0(V ,E).
In fact, to (V ,E) is associated the system of (simplicially) ordered groups (cf.
Definition 2.1)

Z|V0| A0−−→ Z|V1| A1−−→ Z|V2| A2−−→ · · · ,
where the order-preserving homomorphisms are given by matrix multiplication
with the incidence matrices {Ai}∞i=0. (Z|Vi | denotes the |Vi | × 1 column vectors
over Z.) By definition K0(V ,E) is the direct limit of the system endowed with
the induced order. The ordered group K0(V ,E) has a distinguished order unit,
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namely the element of the positive cone G+ = K0(V ,E)
+ corresponding to

the element 1 ∈ Z|V0| = Z.
Effros, Handelman, and Chen have given an abstract characterization of

dimension groups [4].
It has been proved [7] that the family of simple dimension groups coincides

with the family

{ (K0(Y, ψ),K0(Y, ψ)+) : (Y, ψ) a Cantor minimal system },
where K0(Y, ψ) = C(Y, Z)/∂ψC(Y, Z), with the induced order from C(Y, Z),
and where C(Y, Z) denotes the continuous functions on Y with values in Z.
Here

∂ψ :C(Y, Z) → C(Y, Z)

is the coboundary map defined by ∂ψ(f ) = f − f ◦ ψ−1. (There is a distin-
guished order unit 1 for K0(Y, ψ), corresponding to the constant function 1.)
In fact, K0(Y, ψ) is order isomorphic to the dimension group K0(V ,E), with
1 mapping to the distinguished order unit of K0(V ,E), where (V ,E,≥) is the
properly ordered Bratteli diagram associated to (Y, ψ). In [6] it is shown that
K0(Y, ψ) is intimately related to the orbit structure of (Y, ψ).

3. The Bratteli-Vershik model for interval exchange systems

In this section we show the following result.

Theorem 3.1. Let (X, φ) be a minimal interval exchange transformation
on k intervals associated to T . Then the associated Cantor minimal system
corresponds to a simple ordered Bratteli diagram (V ,E,≥), where

(i) |V1| = k and |Vi | − |Vi+1| ∈ {0, 1} for all i ≥ 1.

(ii) limi→∞|Vi | − 1 exists and is equal to the number of distinct orbits in
D(T ).

(iii) Any incidence matrix Ai between levels i and i + 1 for i ≥ 1 and
|Vi | = |Vi+1|, has determinant 1. More precisely, it is of the form

Ai =




1 0 · · · 0 0 · · · 0 s1

0 1 · · · 0 0 · · · 0 s2
...

...
...

...
...

...

0 0 · · · 1 0 · · · 0 sl
0 0 · · · 1 0 · · · 0 sl+1

0 0 · · · 0 1 · · · 0 sl+2
...

...
...

...
...

...

0 0 · · · 0 0 · · · 1 sk




,
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where si ∈ {0,m,m + 1}, sl = m and sl+1 = m + 1 for some m ∈ Z+.
When |Vi | − |Vi+1| = 1, row l + 1 is omitted. All entries of A0 are 1
(i.e. there is a single edge from the top vertex to each of the vertices at
level 1).

(iv) The diagram is endowed with the left/right ordering.

Proof. We choose 0 as our base point. We must describe clopen sets
{An}∞n=1 so thatA1 ⊃ A2 ⊃ A3 ⊃ · · · and

⋂∞
n=1 An = {0}. LetA1 = ⋃k−1

i=1 �i .
It is quite easy to show that the map φ1 on A1 induced by φ is also an interval
exchange transformation on k1 ∈ {k− 1, k} intervals [2, Ch. 5, §3, Lemma 2].
In other words, we have a semi-interval partition {�1

1,�
1
2, . . . , �

1
k1

} of A1 so
that φ1 is an interval exchange transformation on these intervals. Now we let
A2 = ⋃k1−1

i=1 �1
i . The induced map φ2 is similarly an interval exchange trans-

formation on k2 ∈ {k1 − 1, k1} intervals {�2
1,�

2
2, . . . , �

2
k2

}. We carry on by
induction. The kn+1 intervals of An+1 are formed by the kn − 1 first intervals
of An with the additional condition that one of these intervals may be split into
two as shown in Figure 1.

An

An +1

∆n
1 ∆n

2 ∆n
l ∆n

kn −1 ∆n
kn

a
n
kn

∆1
n +1 ∆2

n +1 ∆ l
n +1 ∆ l +1 ∆kn +1

akn +1

0

0

n +1 n +1

n +1

Figure 1. The intervals of An and An+1

We will show in more detail below how this comes about.

Remark. The only way kn+1 < kn can occur is when no interval is split
during the passage to the induced system. This happens exactly when the left
end point of some interval is mapped by the induced mapping onto the same
point as the left end point of the removed, rightmost interval. This means that
these end points are in the same orbit. Conversely, as the intervals shrink to {0},
whenever two left end points are in the same orbit the construction eventually
has to map them to the same point (and thus remove one of the corresponding
intervals), except that 0 and φ−1(0) are kept separate. This shows point (ii) of
the theorem.

Obviously, kn is eventually constant, and so by passing to an induced system
we may assume without loss of generality that kn = k for all n, and we will
do so hereafter.
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Lemma 3.2. Let {An}∞n=1 be a decreasing sequence of subintervals con-
structed from a minimal interval exchange transformation on k intervals as
described above. Then

⋂∞
n=1 An = {0}.

Proof. Assume that
⋂∞

n=1 An 
= {0}. It follows easily that
⋂∞

n=1 An =
[0, a] for some 0 < a < 1, which cannot be isolated from the right. Let m
be the least natural number so that φ−m(a) ∈ [0, a). By the continuity of φ,
choose b > a such that φ−m([a, b)) ⊂ [0, a) and φ−i ([a, b)) ⊂ (b, 1] for all
i ∈ {1, 2, . . . , m − 1}. Since

⋂∞
n=1 An = [0, a], it is clear that there exists an

N ∈ N such that �l
k ⊂ [a, b) for each l ≥ N .

Consider x ∈ [a, b). Then iterations ofφ return x to [0, a) before [a, b), and
so x cannot be a splitting point of any interval �l

j , l ≥ N , j ∈ {1, 2, . . . , k}.
Thus the set {�l

j |�l
j ∩ [a, b) 
= ∅, j = 1, . . . , k} must decrease by 1 in

cardinality for each level l ≥ N , eventually reaching 0 and so �l
k 
⊂ [a, b), a

contradiction.

We also need to assure that the tower floors generate the topology. It is suffi-
cient to show that any pair of points are separated at some level. By Lemma 3.2,
0 is the only point which is at the base floor of all its towers, and it follows im-
mediately that φ−1(0) is the only point which is at the top floor of all its towers.
Thus these points are separated from all others. We shall need the following:

Lemma 3.3. For x 
= y ∈ X there exists n ∈ Z such that φn(x) and φn(y)

are in different intervals.

Proof. If x and y are equal to z− and z+ for some z ∈ [0, 1), choose n so
that T n(z) is one of the original interval endpoints. Otherwise, choose N ∈ N
by minimality such that φN(y) < |y−x|. Since φ preserves distance and order
within each interval, φn(x) and φn(y) must be in different intervals for some
0 ≤ n < N .

Assume ad absurdum that x 
= y are not separated by the tower floors at
any level, and let n be as in Lemma 3.3. There are 3 possibilities:

1. From some level on, x and y are in the k’th floor from the bottom,
k < |n|. Then it follows that φ−k(x) and φ−k(y) are both at the base
floor of all towers, and are equal to 0.

2. From some level on, x and y are in the k’th floor from the top, k < |n|.
Similarly, they are then both equal to φ−k−1(0).

3. There is some level such that x and y are at least |n| floors from the
top and bottom floors. Since they are in the same element of the tower
partition, φn(x) and φn(y) must also be in the same element, but this
contradicts their being in different intervals.
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Having shown that theAn fulfill our requirements, we use them to construct
an ordered Bratteli diagram which models our Cantor system. At each level we
get k vertices corresponding to the k intervals of the induced interval exchange
transformation from φ on each An. This proves the first point of the Theorem.

We have two different possibilities for the permutation of the k intervals in
An as shown in Figure 2.

jn (∆n
k )

∆n
k�i =1 ∆n

i
k −1

jn (∆n
k )

∆n
k�i =1 ∆n

i
k −1

Figure 2. The two ways �n
k may be moved by φn.

1 2 3 4 5 6

4 1 6 5 3 2

4 1 5 3b3a 2

4 1 3b 2 5 3a

Figure 3. An example of how the intervals �1, �2, �3, �4, and �5 are
returning to

⋃5
i=1 �i by the first return map.

In the first case, φn�n
k and�n

k have empty intersection, while in the second case
they intersect. In the former case, if

⋃k−1
i=1 �

n
i = An+1, then by assumption

there is exactly one i ∈ {1, . . . , k − 1} such that φn�n
i ∩ An+1 
= ∅ and

φn�
n
i ∩ �n

k 
= ∅. For all other j ∈ {1, . . . , k − 1} either φn�n
j ⊂ An+1 or

φn�
n
j ⊂ �n

k . If φn�n
j ⊂ �n

k , then clearly φ2
n�

n
j ⊂ An+1. In case two some of

the intervals are moved by φn to the right of φn�n
k . Since they now lie wholly
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within �n
k , they will be moved as a block step by step to the left, until the left

part of the block intersects An+1 afterm+1 steps. The rest of the block returns
after m+ 2 steps. As in the first case, there is one interval which is cut in two
upon the return to An+1. To make it clearer, we have illustrated an example in
Figure 3.

In this example, the number of intervals is 6 and m = 1. The first part of the
figure shows the original intervals. The second part shows how φn permutes
these, and the third and fourth parts illustrate how the first five intervals are
carried back by the first return map. The first return map acts as an interval
exchange on six intervals, where the intervals are �1, �2, �3a , �3b, �4, and
�5. So in both cases illustrated in Figure 2 one of the intervals �n

i is cut upon
the return to An+1. The rest of the intervals either return immediately or after
m+ 1 or m+ 2 steps, where m ∈ N ∪ {0}. The left part of the interval that gets
cut returns after m + 1 steps, the right part returns after m + 2 steps. So the
interval �n

i is cut into �n+1
i and �n+1

i+1 . Moreover, �n+1
1 = �n

1, . . . , �
n+1
i−1 =

�n
i−1,�

n+1
i+2 = �n

i+1, . . . , �
n+1
k = �n

k−1.
This completes the proof of Theorem 3.1.

Definition 3.4. We say that an ordered Bratteli diagram which is con-
structed from a minimal interval exchange as described above is of interval
type.

It is possible to find more requirements on the ordered Bratteli diagrams
constructed above than the ones mentioned in Theorem 3.1. We will look
further into this in the next chapter.

Corollary 3.5 (Putnam, [9]). The dimension group associated to a min-
imal interval exchange transformation is isomorphic as an abstract group to
Zm+1, where m is the number of distinct orbits in D(T ).

Proof. This follows by (ii) and (iii) of the theorem, since by (ii) the number
of vertices at level n becomes m+ 1 for all n sufficiently large, and by (iii) the
determinant of the incidence matrices becomes equal to 1. By Section 2.4 it
then follows that the dimension group, as an abstract group, is isomorphic to
Zm+1.

4. Checking that a simple ordered Bratteli diagram corresponds to an
interval exchange transformation

Assume that we are given a simple ordered Bratteli diagram satisfying the re-
quirements of Theorem 3.1 and that we want to check whether it is of interval
type. We first describe a necessary local condition. Suppose that we are given
the part of the diagram for Vn−1 to Vn+1. Assuming that the diagram is of
the right type, we know that the cylinder sets associated to the minimal paths
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from V0 to Vn+1 correspond to intervals in An+1, and these intervals are going
to be permuted in some fashion. By taking En+1 into account, we will get
some restrictions on which permutations are allowed. Furthermore, these per-
mutations will be lifted injectively by En+1 to permutations on Vn. Similarly,
En will give restrictions on the permutations on Vn−1. If any two consecutive
levels always are consistent in the sense that a legal permutation on Vn−1 can
be reached by lifting a legal permutation from Vn+1, we say that the diagram
is locally consistent with being of interval type. However, the lifting process
described here may stop after an arbitrary number of steps, so we need a more
global approach of finding all permutations simultaneously.

We will now describe a procedure that makes it possible to determine
whether a given simple ordered Bratteli diagram is of interval type. By tele-
scoping the diagram, we may assume that there is at least one edge between
each vertex of Vn and each vertex of Vn+1 for all n ≥ 1. If the diagram is of
interval type, this means that the total length of all intervals corresponding to
level n + 1 is less than or equal to the length of the shortest of the intervals
corresponding to level n. We use En+1 to determine how the intervals of Vn are
permuted. Let Vn = {v1, . . . , vm} and let {�n

1, . . . , �
n
m} be the corresponding

intervals. To determine how �n
i is moved, we consider all paths from Vn+1

to vi . If the successor to one of these paths goes to vk , it means that φn(�n
i )

intersects �n
k . If there exists a successor p of a path from Vn+1 to vi and a

successor q of a path from Vn+1 to vj , with p and q going to different vertices
at level n, then we can immediately deduce the relative position of φn(�n

i ) and
φn(�

n
j ). Otherwise, if all the successors of paths from Vn+1 to vi and vj go to

vk , we know that φn(�n
i ) and φn(�

n
j ) are lying inside �n

k , but we do not yet
know where they are placed within�n

k . To determine this, we may consider the
iterated successors of the paths. These will determine what interval or intervals
φm
n (�

n
i ) and φm

n (�
k
j ) intersect. If φ2

n(�
n
i ) and φ2

n(�
n
i ) intersect different inter-

vals, we may find the relative position of φ2
n(�

n
i ) and φ2

n(�
n
j ) and thereby the

relative positions of φn(�n
i ) and φn(�n

j ) in �n
k . If not, we carry on in the same

manner and try to find the relative position of φm
n (�

n
i ) and φm

n (�
n
j ) for somem.

If φl
n(�

n
i ) and φl

n(�
n
j ) lie in the same interval for all l = 1, 2, . . . , m − 1, but

φm
n (�

n
i ) and φm

n (�
n
j ) do not lie in the same interval, then we may determine

the relative position of φm
n (�

n
i ) and φm

n (�
n
j ). Since the order of points in the

same interval is preserved by the interval exchange, we may carry this order
back to determine the relative positions of φn(�n

i ) and φn(�
n
j ) in �n

k .
We claim that we always will be able to decide the relative position of

φm
n (�

n
i ) and φm

n (�
n
j ) for some m. To see this, choose l to be the least integer

such that φl
n(�

n
i ) or φl

n(�
n
j ) contains some path which is maximal from V0

to Vn+1. (We have identified the clopen sets φl
n(�

n
i ) and φl

n(�
n
j ) with the

corresponding clopen sets in the Bratteli diagram.) Let us assume that φl
n(�

n
i )
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contains such a path. Then, by the definition of the Bratteli-Vershik map, we
must conclude that φl+1

n (�n
i ) must intersect ∪m

k=1�
n+1
k . But since the total

length of these intervals is less than or equal to the length of φl
n(�

n
j ), φ

l+1
n (�n

j )

cannot fit entirely within ∪m
k=1�

n+1
k \ φl+1

n (�n
i ), and we must conclude that

φl+1
n (�n

i ) lies to the left of φl+1
n (�n

j ). It follows that the interval exchange on
Vn is fully determined from En.

We conclude that telescoping the diagram and assuming that it is of interval
type, we get unique interval permutations in V1, V2, V3, etc. If these are con-
sistent, the diagram is of interval type. If at least two of them are inconsistent,
the diagram is not of interval type.

Note that while the permutation of the intervals may be deduced from the
diagram, in general their lengths cannot. It is easy to see why this must be
so: If (X, φ) is a non-uniquely ergodic interval exchange transformation (see
[2] for examples), one may construct a new interval exchange transformation
(Y, ψ) by using the same permutation but rescaling the lengths of the intervals
to a different invariant measure for (X, T ). Then (Y, ψ) has the same Bratteli-
Vershik diagram as (X, φ).

5. An application: interval exchange transformations over quadratic
fields

Let T be a minimal interval exchange transformation on n intervals. If we
consider the induced map, T ′, on one of these intervals, it is also (as explained
earlier) a minimal interval exchange transformation on n intervals. We may
continue and consider the induced transformation on one of these intervals,
and so on. An interval exchange obtained in this way is called a descendant of
T , and we call T ′ a first generation descendant of T . It is clear that the number
of m-th generation descendants is nm.

Let R be a quadratic number field, i.e.,

R = Q
[√

d
] = {

p + q
√
d : p, q ∈ Q

}
,

where d is a square-free integer. We say that an interval exchange transforma-
tion is defined over a quadratic number field if the lengths of the intervals are
contained in some quadratic number field R.

Boshernitzan and Carroll [1] have recently proved that if an interval ex-
change transformation is defined over a quadratic number field, then its family
of descendants contains only a finite number of unique interval exchange trans-
formations up to rescaling. Combining this result with our model, we can prove
the following statement.

Theorem 5.1. A minimal interval exchange transformation over a quadratic
field is conjugate to a substitution minimal system.
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Proof. It is known that any substitution minimal system has a Bratteli-
Vershik model with a periodic Bratteli diagram and that the Cantor minimal
system associated to any periodic properly ordered Bratteli diagram is conjug-
ate to a substitution system or a stationary odometer system [3], [5]. Hence to
prove the theorem, we only need to show that the diagram we get by our con-
struction is periodic in the case that the interval exchange is over a quadratic
field. (Recall that interval exchange transformations are expansive, and so are
never odometers.)

We may assume, by telescoping the diagram, that level n+ 1 is constructed
from the induced map on the first interval from level n for all n. This is a
consistent way of making descendants of the original interval exchange, and
so as soon as the interval exchange repeats (according to the result mentioned
above), we conclude that the resulting Bratteli diagram will be periodic.

We can also prove a partial converse to the above in the case when a sub-
stitution minimal system has rational rank 2.

Definition 5.2. The rational rank of a uniquely ergodic Cantor minimal
system is the dimension of the rational vector space spanned by the values of
the invariant probability measure on clopen sets.

In the above definition, one might equivalently consider the range of the state
corresponding to the measure, on the dimension group. For interval exchange
transformations this is again equivalent to the span of the lengths of the original
intervals.

Theorem 5.3. Let (X, φ) be a substitution minimal system. Assume that
(X, φ) has rank 2, so that the range of the unique invariant probability measure
µ is contained within Q + Qα, for some irrational α in the range of µ. Then α

is a quadratic irrational.

Proof. Since (X, φ) is a substitution minimal system, it has a periodic
Bratteli-Vershik diagram (V ,E).

Recall the definition of the dimension group G = K0(V ,E) as a direct
limit of abelian groups of the form Z|Vi |. We define an endomorphism ρ on the
dimension group as follows: For g ∈ K0(V ,E) represent g as an element of
Z|Vn|. Then ρ(g) is represented by the same vector, but at level n + 1.

It is clear that this is a well-defined, positive endomorphism, as the period-
icity of the diagram ensures that whether the limit of a vector is 0 is independent
of its position in the diagram, and similarly for positivity.

Moreover, the infinitesimal subgroup is mapped into itself by ρ, so that
ρ gives a well defined endomorphism ρ ′ on G/ Inf(G). Because of unique
ergodicity, G/ Inf(G) can be identified with a subgroup of R, namely the
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range on K0(V ,E) of the state corresponding to the invariant measure µ (and
also denoted by µ); by assumption, this is a subgroup of Q + Qα.

Any non-zero positive endomorphism of a subgroup of R is given by mul-
tiplication by some positive real number. Let β be the number corresponding
to ρ ′. Since 1, α ∈ µ(K0(V ,E)), we have β, αβ ∈ µ(K0(V ,E)). This gives
equations

β = x1 + yα,

βα = z1 + wα

with x, y, z, w ∈ Q. Combining these, we get

yα2 + (x − w)α − z = 0.

We see that α will be quadratic unless y = z = 0 and x = w, which is
equivalent to β being rational. So, if we can show that β must be irrational,
we will be done.

Assume ad absurdum that β is rational. By the rank two assumption, let
g1, g2 ∈ K0(V ,E) be such that µ(g1)/µ(g2) 
∈ Q, and let N > 1 be a level at
which both of these are represented as elements u1, u2 of Z|VN |.

Let µN be the vector representing µ at the level N , so that

µ(g1) = 〈µN, u1〉
µ(g2) = 〈µN, u2〉,

where 〈•, •〉 denotes inner product of vectors. If A is the incidence matrix of
the periodic Bratteli-Vershik diagram (for all levels except the top one), then
we have

ATµN = µN−1 = µN

β
.

Choose a basis {α1, α2} for Q + Qα such that

µN = µ1
Nα1 + µ2

Nα2,

where µ1
N,µ

2
N ∈ Q|VN | have positive coordinates (Since each coordinate of µN

is positive, this is possible – see Figure 4.)
Now we have for i = 1, 2 (since β is rational)

ATµi
N = µi

N

β
.
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x + ya = 0

a1

a

a2

x

1

ya

Figure 4. For any finite number of positive elements in Q + Qα one
may find a basis {α1, α2} with respect to which all of them have positive
coefficients.

Therefore, µ1
N,µ

2
N , and µN are all Perron-Frobenius eigenvectors of AT , and

thus proportional. But then the coordinates of µN must have rational ratios,
which contradicts the irrationality of 〈µN, u1〉/〈µN, u2〉.
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