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FACTORS OF TOEPLITZ FLOWS AND OTHER ALMOST
1–1 EXTENSIONS OVER GROUP ROTATIONS

T. DOWNAROWICZ and F. DURAND∗

Abstract

If a minimal topological flow admits a symbolic extension then it also admits a symbolic almost
1–1 extension. The factors of symbolic almost automorphic flows are characterized as those almost
automorphic flows which admit a symbolic extension. As an application, we provide concrete
examples of factors of Toeplitz flows, which are neither Toeplitz flows nor odometers.

1. Introduction

From the topological point of view Toeplitz flows are characterized by the
following three properties:

(a) being minimal,

(b) being almost 1–1 extensions of odometers,

(c) being symbolic.

The first and last property have been known since the time when Jacobs and
Keane started to investigate these flows ([11]). The property (b) was described
by Eberlein ([7]), one year later. Sufficiency of these three conditions has been
established in [12] (see [6] for another proof).

In this paper we provide a similar conjunction of three conditions which
characterizes all topological factors of Toeplitz flows. Namely, the condi-
tions (a) and (b) remain unchanged, while (c) has to be replaced by the condition
of admitting any symbolic extension.

The above is attained by applying two much more general theorems. The
first one concerns factors of arbitrary minimal almost 1–1 extensions over
group rotations, and it says that every such flow is itself an almost 1–1 extension
over a group rotation. This fact can be derived from the characterization of so
called almost automorphic points presented in [8]. In order to make this paper
self-contained, we provide a direct proof. The second theorem states that if a
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minimal flow admits any symbolic extension then it also admits an almost 1–
1 such extension. Similar theorems about replacing an arbitrary extension
by an almost 1–1 extension have been known since a long time (e.g. [9]),
but a general statement concerning particularly the symbolic extensions was
missing. A symbolic version of the Furstenberg-Weiss theorem can be found
in [6], alas, in that paper there are additional assumptions made on the base
flow, and these assumptions are relatively strong from the point of view of
our purposes (for instance being itself symbolic). Interestingly, the methods
developed in this note allow to completely skip these assumptions in [6] and
thus generalize the results stated there.

At the end we provide a practical method of producing flows satisfying
our three conditions, and we give some examples exhibiting certain, perhaps
unexpected, topological properties.

This study has been provoked by the question raised in [10] whether there
exist totally disconnected factors of Toeplitz flows other than Toeplitz flows
and odometers, for which we would like to express our gratitude to the authors
of the above paper.

2. Terminology

In order to avoid confusion, we point out certain aspects of the terminology.
For example, like many authors, we will use the word “flow” with respect

to what others call “cascades”, i.e., to the action of the group Z of the integers.
More specifically, a flow is a pair (X, T ), where X is a compact metric space
and T : X → X denotes a homeomorphism. Perhaps this is not the most apt
choice, but the name “Toeplitz flows” has been used in this context since a
long time. The other meaning of “flow”, i.e., the continuous action of R, will
not appear in this note.

Another non-uniformly called object is an “odometer”. The frequently used
synonyms are “adding machine” or “p-adic integers”. In any case one has
in mind a compact monothetic infinite totally disconnected group G. It is
customary to use either of the first two names to denote the flow (G,R) on G,
whereR is the rotation by a topological generator ofG. The last name involves
a parameter p, which in the general case denotes an arbitrary sequence of
integers, i.e., p = (pt )t∈N. Then G is equal to the inverse limit of the cyclic
groups Zqt , where qt = p1p2 . . . pt . If not clearly specified, the name p-adic
integers may suggest that the sequence pt is constant (or even equal to a prime
number p) in which context it appears most often. In this paper we will stick
to the first option (as it is the shortest) and indeed, we will always consider G
along with its natural action by R. All groups appearing in this paper will be
denoted additively.
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We will often refer to “symbolic flows”, by which we shall understand what
others call “subshifts”, i.e., shift invariant closed subsets of
Z (the set
 called
“alphabet” is necessarily finite) along with the action induced by the left shift,
always denoted byS. It is well known that such flows are characterized in purely
topological categories as expansive actions on totally disconnected spaces. The
shift transformation S has well defined meaning also in the case where 
 is
infinite, but then we no longer deal with a symbolic flow, and we will avoid
using the letter 
 in this context. When talking about a symbolic flow (X, S),
we will be using such phrases as “the block b of length k appears in x ∈ X

(starting) at the position (coordinate) n”. This specifies that x[n, n + k) = b,
where b = b[0, k) ∈ 
k .

For the purposes of this paper we will need neither the formal definition of
an odometer nor that of a Toeplitz flow. It suffices to know that the first one is a
minimal equicontinuous flow, and that the second is characterized by the three
conditions stated at the beginning of this article. For the original definition we
refer the reader to any paper where Toeplitz flows appear in the title.

Let (Z, T ) and (Y, U) be two flows. We say that (Y, U) is an “extension”
of (Z, T ), or equivalently that (Z, T ) is a “factor” of (Y, U) if there exists a
continuous surjection π : Y → Z such that πU = T π . The last condition is
usually pronounced as π “preserves the action”. If an extension is given, then
by “fibers” we will mean preimages (by π ) of single points.

An extension is called “almost 1–1” if the set of points having one-point
preimages is residual (contains a denseGδ) inZ. In the minimal case it suffices
to verify that a one-point fiber exists.

The flows which are minimal almost 1–1 extension of group rotations have
been studied under the name “almost automorphic flows” ([12], [13], [8]). We
will also use this name from time to time.

3. Factors of almost automorphic flows

Lemma 3.1. LetG be a compact abelian group and letK be a closed subset
of G. If g +K ⊂ K for some g ∈ G then g +K = K .

Proof. First observe that the sequence (ng)n∈N has a subsequence con-
verging to the unity 0 of the group G (take (nk+1 − nk)g, where nkg is any
convergent subsequence). Now, if nkg→ 0, then nkg +K ⊂ g +K for each
k and these sets tend to 0+K = K , hence K ⊂ g +K .

Theorem 3.2 ([8], Theorem 9.13 and Proposition 9.9). Let (G,R) be a
minimal rotation of a compact monothetic group, and let (X, T ) be a minimal
almost 1–1 extension of (G,R) via a map π . Further, let (Y, S) be an arbitrary
factor of (X, T ) via a map φ. Then there exists a factor (H, R̃) of (G,R) (via
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some map ψ) such that (Y, S) is an almost 1–1 extension of (H, R̃) (via some
map ρ). The corresponding diagram commutes:

X
φ−−−→ Y

↓π ↓ρ
G −−−→

ψ
H

Proof. Recall that the Ellis semigroupE(X, T ) of the flow (X, T ) consists
of all (not necessarily continuous) maps obtained as pointwise limits of the
iterates ofT . Minimality is equivalent to the condition that for any pair of points
x, x ′ ∈ X there exists a τ ∈ E(X, T ) with τ(x) = x ′. For our monothetic
group rotation, E(G,R) consists of all rotations by the elements of G. If
φ : (X, T )→ (Y, S) is a factor map, then for every σ ∈ E(Y, S) there exists a
τ ∈ E(X, T ) such that φτ = σφ. We then say that τ is a lift of σ . Conversely,
every τ ∈ E(X, T ) is a lift of a σ ∈ E(Y, S). Such σ is unique for τ and we
call it the projection of τ . It is straightforward that if τ is a lift of σ and y ∈ Y

then τφ−1(y) ⊂ φ−1σ(y).
For each y ∈ Y we denote

Hy = πφ−1(y).

Clearly (Hy)y∈Y is a cover of G by closed sets. We claim that for any two
such sets Hy,Hy ′ there exists a g ∈ G such that Hy = g + Hy ′ . Indeed, let
σ ∈ E(Y, S) be such that σ(y) = y ′, let τ be a lift of σ and let the rotation by
g1 ∈ G be the projection of τ . Then

Hy ′ = πφ−1σ(y) ⊃ πτφ−1(y) = g1 + πφ−1(y) = g1 +Hy.

By a symmetric argument, Hy ⊃ g2 +Hy ′ for some g2 ∈ G. Finally,

Hy ⊃ g2 +Hy ′ ⊃ g2 + g1 +Hy.

By Lemma 3.1, we have equalities, hence we can assign g = g2.
Next we show that two such setsHy,Hy ′ are either disjoint or equal. Suppose

that there is a g ∈ Hy ∩Hy ′ . Fix a point e ∈ G with a one-point fiber π−1(e),
Let τ ∈ E(X, T ) be a lift of the rotation by e − g and let σ ∈ E(Y, S) be the
projection of τ . We have

e ∈ e − g +Hy = πτφ−1(y) ⊂ πφ−1σ(y),

and analogously for y ′. Thus π−1(e) intersects both φ−1σ(y) and φ−1σ(y ′).
But since it is a one-point fiber, the last two sets (being non-disjoint preimages
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of points) must be equal. Passing to the image by π we obtain

Hσ(y) = Hσ(y ′).

We have proved that

e − g +Hy ⊂ Hσ(y) = Hσ(y ′) ⊃ e − g +Hy ′ .

Since these are all rotations of the same set, we have equalities.
It now follows that the setsHy form a quotient groupH ofG. (TheHy which

contains the unity of G is easily seen to be a closed subgroup.) Thus (H, R̃)

(where R̃ denotes the rotation induced on H by R) is a topological factor of
(G,R). We skip the standard argument showing that the map ρ : Y → H

defined by ρ(y) = Hy is continuous and that the corresponding diagram
commutes. The last thing we need is that ρ provides an almost 1–1 extension.
To this end, by minimality, it suffices to find a one-point fiber of φ. Consider a
point y for which e ∈ Hy = ρ(y). Then π−1(e) ∈ φ−1(y), which determines
y as a unique such point.

4. Symbolic almost 1–1 extensions

Denote by A the class of all almost automorphic flows. We are especially
interested in characterizing the class FSA of all flows which can be ob-
tained as factors of symbolic flows from A . From Theorem 3.2 it follows
that (including finite flows) every such flow is again in A . Let FS de-
note the class of all minimal flows which admit a symbolic extension, and
FS ′, those which admit a minimal almost 1–1 symbolic extension. Since a
composition of almost 1–1 extensions is an almost 1–1 extension, we have
A ∩ FS ′ ⊂ FSA ⊂ A ∩ FS . There are no immediate reasons why we
could reverse any one of the above inclusions. The following theorem solves
the problem, by showing that FS = FS ′.

Note that if a minimal flow admits an extension with certain properties (such
as being almost 1–1 or symbolic), then it also admits a minimal extension with
the same properties (namely a minimal subset of the extension), thus in the
assertion of our theorem we can skip minimality of the extensions of minimal
flows.

Theorem 4.1. Let (Z, T )be a minimal flow and (X, S)a symbolic extension
of (Z, T ). Then there exists a symbolic almost 1–1 extension (Y, S) of (Z, T ).

Proof. We employ a modified version of the method used in [6] where an
almost 1–1 extension of a minimal flow (Z, T ) is constructed from an arbitrary
extension with some additional conditions on (Z, T ) (one possible condition
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was that (Z, T ) is symbolic). Applying an idea, due to Y. Lacroix, of marking
the return times of trajectories to certain open sets we introduce a symbolic
“almost factor” (Z̃, S) of (Z, T ) through which we are now able to generalize
the technique of [6]. The main difference is that, unlike in [6], there is no
immediate way of defining the factor map from Y to Z. Most of the difficulty
of the proof arises from the necessity of such assignment.

On the other hand, we have simplified slightly the construction by skipping
the technical details responsible for minimality of the flow (Y, S). We do not
need to care about minimality, because, as mentioned before, any minimal
subset of (Y, S) is again an almost 1–1 extension of (Z, T ).

Denote by π the factor map from X to Z. Let (Ut )t∈N be a decreasing
sequence of open sets with a one-point intersection z0 ∈ Z. Since the theorem
holds trivially in finite spaces, we are assuming that there are no isolated points
in Z, and that the sets Ut essentially decrease. For each z ∈ Z we produce a
0–1-sequence z̃ which will mark the return times of the trajectory of z to the
sets Ut . This sequence will be constructed inductively.

Initially z̃ consists entirely of zeros. Next we place the symbol 1 at the
positions corresponding to the integer moments when the trajectory of z visits
U1. By choosing U1 small enough, we can assume that consecutive 1’s are
separated by at least two zeros. The blocks of the form 1000 . . . 0 we call U1-
blocks of type 0. Later we will also use similar blocks of the form 1111 . . . 10
which we will call U1-blocks of type 1. Note that in any concatenation of U1-
blocks (of both types) we can determine the breaking points by locating the
pairs 01. Every U1-block of type 0 can be promoted to a block of type 1 by
replacing all but the last of its zeros by ones. At this stage z̃ consists entirely
(as a concatenation) of U1-blocks of type 0, for example:

z̃ = . . .

0
︷︸︸︷

1000

0
︷ ︸︸ ︷

100000

0
︷︸︸︷

100

0
︷ ︸︸ ︷

10000

0
︷︸︸︷

100

0
︷︸︸︷

1000

0
︷ ︸︸ ︷

100000

0
︷︸︸︷

1000

0
︷ ︸︸ ︷

10000

0
︷︸︸︷

1000

0
︷︸︸︷

1000

0
︷ ︸︸ ︷

100000 . . .

Next, we observe the integer moments when the trajectory of z visitsU2. Since
U2 ⊂ U1, these integers meet some of the previously inserted in z̃ symbols
1, i.e., the first positions in certain U1-blocks of type 0. We now promote
these U1-blocks to U1-blocks of type 1. After this step z̃ is a concatenation of
U1-blocks of both types, as in the example below:

z̃ = . . .

1
︷︸︸︷

1110

0
︷ ︸︸ ︷

100000

0
︷︸︸︷

100

0
︷ ︸︸ ︷

10000

1
︷︸︸︷

110

0
︷︸︸︷

1000

0
︷ ︸︸ ︷

100000

1
︷︸︸︷

1110

0
︷ ︸︸ ︷

10000

0
︷︸︸︷

1000

0
︷︸︸︷

1000

0
︷ ︸︸ ︷

100000 . . .

As noticed before, the above decomposition is uniquely determined.
Again, we can assume that consecutive U1-blocks of type 1 are separated

by at least two U1-blocks of type 0. We call U2-blocks of type 0 the concat-
enations of U1-blocks where the structure of types is 1000 . . . 0. Analogously,
the structure of types of U1-blocks in a U2-block of type 1 is 1111 . . . 10. Each



factors of toeplitz flows and other almost 1–1 extensions . . . 63

U2-block of type 0 can be promoted to a U2-block of type 1 by promoting all
but last of its component U1-blocks of type 0. By the same argument as before,
in any concatenation of U2-blocks we can determine the breaking points by
analyzing the sequence of types of the component U1-blocks. At this stage z̃
consists entirely of U2-blocks of type 0. In our example this partition looks as
follows:

z̃ = . . .

0
︷ ︸︸ ︷

1
︷︸︸︷

1110

0
︷ ︸︸ ︷

100000

0
︷︸︸︷

100

0
︷ ︸︸ ︷

10000

0
︷ ︸︸ ︷

1
︷︸︸︷

110

0
︷︸︸︷

1000

0
︷ ︸︸ ︷

100000

0
︷ ︸︸ ︷

1
︷︸︸︷

1110

0
︷ ︸︸ ︷

10000

0
︷︸︸︷

1000

0
︷︸︸︷

1000

0
︷ ︸︸ ︷

100000 . . .

Next we mark the return times of z to U3 by promoting certain U2-blocks
in appropriate places, for example:

z̃ = . . .

1
︷ ︸︸ ︷

1
︷︸︸︷

1110

1
︷ ︸︸ ︷

111110

1
︷︸︸︷

110

0
︷ ︸︸ ︷

10000

0
︷ ︸︸ ︷

1
︷︸︸︷

110

0
︷︸︸︷

1000

0
︷ ︸︸ ︷

100000

0
︷ ︸︸ ︷

1
︷︸︸︷

1110

0
︷ ︸︸ ︷

10000

0
︷︸︸︷

1000

0
︷︸︸︷

1000

0
︷ ︸︸ ︷

100000 . . .

And so on. We omit the formal description of the obvious induction. In step
t + 1 we promote certain Ut -blocks of type 0 to mark the return times to Ut+1.
Promoting a Ut -block consists in promoting all but the last of its component
Ut−1-blocks of type 0, (hence it is recursively defined).

In the limit (which clearly exists, because we never replace ones by zeros)
we obtain a 0–1-sequence z̃ having the following properties:

(·) for each t , z̃ is a concatenation of Ut -blocks,

(·) each Ut -block consists of at least three Ut−1-blocks, the first of type 1,
the last of type 0,

(·) the partition of z̃ into Ut -blocks is unique,

(·) the starting positions of the component Ut -blocks coincide with the re-
turn times of z to the set Ut .

If a Ut -block consists of n Ut−1-blocks, then the one whose index is n
2 or

n+1
2 will be referred to as the central Ut−1-block. The central position of a

Ut -block is defined recursively as the central position in its central component
Ut−1-block.

The closure Z̃ ⊂ {0, 1}Z of the collection of all so obtained sequences z̃

is shift invariant, but it is not a factor of (Z, T ). The map z → z̃ fails to
be continuous at points whose trajectories visit the boundaries of the sets Ut .
Neither is in general (Z̃, S) an extension of (Z, T ). (In cases where it is,
we can end the proof here, because then this extension is almost 1–1. Alas,
this happens only in very restricted cases, e.g., if (Z, T ) is equicontinuous).
Nevertheless, Z̃ will play an important role in our construction.
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From now on, by Ut -blocks (of both types), we shall understand only those
Ut -blocks which do appear in Z̃.

We will treat the sets Ut differently for even and odd indices t . Therefore
we will change slightly our notation. Namely we assume that we have two
sequences Ut and Vt (Ut ⊃ Vt ⊃ Ut+1, t ∈ N). Accordingly, we will speak
about Ut -blocks and Vt -blocks. We need to be more specific about the choice
of the sets Ut and Vt . Fix a summable sequence (εt ). For each given t we pick
Ut of diameter smaller than εt . Then, by minimality, there exists a positive
integer pt for which

(1) Ut, T (Ut ) . . . , T
pt (Ut ) is a cover of Z,

and at the same time such that for each pair of points x1, x2 ∈ X

(2) x1[−pt , pt ] = x2[−pt , pt ] ;�⇒ dist(π(x1), π(x2)) < εt .

The choice of Vt is even more sophisticated: Consider the family of sets con-
sisting of T −pt (Us) . . . , T

pt (Us) with s ≤ t , and T −pt (Vs) . . . , T
pt (Vs) with

s < t , and let Vt be the finest partition of Ut generated by the intersections
of these sets and their complements. At least one of the elements of Vt has
nonempty interior. We decide to choose Vt so that

(3) Vt is contained in the interior of a set from Vt .

and

(4) T −pt (Vt ) . . . , T
pt (Vt ) have diameters smaller than εt ,

By choosing Vt sufficiently small we can assume that

(5) the sets Vt , T (Vt ) . . . , T
(4pt+3)pt (Vt ) are pairwise disjoint.

By (1), all Ut -blocks are not longer than pt , by (5), all Vt -blocks are not
shorter than (4pt + 3)pt , hence

(6) each Vt -block consists of at least 4pt + 3 Ut -blocks.

From the condition (3) it can be derived that

(7) all Vt -blocks have the same first component Ut -block, and all Vt -blocks
have the same last component Ut -block.

Denote by 
 the alphabet of X. As in [6], we treat each x ∈ X as the top
row, and we add two more rows below: the middle row temporarily entirely
filled with empty cells (later in this row we will insert also letters from 
), and
the bottom row, where we place the sequence z̃, with z = π(x). This produces
a sequence x̃ over the finite alphabet 
̃ = 
 × (
 ∪ { })× {0, 1} (the letters
of this alphabet can be viewed as columns of height 3). The set of so obtained
elements {x̃ : x ∈ X} is easily seen to be shift invariant. We denote by X̃

the closure of the above set in 
̃Z. Clearly, (X̃, S) is a symbolic extension of
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(X, T ) (by the projection onto the top row), hence also of (Z, T ). We denote
by π̃ the factor map from (X̃, S) to (Z, T ).

Note that since we have taken the closure and since z→ z̃ is not continuous,
it is no longer true that the bottom row of an arbitrary x̃ ∈ X̃ coincides with z̃,
where z = π̃(x̃). However, since the above does hold on a dense subset of X̃,
it is true that for any x̃ ∈ X̃ the bottom row is an element of Z̃, and, if r is the
starting position of a Vt -block in the bottom row of x̃, then

(8) π̃(x̃) ∈ T −r (Vt ),

while in the remaining cases

(9) π̃(x̃) /∈ T −r (Vt ).

By t-wagons we shall mean these blocks over the alphabet 
̃ which have
a Ut -block in its bottom row. Analogously, by t-trains we shall mean these
blocks which have a Vt -block in its bottom row. Rereading (6), we obtain that

(6’) each t-train is a concatenation of at least 4pt + 3 t-wagons.

We call the first and last wagons in each train the locomotive and the caboose,
respectively. The condition (7) now means that

(7’) all t-locomotives have identical bottom row, all t-cabooses have identical
bottom row.

By (1),

(1’) the lengths lt and ct of the t-locomotives and t-cabooses, respectively,
are at most pt .

By original t-trains we shall understand these t-trains which do appear in X̃.
Consider two points x̃1, x̃2 ∈ X̃ having the same original t-train covering

the zero coordinate. If the zero coordinate falls at least pt positions away from
the ends of this t-train, then (2) applies to the top rows of x̃1 and x̃2. By the
definition of π̃ we obtain that

(10) dist(π̃(x̃1), π̃(x̃2)) < εt .

In the remaining case we can apply (8) for some r (−pt < r < pt ), hence
by (4) we conclude that (10) holds as well.

We will now inductively define a sequence of codes φt transforming the
original t-trains into so called regular t-trains, preserving their lengths and the
bottom row. We let φ0 be the identity.

Suppose that after step t we have changed all t-trains of X̃ into regular
t-trains by a 1–1 transformation φt , which does not alter the bottom row.
Moreover, we assume that the central cell in the middle row of every t-train
remains empty. Clearly, the code φt can be applied in a natural way to any
block or sequence which is a concatenation of original t-trains.
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The code φt+1 is defined on the original (t+1)-trains as follows: We start by
selecting one original (t+1)-locomotive At+1 and one original (t+1)-caboose
Bt+1. Then φt(At+1) and φt(Bt+1) are well defined (At+1 and Bt+1 like all
(t+1)-wagons are concatenations of some number of original t-trains). We
transform all the (t+1)-trains by applying to each of them the code φt and
then the following two modifications:

(A) We remove all symbols from the top and middle row of the locomotive
and place them (preserving the order) in the central cells of the following
2lt wagons. Similarly, we remove all symbols from the top and middle
row of the caboose and place them (preserving the order) in the central
cells of the preceding 2ct wagons. By (1’) and (6’), there are enough
wagons in each (t+1)-train, moreover the central wagon will not be
used, hence its central cell will remain empty.

(B) We replace the locomotive by φt(At+1) and the caboose by φt(Bt+1).

Note, that by (7’), the above code does not alter the bottom row. The so
defined map φt+1 is a 1–1 correspondence between original (t+1)-trains and
the newly obtained (t+1)-trains, which we now call regular. During the modi-
fications (A) and (B) each component (regular) t-train of the (t+1)-train can be
either left unaffected or replaced by another regular t-train (modification (B)),
or it can happen that a letter will be inserted into its central cell (modific-
ation (A)). A t-train differing from a regular one in having the central cell
occupied will be called an irregular t-train. In this notation, every regular
(t+1)-train is a concatenation of regular and irregular t-trains. Every regular
(t+1)-train has the “standard” locomotiveφt(At+1) and the “standard” caboose
φt(Bt+1).

As easily seen, φt converge pointwise to an invertible and action preserving
map φ on X̃′ ⊂ X̃, defined as the set of such points that every coordinate falls
into at most finitely locomotives and cabooses (i.e., for finitely many indices
t). Namely, for such points every position can be affected by at most finitely
many modifications (B); the modifications (A) never change a position more
than once. The set X̃′ is obviously shift invariant. It is also nonempty: note
that there exists a point such that for every t the zero coordinate falls in the
central wagon of a t-train. (In fact, X̃′ is residual, moreover, it has full measure
for every invariant measure on X̃; this follows easily from the fact that (pt )

grows to∞.) For us it is essential that X̃′ is dense in X̃. We let Y = φ(X̃′).
By approximation, the bottom row of every y ∈ Y is an element of Z̃, and for
each t ∈ N, y is a concatenation of regular and irregular t-trains.

We are now in a position to define the factor map ρ : Y → Z. For this we
want to be able, for any y ∈ Y , to locate ρ(y) in Z up to εt accuracy knowing
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only the t-train of y ∈ Y which covers the coordinate 0. More precisely, we
will assign a point zc ∈ Z to every t-train c = c[0, k] of Y . We will also make
sure that the above assignments converge, i.e., we will assure that if d = d[0, l]
is a (t+1)-train of Y in which c appears, say, d[r, r + k] = c, then for each n,
0 ≤ n ≤ k we have

(11) dist(T n+r (zd), T n(zc)) < 2εt .

Once this is done, we define the map ρ by the formula

ρ(y) = lim T nt (zct ),

where, for each t , y[−nt , kt − nt ] = ct is a t-train (the t-train covering the
coordinate 0 in y). Continuity of such a map follows immediately from sum-
mability of the sequence εt . Later we will also check that Tρ = ρS. We
proceed with the assignment as follows:

Let c be a (regular or irregular) t-train appearing in Y . If c is regular then
φ−1
t (c) is well defined and it is an original t-train. If c is an irregular t-train

then we can easily produce a regular one from it by emptying the central cell
in the middle row. By φ−1

t (c) we shall mean the preimage by φt of the so
obtained regular t-train. In either case, we select a point x̃c ∈ X̃ in which
φ−1
t (c) appears at the coordinate 0, and we let zc = π̃(x̃c). It remains to

check the convergence condition. Let d be a (t+1)-train in which c appears,
d[r, r + k] = c. We consider separately two cases:

(a) c falls neither into the locomotive nor caboose of d.

Then φ−1
t (c) appears in φ−1

t+1(d) at the same position r . Thus zc and T r(zd)

are images by π̃ of two points x̃c and Sr(x̃d) having the same t-train φ−1
t (c)

starting at zero. The application of (10) to Sn(x̃c) and Sn+r (x̃d) (0 ≤ n ≤ k)
yields (11), hence ends this case.

(b) c falls into either the locomotive or caboose of d.

We proceed for the case of a locomotive. Since d has the “standard” loco-
motive φt(At+1), φ−1

t (c) is part of At+1 and it may not appear in the original
locomotive of φ−1

t+1(d). But At+1 is also an original locomotive, so there exists
a point x̃0 ∈ X̃ which has this locomotive located at the position −r . Then
φ−1
t (c) appears in x̃0 starting at zero, hence we can apply (10) to the pair x̃c

and x̃0. Denoting z0 = π̃(x̃0), we obtain

(12) dist(T n(zc), T
n(z0)) < εt for 0 ≤ n ≤ k.

On the other hand, both x̃0 and Sr(x̃d) have (possibly different, but never
mind) (t + 1)-locomotives at the position −r . Shifting each of them by n
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and applying (8), we obtain T n(z0) ∈ T n(Vt ), and T n+r (zd) ∈ T n(Vt ). For
0 ≤ n < pt , the application of (4) yields that

(13) dist(T n(z0), T
n+r (zd)) < εt .

Combining (12) and (13) we obtain (11), and the convergence condition is
verified.

It follows immediately from the definition of ρ that the condition Tρ = ρS

holds at such points of Y where the zero coordinate is not the last one in a
t-train for infinitely many indices t . But such points are dense in Y , hence, by
continuity, ρ preserves the action.

Finally, we need to show that the map ρ provides an almost 1–1 extension,
by finding an element of Z with a one-point preimage. It is easy to see that the
point z0 (the intersection of the sequence (Vt )) satisfies this condition; by (9),
and because z0 is in the interior of each Vt , each point in the preimage must
have a t-train starting at zero in the bottom row. But there is only one such
point in Y , namely the one which has the “standard” locomotives extending
to the right, and the “standard” cabooses extending to the left from the zero
coordinate.

Remark 4.2. Using the above construction we can completely omit the
assumptions made in [6] on the minimal flow (Z, T ). The proofs of all theorems
there can be adapted accordingly. The full strength version is stated below. By a
Borel∗ isomorphism between two flows (X, T ) and (Y, T ) we shall understand
a Borel measurable invertible and action preserving map φ : X′ → Y ′ between
sets X′ ⊂ X and Y ′ ⊂ Y , both of mass 1 for any invariant measure on the
respective spaces, such that the associated map between the sets of invariant
measures is an affine homeomorphism in the weak∗ topology.

Theorem 4.3 (cf. [9] and [6]). Let (X, T ) be an arbitrary extension of a
minimal non-periodic dynamical system (Z, T ) (we denote the corresponding
factor map by πX). Then (X, T ) is Borel∗ isomorphic (via a map denoted by
φ) to some minimal dynamical system (Y, T ) which is a topological almost
1–1 extension of (Z, T ) (we denote the corresponding factor map by πY ), and
the following diagram commutes:

X
φ←−−−−−→ Y

❅↘πX �↙ πY

Z

If (X, T ) is a subshift over an alphabet 
 then (Y, T ) can be obtained also in
a form of a subshift over the same alphabet 
.
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5. Examples of factors of Toeplitz flows

Applying Theorems 3.2 and 4.1, and using the well known fact that a factor of
an odometer is again an odometer, we give the following characterization of
flows which are factors of Toeplitz flows:

Theorem 5.1. A dynamical system (X, T ) is a factor of a Toeplitz flow if
and only if it satisfies the following three conditions

(a) (X, T ) is minimal,

(b) (X, T ) is an almost 1–1 extension of an odometer,

(c) (X, T ) has a symbolic extension.

We will give soon a practical condition equivalent to the conjunction of (a)
and (b). But first we need to recall one of the standard methods of producing
almost automorphic flows (cf. [12], [5] and [3]). LetGbe a compact monothetic
group. We can view Z as a subset of G (by identifying the multiples of the
topological generator with the integer coefficients). This induces on Z a new
(precompact) topology. LetK be some compact space and let f : G→ K be a
function whose restriction to Z is continuous in this new topology. Finally, we
let (Xf , S) be the shift orbit closure of (f (n))n∈Z inKZ. In order to have (Xf , S)

an extension of (G,R) we need one more condition: Let F denote the closure
of the graph of f |Z in G×K . For each g ∈ G let Fg = {k ∈ K : (g, k) ∈ F }.
Note, that for every n ∈ Z we have Fn = {f (n)}. We say that f is invariant
under the rotation by h (h ∈ G), if Fg+h = Fg for every g ∈ G. If no such h

exists, then we say that f is invariant under no rotations.

Theorem 5.2. Let (G,R) be a minimal rotation of a compact monothetic
group, and let (X, T ) be a dynamical system. Then (X, T ) is a minimal almost
1–1 extension of (G,R) if and only if it is topologically isomorphic to a flow
(Xf , S) (as defined above), where f is invariant under no rotations.

Proof. First consider the flow (Xf , S). By definition, for every point x ∈
Xf there exists a sequence nk such that x(n) = limk f (n+nk) for each n ∈ Z.
Then x(n) ∈ Fn+h for each n if h is a cluster point inG of the sequence (nk). As
is not hard to see, for every such h the set of pairs (n+h, x(n)) (n ∈ Z) is dense
in F . But F is invariant under no rotation, hence h is uniquely determined for
every x. We omit the standard verification that the map x → h is continuous
and preserves the action. It is also clear, that the unity 0 ∈ G is assigned to
f |Z and to no other element of Xf . Thus (Xf , S) is an almost 1–1 extension
of (G,R). Minimality of (Xf , S) is now immediate, because every invariant
subset of Xf must contain at least one point in the preimage of 0, i.e., f , and
hence its entire orbit closure, i.e., Xf .
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For the converse, suppose that (X, T ) is an almost 1–1 extension of (G,R)

via a map π . We can also assume (by rotating if necessary the group G) that
0 has a one-point preimage by π . Then the same holds for all elements of
the orbit of 0, i.e., for the elements of Z. We simply let K = X and for each
g ∈ G we choose f (g) to be any element of π−1(g). It is easy to verify
that the inverse to a continuous map between compact sets is continuous on
the set of points having one-point preimages, hence f is continuous on Z.
The topological isomorphism between (Xf , S) and (X, T ) is provided by the
projection onto the coordinate 0.

The condition (c) of Theorem 5.1 is by itself an interesting subject of invest-
igation. Mike Boyle has an example of a finite entropy system which doesn’t
have this property ([1], see also [2]). Very likely, using a method of producing
minimal flows based on the construction by S. Williams ([14]), one could ob-
tain a minimal such example. On the other hand, it is known ([1], [2]) that any
zero entropy system has a symbolic extension. 1 In the following examples we
avoid problems with the condition (c) by using only zero entropy flows.

If the function f appearing in the definition of (Xf , S) has the property
that F assumes one-point values on a full measure set in G then π is 1–1 on
a full measure set, hence (Xf , S) is strictly ergodic and measure theoretically
isomorphic to (G,R), and thus has topological entropy zero.

Using the above methods we will now provide examples of minimal zero
entropy almost 1–1 extensions of adding machines, i.e., by Theorem 5.1, flows
which are factors of Toeplitz flows.

Let G denote an odometer group.

Example 5.3. Consider f : G→ I , where I = [−1, 1], having a unique
discontinuity point g0 ∈ G \ Z, and such that Fg0 = I (i.e., behaving at g0 like
the function sin 1

x
at zero). The flow (Xf , S) has all required properties. The

fibers π−1(g) are either singletons or intervals. This provides an example of a
non-totally disconnected factor of a Toeplitz flow.

The following example provides a complete answer to the questions con-
cerning possible factors of Toeplitz flows raised in [10].

Example 5.4. We can construct a function as above, with I replaced by
the classical Cantor set C. This time we obtain of a totally disconnected factor
of a Toeplitz flow.

Observe the points from the fiber π−1(g0). These are sequences differing
only at the position zero, where all values fromC can be assumed. Thus we can
index them by these values: π−1(g0) = {xc : c ∈ C}. It is now seen that the

1 The flows admitting a symbolic extension have been recently characterized in [4].
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flow is not expansive, because the points Sn(xc), S
n(x ′c) are close to each other

at all times n ∈ Z for close values of c and c′. Thus (Xf , S) is not symbolic,
in particular it is not a Toeplitz flow. Clearly, this flow is not an odometer,
because no odometer is an almost 1–1 extension of another.

We claim that our flow is not even a minimal product of a Toeplitz flow with
another odometer. We have to say a few words about such products. If (X, S) is
a Toeplitz flow over an odometer (G1, R1), and (G2, R2) is another odometer,
then the product (Y, T ) = (X × G2, S × R2) is minimal if and only if the
groups G1 and G2 are orthogonal, i.e., if their dual groups, viewed as discrete
subgroups of the torus, have trivial intersection {1}. Such a product is an almost
1–1 extension over the odometer (G,R) = (G1×G2, R1×R2). It is no longer
expansive; the consecutive images of two points of the form (x, g1) and (x, g2)

will remain at the same distance as g1 and g2. Nevertheless, let y = (x1, g1)

and y ′ = (x2, g2) be two different points of the product belonging to the same
fiber over (G,R). Then obviously g1 = g2, hence x1 �= x2, which implies that
the consecutive images of y and y ′ cannot stay close at all times, i.e., behave
as xc and x ′c constructed above. This proves our claim.

Finally, we can also easily produce flows with a large variety of fibers.

Example 5.5. Let (Kn)n∈N be any countable family of compact metric
spaces represented as subsets of the Hilbert cube K . Let fn be a function on G

into K which has only one discontinuity at a point gn ∈ G \ Z, and such that
Fgn = Kn (here F denotes the appropriate set for fn). We also assume that the
points gn have pairwise disjoint orbits. Then we define f : G → K as f =

n

fn
2n (addition is defined coordinatewise in the Hilbert cube). This function

has discontinuities only at the points gn, hence it satisfies all requirements of
the construction of (Xf , S). It is seen that π−1(gn) is homeomorphic to Kn,
i.e., that (Xf , S) has the designed fibers.
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