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PURELY INFINITE, SIMPLE C∗-ALGEBRAS ARISING
FROM FREE PRODUCT CONSTRUCTIONS, II

KENNETH J. DYKEMA

Abstract

Certain reduced free products of C∗-algebras with respect to faithful states are simple and purely
infinite.

Introduction

Given unital C∗-algebras A and B with states φA and φB , whose GNS repres-
entations are faithful, their reduced free product C∗-algebra,

(1) (�, φ) = (A, φA) ∗ (B, φB),

was introduced in [12] and [1]. It is the natural construction in Voiculescu’s
free probability theory (see [13]), and Voiculescu’s theory has been vital to the
study of these C∗-algebras.

In [1], D. Avitzour showed that reduced free product C∗-algebra � in (1) is
simple if A and B are not too small (with respect to their states), in that they
have enough orthogonal unitaries.

A unital C∗-algebra is said to be infinite if it contains a nonunitary isometry,
and is said to be purely infinite if every hereditaryC∗-subalgebra of it is infinite.
One of the most interesting open questions about simpleC∗-algebras is whether
every infinite simple C∗-algebra is purely infinite. In [9], M. Rørdam and the
author showed that in the free product (173), if φA and φB are faithful, if one
of them is not a trace and if A and B are not too small in that they satisfy
a condition like (but slightly weaker than) Avitzour’s condition, then the free
product C∗-algebra � is infinite, and furthermore, it is properly infinite. It
remained open whether theseC∗-algebras are purely infinite, or indeed whether
any C∗-algebras arising as reduced free products with respect to faithful states
are purely infinite. (In [8], the same authors had shown that some C∗-algebras
arising as reduced free product with respect to nonfaithful states are purely
infinite.)
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In this paper, we show that certain free product C∗-algebras � in (1), with
respect to faithful states, are simple and purely infinite. For example, if A =
B = M2(C) and if φA and φB are faithful states on M2(C) that are not unitarily
equivalent then � is simple and purely infinite. Note that it was previously
not known whether any of these particular reduced free product C∗-algebras
of M2(C) with M2(C) were even simple. (See Examples 3.9 for some more
examples.)

The most striking condition that we require of (A, φA) and (B, φB) for the
free product C∗-algebra (1) to be purely infinite and simple is that one of the
algebras, say A, contain a partial isometry, v, with orthogonal domain and
range projections and scaling the state φA by λ for some 0 < λ < 1, i.e.
that φA(va) = λφA(av) for every a ∈ A. These are fairly strong conditions,
but they do arise in a large number of situations. Although both the statement
and proof of the main result, Theorem 3.1, are quite technical, we believe
they comprise an important advance in the understanding of simplicity and
infiniteness of reduced free product C∗-algebras.

1. Notation

Let us briefly describe some notation.

1.1. Given a unital C∗-algebra A and a state, ψ of A, (which will usually
be implicit from the context), we use the symbol Ao to denote the kernel of ψ .

1.2. IfA is aC∗-algebra with a state φ, then for anyC∗-subalgebra, D ⊆ A,
we define

A�D = {a ∈ A | ∀d ∈ D,φ(da) = 0}.
This is just the orthocomplement of D in the Hilbert space of the GNS repres-
entation, pulled back to A.

1.3. If Xι (ι ∈ I ) are subsets of an algebra A, then

�o
(
(Xι)ι∈I

) = {x1x2 . . . xn | n ∈ N, xj ∈ Xιj , ι1 
= ι2, ι2 
= ι3, . . . , ιn−1 
= ιn},
(written simply �o(X1, X2) if I = {1, 2}), is the set of all “alternating words”
in the Xι.

2. Conditional expectations

Tomiyama [11] proved that if B ⊆ A is a C∗-subalgebra and if E : A → B

is a projection of norm 1 then E is positive and a conditional expectation. In
this section, we consider the reduced free product of conditional expectations,
a special case of which will be important in the sequel. The results proved
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here are perhaps well known, but their proofs are included out of a desire for
completeness. This section can be viewed as a C∗-version of [4, §3].

Lemma 2.1. Let A be a unital C∗-algebra and let B ⊆ A be a unital C∗-
subalgebra. Let φ be a faithful state on A and let (π,H , ξ) = GNS(A, φ),
so that {â | a ∈ A} is a dense subspace of H with inner product 〈â1, â2〉 =
φ(a∗2a1). Let HB = {b̂ | b ∈ B} ⊆ H and let P be the projection from
H onto HB . Suppose that for some norm–dense subset, X, of A, we have
Pπ(x)|HB

∈ Pπ(B)|HB
for every x ∈ X. Then there is a projection, E, of

norm 1 from A onto B, satisfying φ ◦ E = φ.

Proof. Since φ is faithful, π is a faithful representation of A. Let πB :
B → B(HB) be πB(b) = Pπ(b)|HB

. Then (πB,HB, ξ) = GNS(B, φ|B),
and since φ|B is faithful on B, πB is a faithful representation of B. Now from
Pπ(X)|HB

⊆ πB(B) and taking limits in norm we get that Pπ(A)|HB
⊆

πB(B), and hence we may define E : A → B by E(a) = π−1
B (Pπ(a)|HB

).
Then clearly E(b) = b if b ∈ B and ‖E(a)‖ ≤ ‖a‖ for every a ∈ A, so E is
a projection of norm 1. Moreover,

φ(E(a)) = 〈πB(E(a))ξ, ξ 〉 = 〈Pπ(a)ξ, ξ〉 = 〈π(a)ξ, ξ〉 = φ(a),

so E preserves φ.

Let us here recall (see Lemma 3.2 of [4]) that the converse of the above
lemma is true, namely, if B is a C∗-subalgebra of the C∗-algebra A, and if
E : A→ B is a projection of norm 1 such that φ ◦ E = φ for a faithful state
φ, on A, then E is implemented by a projection P in Hilbert space of the GNS
representation.

Lemma2.2. LetAbe aC∗-algebra with a faithful stateφ and letE : A→ B

be a projection of norm 1 onto a C∗-subalgebra, B, of A. Suppose φ ◦E = φ.
Then

(2) ker E = A� B

and

(3) A = (A� B)+ B.

Proof. Let (π,H , ξ) = GNS(A, φ) and let P be the projection from H
onto HB = {b̂ | b ∈ B}. Then by [4, 3.2], E(a)ˆ = P â. This shows that
ker E ⊆ A � B. To show the opposite inclusion, suppose a ∈ A � B. Then
0 = E(E(a)∗a) = E(a)∗E(a), so E(a) = 0. Now (3) follows from (2).
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Proposition 2.3. Suppose Aι are unital C∗-algebras with faithful states
φι, for ι in some index set I . Suppose Bι ⊆ Aι are unital C∗-subalgebras
with projections of norm 1, Eι : Aι → Bι, such that φι ◦ Eι = φι. Let
(�, φ) = ∗

ι∈I(Aι, φι) be the free product of C∗-algebras and consider the C∗-

subalgebra � = C∗(
⋃

ι∈I Bι) ⊆ �. Then there is a projection of norm 1,
E : � → � such that φ ◦ E = φ and E(a) = Eι(a) whenever a ∈ Aι.

Proof. Let (πι,Hι, ξι) = GNS(Aι, φι) and (π,H , ξ) = GNS(�, φ).
From the free product construction we have that

H = Cξ ⊕
⊕
n≥1

ι1 
=ι2 
=···
=ιn

H o
ι1
⊗ · · · ⊗H o

ιn
,

where H o
ι = Hι�Cξι. By [4, Lemma 3.2], for each ι ∈ I there is a projection

Pι : Hι → HBι

def= {b̂ | b ∈ Bι} such that for every a ∈ Aι, Pιπι(a)|HBι
=

Pιπι(Eι(a))|HBι
. Now Y

def= span
({1} ∪�o((Bo

ι)ι∈I )
)

is a dense subset of B,
so

HB
def= {b̂ | b ∈ B} = {b̂ | b ∈ Y } = Cξ ⊕

⊕
n≥1

ι1 
=ι2 
=···
=ιn

H o
Bι1
⊗ · · · ⊗H o

Bιn
,

where H o
Bι
= HBι

� Cξι. Let P : H → HB be the projection onto HB .

Now X
def= span

({1} ∪�o((Ao
ι)ι∈I )

)
is a dense subset of A, and (from the free

product construction) we see that

Pπ(X)|HB
⊆ Pπ(B)|HB

,

so by Lemma 2.1, there is a projection of norm 1, E : A → B, satisfying
φ ◦ E = φ and given by Pπ(E(a))|HB

= Pπ(a)|HB
. From this and the free

product construction, we see that E(a) = Eι(a) whenever a ∈ Aι ⊆ A.

Definition 2.4. The projection of norm 1, E, found in the above propos-
ition is called the free product of the Eι, and is denoted E = ∗

ι∈I Eι.

Corollary 2.5. Let A and B be unital C∗-algebras with faithful states
φA and φB , respectively. Let

(�, φ) = (A, φA) ∗ (B, φB)

by the free product of C∗-algebras. Then there is a projection of norm 1, E,
from � onto A, such that φ ◦ E = φ.
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Proof. Consider the projections of norm 1, idA : A→ A and φB : B →
C1 ⊆ B. Let E = idA ∗φB be their free product.

3. Some free product C∗-algebras.

Theorem 3.1. Let A and B be C∗-algebras with faithful states φA, respect-
ively, φB . Consider the C∗-algebra reduced free product

(�, φ) = (A, φA) ∗ (B, φB).

Suppose there is a partial isometry v ∈ A, whose range projection, q = vv∗,
and domain projection, p = v∗v, are orthogonal, and such that, for some
0 < λ < 1, v is in the spectral subspace of φA associated to λ−1, namely, that
φA(xv) = λ−1φA(vx) for every x ∈ A. Note this implies φ(q) = λφ(p) <

φ(p). Let
A00 = Cp + Cq + (1− p − q)A(1− p − q)

and let �00 = C∗(A00 ∪ B). Suppose that q is equivalent in the centralizer
of the restriction of φ to �00 to a subprojection of p, and that the centralizer
of the restriction of φ to q�00q contains an abelian subalgebra on which φ is
diffuse (i.e. an abelian subalgebra to which the restriction of φ is given by an
atomless measure – see [6, 2.1]). Suppose also that p + q is full in �.

Then � is simple and purely infinite.

Proof. Since p is full in �, in order to show that � is simple and purely
infinite, it will suffice to show that p�p is simple and purely infinite. By [5],
φ is faithful on �.

By assumption there is a partial isometry, y, in the centralizer of φ|�00 ,

such that yy∗ = q and p1
def= y∗y ≤ p. Also by assumption, the centralizer

of the restriction of φ to p1�00p1 contains a diffuse abelian subalgebra. Let
w = y∗v. Then w∗w = p and ww∗ = p1 ≤ p. Let p0 = p and for n ≥ 1
let pn = wn(w∗)n. Then w belongs to the spectral subspace of � associated
to λ−1, and hence

(4) ∀n ≥ 0 φ(pn) = λnφ(p).

Let
A0 = pAp + (1− p)A(1− p).

Then A is generated by A0 ∪ {v}, because

A = pAp + pA(1− p)+ (1− p)Ap + (1− p)A(1− p)

and

pA(1− p) = v∗vA(1− p) = v∗qA(1− p) ⊆ v∗(1− p)A(1− p).



78 kenneth j. dykema

Let �0 = C∗(A0 ∪ B). Then � = C∗(�0 ∪ {w}), and thus

p�p = C∗(p�0p ∪ {w}).
In p�p, w is a proper isometry which, as we will see, is loosely speaking as
free as it can be from p�0p, with amalgamation over pA0p.

Throughout the proof we will use a projection of norm 1, E = E�
A0

: � →
A0, which is hereby defined to be E�

A0
= EA

A0
◦ E�

A , where E�
A : � → A is

the conditional expectation onto A obtained from Corollary 2.5, and where
EA

A0
: A→ A0 is the conditional expectation onto A0 defined by

EA
A0
(a) = pap + (1− p)a(1− p).

Note that φ ◦ E = φ.
Let " be the set of all

(5) x = x1x2 · · · xn ∈ �o
(
(p�0p)

o, {wk | k ≥ 1} ∪ {(w∗)k | k ≥ 1})
such that whenever 2 ≤ j ≤ n− 1 and xj ∈ (p�0p)

o,

if xj−1 = w and xj+1 = w∗ then xj ∈ p�0p � pA0p

if xj−1 = w∗ and xj+1 = w then xj ∈ p1�0p1 �
(
y∗(qA0q)y

)
.

The restriction of E to p�0p provides a projection of norm 1 onto pA0p, and
y∗E(y · y∗)y provides a projection of norm 1 from p1�0p1 onto y∗(qA0q)y,
so Lemma 2.2 applies. Notice that

waw∗ = wpapw∗

wA0w
∗ ⊆ p�0p

w∗aw = w∗p1ap1w,

w∗y∗(qA0q)yw ⊆ p�0p

and hence

span
({1} ∪"

) = span
({1} ∪�o

(
(p�0p)

o, {wk | k ≥ 1} ∪ {(w∗)k | k ≥ 1}))
is the ∗-algebra generated by �0 ∪ {w}.

Like in [4], for x ∈ " let tj (x) be the number of w minus the number of
w∗ appearing in the first j letters of x. Thus, if l(x) is the number of letters of
x (i.e. l(x) = n when x is as in (5)), after setting t0(x) = 0 we thus define

tj (x) =


tj−1(x) if the j th letter of x is from �o

0

tj−1(x)+ k if the j th letter of x is wk

tj−1(x)− k if the j th letter of x is (w∗)k ,
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for each 1 ≤ j ≤ l(x). We will use interval notation to denote subsets of the
integers. Thus, for example,

[0, n] will mean {0, 1, 2, . . . , n}
[0,∞) will mean {0, 1, 2, . . .}

(−∞, 0] will mean {. . . ,−2,−1, 0}
(−∞,∞) will mean Z.

For every interval, I , of Z which contains 0, let

"I = {x ∈ " | tl(x) = 0 and ∀1 ≤ j ≤ l(x), tj (x) ∈ I }.
Then span("I ∪ {1}) is a ∗-subalgebra of p�p. Let �I = span("I ∪ {1}).

There is an injective endomorphism, σ , of �(−∞,∞) given byσ(a) = waw∗.
Since p�p = C∗(�(−∞,∞) ∪ {w}), it follows that p�p is a quotient of the
(universal) C∗-algebra crossed product

�(−∞,∞) �σ N.

We will use [8, Theorem 2.1(ii)] to prove that �(−∞,∞) �σ N is simple and
purely infinite, which will imply that p�p is simple and purely infinite. In
particular, Claim 3.2 and Claim 3.8 below will show that the endomorphism
σ satisfies the hypotheses of [8, Theorem 2.1(ii)].

Let �̃(−∞,∞) be the C∗-algebra inductive limit

�(−∞,∞)
σ−→ �(−∞,∞)

σ−→ �(−∞,∞)
σ−→ · · · → �̃(−∞,∞)

and for n ≥ 1 consider the defining ∗–homomorphisms µn : �(−∞,∞) →
�̃(−∞,∞) such that µn+1 ◦ σ = µn. There is an automorphism α of �̃(−∞,∞)

defined by α(µn(a)) = µn(σ(a)).

Claim 3.2. For each m ≥ 1, the automorphism αm of �̃(−∞,∞) is outer.

Proof. If αm is inner than αm(a) = a for some a ∈ �̃(−∞,∞), a ≥ 0,
a 
= 0. Let pk−l = µl(σ

k(p)). This coincides with the old definition of pk−l
if k − l ≥ 0, and pn is an approximate identity for �̃(−∞,∞) as n → −∞.
Thus ‖a − pnapn‖ can be made arbitrarily small by choosing n large and
negative. But ‖a − pnapn‖ = ‖αkm(a − pnapn)‖ = ‖a − pn+kmapn+km‖.
Since φ(pn+kmapn+km) ≤ ‖a‖φ(pn+km) and since by (4) φ(pn+km) tends to
0 as k → ∞, we may conclude that φ(a) = 0. But since φ is faithful, this
implies a = 0, which contradicts the choice of a.

This completes the proof of Claim 3.2.

Claim 3.3. If x ∈ "(−∞,∞) then φ(x) = 0.
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Proof. Let x = x1x2 · · · xn ∈ "(−∞,∞). Rewrite each w appearing in x as
vy∗ and each w∗ as yv∗. Now group together all occurances of y∗, y and letters
from (p�0p)

o that are neighbors. The resulting object is either an element of
(p�0p)

o or is equal to

u = u1u2 · · · um ∈ �o(�0, {v, v∗}),
where whenever 2 ≤ j ≤ n− 1 and uj ∈ �0,

if uj−1 = v and uj+1 = v then uj ∈ p�0q

if uj−1 = v and uj+1 = v∗ then uj ∈ p�0p � pA0p

if uj−1 = v∗ and uj+1 = v then uj ∈ q�0q � qA0q

if uj−1 = v∗ and uj+1 = v∗ then uj ∈ q�0p.

But
�0 ⊆ span

({1} ∪�o(Ao
0, B

o)
)

and using the conditional expectation from �0 onto A0, we see that

p�0q∪(p�0p�pA0p)∪(q�0q�qA0q)∪q�0p ⊆ span
(
�o(Ao

0, B
o)\Ao

0

)
.

Therefore, it will suffice to show that φ(z) = 0 for every

z = z1z2 . . . zs ∈ �o
(
�o(Ao

0, B
o), {v, v∗})

which has the property that if zj ∈ �o(Ao
0, B

o) and 2 ≤ j ≤ s − 1 then

zj ∈ �o(Ao
0, B

o)\Ao
0.

But since A0vA0 ⊆ ker φA, we see that z ∈ �o(Ao, Bo), and it then follows
from the freeness of A and B that φ(z) = 0.

This completes the proof of Claim 3.3.

Claim 3.4. The subalgebras w∗�(−∞,0]w and �[0,∞) are free with am-
algamation over pA0p, (with respect to the restrictions of the conditional
expectation E).

Proof. SincepA0p = w∗y∗(qA0q)yw we see thatpA0p ⊆ w∗�(−∞,0]w,
and clearly pA0p ⊆ p�[0,∞)p. In order to show freeness with amalgamation,
(and refering to Lemma 2.2), it will suffice to show that E(x) = 0 whenever

(6) x ∈ �o(�[0,∞) � pA0p,w
∗�(−∞,0]w � pA0p).
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Let "(−∞,0−] be the set of all elements of "(−∞,0] which are words that begin
with w∗ and end with w. We will show that

(7) w∗�(−∞,0]w � pA0p ⊆ span"(−∞,0−].

Firstly, note that

w∗("(−∞,0]\(p�0p))w ⊆ "(−∞,0−].

Now it will be enough to show that

w∗�0w � pA0p ⊆ "(−∞,0−].

But

w∗�0w � pA0p = w∗(p1�0p1 � wA0w
∗)w

= w∗(p1�0p1 � y∗vA0v
∗y)w

= w∗(p1�0p1 � y∗(qA0q)y)w ⊆ "(−∞,0−].

We also see that

�[0,∞) � pA0p ⊆ span
(
("[0,∞)\(p�0p)) ∪ (p�0p � pA0p)

)
.

Hence, given x as in (6), in order to E(x) = 0 we may assume without loss of
generality that

x ∈ �o
(
"(−∞,0−], ("[0,∞)\(p�0p)) ∪ (p�0p � pA0p)

)
.

But then clearly

x ∈ ("(−∞,∞)\�0) ∪ (p�0p � pA0p).

If x ∈ p�0p � pA0p then by Lemma 2.2 E(x) = 0. Furthermore, using
Claim 3.3, that

p�0p("(−∞,∞)\�0) ⊆ span("(−∞,∞)\�0)

and Lemma 2.2, we see that if x ∈ "(−∞,∞)\�0 then E(x) = 0.
This completes the proof of Claim 3.4.

Claim 3.5. The C∗-algebra �(−∞,0] is simple.

Proof. �(−∞,0] is generated byw∗�(−∞,0]w andp�0p, which by Claim 3.4
are free with amalgamation overpA0p. Now letting �′0 be theC∗-algebra gen-
erated by B ∪ (Cp + (1 − p)A(1 − p)), using [6, 2.8] we see that p�0p is
generated by pA0p and p�′0p, which are free with respect to the state φ (after
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rescaling). Hence we see that �(−∞,0] is generated by w∗�(−∞,0]w and p�′0p
which are free (with amalgamation over the scalars Cp). But w∗�(−∞,0]w ⊇
w∗(p1�00p1)w and the restriction of φ to w∗(p1�00p1)w is just a rescaling of
the restriction ofφ top1�00p1. We saw earlier that the centralizer of the restric-
tion of φ to p1�00p1 has an abelian subalgebra which is diffuse with respect to
φ, and hence so does the centralizer of the restriction of φ to w∗(p1�00p1)w.
Clearly p�′0p 
= C, so by [6, 3.2], �(−∞,0] is simple.

Hence Claim 3.5 is proved.

Claim 3.6. For every n ≥ 0, the C∗-algebra �(−∞,n] is simple.

Proof. We use induction on n. The case n = 0 holds by the previous claim.
Assume n ≥ 1. Now since �(−∞,0] is simple, p1 is full in �(−∞,0], hence is
full in �(−∞,n]. Therefore it will suffice to show that p1�(−∞,n]p1 is simple.
But

p1�(−∞,n]p1 = ww∗�(−∞,n]ww∗ ∼= w∗�(−∞,n]w = �(−∞,n−1],

which is simple by inductive hypothesis.
Hence Claim 3.6 is proved.

Claim 3.7. Let n ≥ 0 and k ≥ 1 be integers. Then pn+1�(−∞,n]pn+1 and
{pn+k} are free (with amalgamation over the scalars Cpn+1) with respect to
the state φ (after rescaling).

Proof. The map x �→ (w∗)n+1xwn+1 is an isomorphism from
pn+1�(−∞,n]pn+1 onto w∗�(−∞,0]w which scales the state φ and which sends
pn+k topk−1. Hence it will suffice to show thatw∗�(−∞,0]w and {pk−1} are free
(with amalgamation over the scalars Cp) with respect to φ (after rescaling). In
light of Claim 3.4, for this it will suffice to show that

(8) E(pk−1) = φ(pk−1)

φ(p)
p.

However, pk−1 ∈ C∗(B ∪ (1− p− q)A(1− p− q)∪ {v}), and C∗((1− p−
q)A(1− p − q) ∪ {v}) and B are free with respect to φ. Therefore,

E(pk−1) ∈ E(C∗(B ∪ (1− p − q)A(1− p − q) ∪ {v}))
= Cp + Cq + (1− p − q)A(1− p − q).

Now pk−1 ≤ p so E(pk−1) ∈ Cp. But E preserves the state φ, so (8) follows.
This completes the proof of Claim 3.7.

For the next claim, we will make use of the comparison theory for positive
elements in aC∗-algebra that was introduced by J. Cuntz [2], [3] (see also [10]).



purely infinite, simple C∗-algebras arising from free product . . . 83

Recall that for positive elements, a and b of �, Cuntz defined a <∼ b if there are
xj ∈ � such that limj→∞ x∗j bxj = a. Recall also that <∼ is a transitive relation.

Claim 3.8. Let D be a nonzero, hereditary C∗-subalgebra of �(−∞,∞).
Then there is a projection in D that is equivalent in �(−∞,∞) to pn for some n.

Proof. Let h ∈ D, h ≥ 0, ‖h‖ = 1. Since
⋃

n≥1 �(−∞,n] is dense in
�(−∞,∞), for every ε > 0 there is n ∈ N and hn ∈ �(−∞,n] such that ‖hn‖ = 1
and ‖h − hn‖ < ε. Take ε < 1 and let f : [0, 1] → [0, 1] be monotone
increasing such that f (1 − ε) = 0 and f (1) = 1, and let b = f (hn). Then
b ≥ 0, b 
= 0. Since, by Claim 3.6, �(−∞,n] is simple,

b
(
�(−∞,n]

)
pn+1 
= {0}.

Therefore, there is a ∈ pn+1�(−∞,n]pn+1 a ≥ 0, a 
= 0 such that a <∼ b. By
Claim 3.7, a and pn+k are free for every k ≥ 1. Since limk→∞ φ(pn+k) = 0,
using [9, 5.3], we see that for sufficiently large k we have pn+k <∼ a. Thus
pn+k <∼ b and hence there is x ∈ �(−∞,∞) such that ‖x∗bx − pn+k‖ < ε. But

x∗bx ≥ x∗b
1
2 hnb

1
2 x ≥ (1− ε)x∗bx

‖x∗bx − x∗b
1
2 hnb

1
2 x‖ ≤ ε‖x∗bx‖ < ε(1+ ε)

‖x∗b 1
2 hnb

1
2 x − x∗b

1
2 hb

1
2 x‖ ≤ ‖hn − h‖ ‖x∗bx‖ < ε(1+ ε)

‖x∗b 1
2 hb

1
2 x − pn+k‖ < ε(3+ 2ε).

By standard arguments, taking ε small enough we find a projection in
h�(−∞,∞)h that is equivalent to pn+k .

Hence Claim 3.8 is proved.

Now using Claim 3.2, Claim 3.8 and [8, Theorem 2.1(ii)] completes the
proof of the proposition.

Now we give a list (by no means complete) of examples where the above
proposition can be applied. For 0 < λ ≤ 1, with the symbol ψλ we denote the
state on M2(C),

ψλ(·) = Tr2

(
·
( 1

1+λ 0

0 λ
1+λ

))
.

Examples3.9. In each of the following cases, Theorem 3.1 applies, showing
that the reduced free product C∗-algebra � is simple and purely infinite.

(i) Let 0 < λ < µ ≤ 1 and let

(�, φ) = (M2(C), ψλ) ∗ (M2(C), ψµ).
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(ii) Let 0 < λ < 1 and let

(�, φ) = (M2(C), ψλ) ∗ (C([0, 1]),
∫ · dt).

(iii) Let
(�, φ) = (A1 ⊗ F, φA1 ⊗ φF ) ∗ (B, φB)

where A1 is any C∗-algebra, φA1 is any faithful state on A1, F is a finite
dimensional C∗-algebra, φF is a nontracial, faithful state on F and the
centralizer of φB contains a unital, abelian C∗-subalgebra on which φB

is diffuse.

Proof. We first consider case (i). In the first copy of M2(C), let p =
(

1 0
0 0

)
,

q =
(

0 0
0 1

)
and v =

(
0 0
1 0

)
. Let p′, q ′ and v′ be the same but in the second copy

of M2(C). Then v is a partial isometry as required in Theorem 3.1. Moreover,
p, q, p′ and q ′ are all in the centralizer of φ and the C∗-algebra generated by
{p, q, p′, q ′} is isomorphic to the free product, (in the notation of [6]),(

p

C
1

1+λ
⊕ q

C
λ

1+λ

)
∗

(
p′

C
1

1+µ
⊕ q ′

C
µ

1+µ

)
,

which can be described by refering to [6, 2.7]. Thus

C∗({p, q, p′, q ′}) ∼= p∧q ′
C

1
1+λ− 1

1+µ
⊕C([a, b],M2(C))⊕

p∧p′
C

1
1+λ− µ

1+µ
,

for some 0 < a < b < 1, where the trace on C([a, b],M2(C)) is induced by a
measure on [a, b] having no atoms, and with

p = 1⊕
(

1 0
0 0

)
⊕ 1

q = 0⊕
(

0 0
0 1

)
⊕ 0.

Hence q is equivalent to a subprojection of p in C∗({p, q, p′, q ′}) and
qC∗({p, q, p′, q ′})q contains a diffuse abelian subalgebra, so the hypotheses
of Theorem 3.1 are fulfilled.

It is clear that case (ii) follows from case (iii). In order to prove that The-
orem 3.1 applies in case (iii), note that since φF is nontracial, there is a par-

tial isometry, v ∈ F , with p
def= v∗v and q

def= vv∗ orthogonal and min-
imal projections in F such that φ(q) < φ(p). Moreover, v is in the spectral
subspace of φA ⊗ φF associated to λ−1 = φ(p)/φ(q). Let D be a unital
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abelian C∗-subalgebra of the centralizer of φB on which φB is diffuse. Con-
sider C∗({p, q}∪D). This is isomorphic to the reduced free product of abelian
C∗-algebras (p

C⊕
q

C⊕
1−p−q

C
)
∗ (D, φ|D)

or to (p

C⊕
q

C
)
∗ (D, φ|D),

depending on whether p+q = 1 or not. By [6, 5.3], C∗({p, q}∪D) is simple
and hence p + q is full in it. By [7, 4.6(i)], there is a unitary u ∈ D such that
φ(u) = 0. Then p and u∗pu are free. If p + q = 1 then C∗({1, p, u∗pu}) is
isomorphic to the free product(

p

C
1

1+λ
⊕ q

C
λ

1+λ

)
∗

(
u∗pu

C
1

1+λ
⊕ u∗qu

C
λ

1+λ

)
.

Refering again to [6, 2.7] we see that

C∗({p, u∗pu})
∼= {f : [0, b] → M2(C) | f continuous and f (0) diagonal} ⊕ p∧u∗pu

C
1−λ
1+λ

,

for some 0 < b < 1,where the trace corresponds to a measure on [0, b] having
no atoms, and with

p =
(

1 0
0 0

)
⊕ 1

q =
(

0 0
0 1

)
⊕ 0

u∗pu =
(

t
√
t (1− t)√

t (1− t) 1− t

)
⊕ 1

u∗qu =
(

1− t −√t (1− t)

−√t (1− t) t

)
⊕ 0.

Thus qC∗({p, u∗pu})q contains a diffuse abelian subalgebra and u∗qu is equi-
valent in C∗({p, u∗pu}) to a subprojection of p, hence q is equivalent in
C∗({p, q} ∪ D) to a subprojection of p. So in the case p + q = 1 we are
done. But if p+ q 
= 1 then by [6, 2.8], (p+ q)C∗({p, q} ∪D)(p+ q) is iso-
morphic to the free product of (Cp+Cq) and (p+q)C∗({p+q}∪D)(p+q),
while by [6, 3.5], the latter algebra has a diffuse abelian subalgebra. Therefore,
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the analysis we just did for the case p + q = 1 applies to the free product of
(Cp+Cq) and (p+q)C∗({p+q}∪D)(p+q), showing that qC∗({p, u∗pu})q
contains a diffuse abelian subalgebra and q is equivalent in C∗({p, q} ∪D) to
a subprojection of p.
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