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DEGENERACY LOCI OF VECTOR BUNDLE MAPS
AND AMPLENESS

JØRGEN ANDERS GEERTSEN

1. Introduction

Let X be an algebraic variety and E,F vector bundles on X, of ranks e, f
respectively. For any vector bundle map φ : E → F and k ∈ N, 0 ≤ k ≤
min{e, f }, the k’th degeneracy locus of φ is the set

Xk(φ) := {x ∈ X | rank φ(x) ≤ k}.
Since a linear map has rank ≤ k if and only if all k + 1-minors vanish, the
set Xk(φ) can also be described as the zero locus of the section ∧k+1φ ∈

(X, (∧k+1E)∗ ⊗ ∧k+1F). As such, it comes with a natural structure as a
closed subscheme of X.

Degeneracy loci turn up in a number of geometric constructions. For in-
stance, the common zero locus of a finite set of sections of a vector bundle
is a degeneracy locus. In Brill-Noether Theory, degeneracy loci show up as
the subsets of the Jacobian which parametrizes complete linear systems of a
specific degree and dimension bounded below.

For a map φ : E → F , the expected dimension of Xk(φ) is the number
dimX− (e− k)(f − k). We denote this number bymk throughout this paper.
Then we have, for any φ : E→ F ,

If Xk(φ) 
= ∅ then dimXk(φ) ≥ mk.
For instance, if E = OX is trivial and k = 0, then φ : E → F can be viewed
as a section φ ∈ 
(X,F ). Then X0(φ) is equal to Z(φ), the zero-locus of the
section φ, and in this case the expected dimension of Z(φ) is dimX−f . This
is just Krull’s Hauptidealsatz: Z(φ) is locally cut out by f equations, so its
codimension in X should be f .

Now it might very well be the case that no φ : E→ F has Xk(φ) with the
expected dimension. For example on P2, the bundleE = O⊕O(1) has rank 2
so one expects a generic section to vanish in codimension 2. But most sections
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don’t vanish at all, namely those of the form (λ, σ ) where λ ∈ k \ {0}, and
the other sections vanish too much, namely on a line, i.e. in codimension 1.
So even for very nice globally generated bundles it can happen that no Xk(φ)
has the ’right’ dimension. We define the number tk = tk(X,E, F ) as follows:

tk := min{dimXk(φ) | φ : E→ F a morphism with Xk(φ) 
= ∅}.
Note that since we can take for φ the zero-morphism 0 : E → F , which has
Xk(0) = X for all k, the number tk is well-defined and tk ≤ dimX. Also,
the inequality mk ≤ tk holds for all k (0 ≤ k ≤ min{e, f } as always). For
instance, in the above example, m0 = 0 and t0 = 1.

We are concerned with the following relative situation. Suppose E,F are
vector bundles on X as above. Let Y be an irreducible algebraic variety and
suppose f : X → Y is a proper surjective map. We say that the bundle
E∗ ⊗ F is ample relative to f , written ‘rel f ’, if it is ample on all fibers of
f , i.e. the restriction E∗ ⊗ F |f −1(y) is an ample vector bundle for all (closed)
points y ∈ Y . Our purpose is to describe what happens to the images of the
degeneracy loci under the map f . The results are the following.

Theorem 1. SupposeX is a complex algebraic variety andE,F are vector
bundles on X. Let f : X → Y be a proper surjective map to another variety
Y , and suppose E∗ ⊗ F is ample rel f . Suppose furthermore that E∗ ⊗ F is
globally generated.

Let φ : E→ F be any vector bundle map. Then

(1) If tk ≤ dim Y , then for any irreducible component Z ⊂ f (Xk(φ)) we
have dimZ ≥ tk .

(2) If tk > dim Y , then f (Xk(φ)) = Y .

(3) Furthermore, if mk ≤ dim Y , then tk ≤ dim Y . If mk = dim Y , then
f (Xk(φ)) = Y .

Remark 1. In caseXk(φ) is empty, statement (1) is inconclusive since there
are no irreducible components Z to choose from. However, statement (2) says
that Xk(φ) must necessarily be non-empty if tk > dim Y , since its image
under f is equal to Y . Similarly, statement (3) says that all Xk(φ) must be
non-empty if mk = dim Y . These results are sharp: If for instance tk = dim Y

butmk < dim Y , one cannot assert that all degeneracy loci are non-empty. For
example, take the bundle F := O(1) ⊕ O(1) on P1 and look at zero-sets of
sections of F . Then t0 = 0, m0 = −1 and F has a nowhere vanishing section.

The relations of Theorem 1 with theorems in the litterature are as follows.
Taking Y = pt, we are in the situation of an ample vector bundle E∗ ⊗ F on
a complete variety X. In this case statement (1) is trivial. Statement (2) and
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(3) however combine to the existence result of Fulton and Lazarsfeld [4] (for
globally generated bundles). Fulton and Lazarsfeld’s result says that ifmk ≥ 0,
then for any φ : E → F , we have Xk(φ) 
= ∅. If mk > 0 then also tk > 0
so this statement follows from (2). If mk = 0 = dim Y , the statement follows
from (3).

Again taking Y = pt, the statement in (3) “mk ≤ dim Y ⇒ tk ≤ dim Y ”
means in this case that mk ≤ 0 ⇒ tk = 0, since we always have tk ≥ 0. For
instance, if E = OX and we look at zero-schemes of sections of the bundle
F then m0 = dimX − rank F and the statement is the following geometric
observation:

Corollary 2. SupposeX is a projective variety and F an ample, globally
generated vector bundle on X with rank F ≥ dimX. Then there is a section
σ ∈ 
(X,F ) such that Z(σ) is a finite non-empty set of points.

This in turn gives an easy proof of a special case of the Bloch-Gieseker
theorem [2] which states that for an ample vector bundle F on a projective
variety X, if rank F ≥ n := dimX, then cn(F ) > 0. In fact, letting C =
{σ ∈ 
(X,F ) | Z(σ) 
= ∅} be the cone of sections that do vanish somewhere,
and l the length of the zero subscheme of a generic section in C (which is
well-defined by the corollary) then borrowing some of the ideas behind the
proof of Theorem 1 yields the following formula for cn(F ):

cn(F ) = l · degC.

(Here degC is the degree of the cone C). This formula gives a new lower
bound for cn(F ) valid for all ample and globally generated vector bundles F
(Corollary 13). The formula also implies the funny result that if cn(F ) happens
to be a prime number, and rank F > n, then F has a section σ such that Z(σ)
consists of exactly one (reduced) point (Corollary 12). In general, if F is
“sufficiently positive”, one expects l = 1 - for instance, this holds if F(−1) is
globally generated for some very ample line bundle O(1) on X (Example 7).

If on the other hand one takes Y = X and f = 1 in Theorem 1 then there is
no ampleness condition onE∗⊗F and statement (1) must hold, i.e. dimZ ≥ tk
for any irreducible component Z of Xk(φ). This shows that for bundles E,F
such that E∗ ⊗ F is globally generated the number tk could equally well be
defined as the minimum dimension of any irreducible component Z in any
Xk(φ).

Statements (1) and (2) imply that for any φ : E → F , if Z denotes an
irreducible component of f (Xk(φ)), then dimZ ≥ min{dim Y, tk}. Since tk ≥
mk , this implies the weaker statement

dimZ ≥ min{dim Y,mk}.
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This is the Theorem of Steffen [11, Th. 0.3] (for globally generated bundles).
However, Steffens algebraic methods are completely different from ours. In
fact, our Theorem 1 arose from trying to give a simple geometric proof of
Steffens result. The underlying geometric idea of our approach does not use
global generation, but to get a uniform statement like Theorem 1 we must have
E∗⊗F globally generated. On the other hand, we obtain a stronger result than
Steffens for this class of bundles, and the statement in Theorem 1 is optimal
(see Example 4). Furthermore we can (almost) work in arbitrary characteristic:
if one assumes that the map f in Theorem 1 is generically smooth (which is
of course guaranteed in char. 0) then the proof goes through over an arbitrary
algebraically closed ground field.

Acknowledgements. I am indebted to R. Lazarsfeld, A. Hirschowitz and
J. Hansen for many suggestions and valuable conversations. Several of the ideas
in section 5 developed during discussions with L. Manivel at Institut J. Fourier
in Grenoble, France, and I thank Manivel and the Institut for inviting me to
Grenoble.

2. Ample vector bundles

LetX be an algebraic scheme over the algebraically closed ground fieldK and
E a vector bundle onX. Recall that by definition,E is ample if for all coherent
sheaves F on X there exists an integer N ∈ N such that

n ≥ N ⇒ F ⊗ Symn E is globally generated.

Denote by P(E) the projective bundle of lines in E. Then E is ample on
X if and only if the tautological line bundle OP(E∗)(1) is ample on P(E∗)
[7]. Next suppose Y is another scheme and f : X → Y is a map. We say
E is ample relative to f (written ‘rel f ’) if there is an open affine covering
Y = ∪Uα such that for all α, the bundle E|f −1(Uα) is an ample vector bundle.
If we let q : P(E∗) → X denote the projection map, then this condition can
be translated as follows: E is ample rel f if and only if OP(E∗)(1) is ample
rel f ◦ q.

If f is a proper map, the condition of relative ampleness is equivalent to the
following property [11, Lemma 1.5]: For all coherent sheaves F on X there
exists N ∈ N such that

n ≥ N ⇒ Rif∗(F ⊗ Symn E) = 0, i > 0.

If Y is a point, this is simply Serre Vanishing, since thenRif∗(F⊗Symn E) =
Hi(X,F ⊗ Symn E).



degeneracy loci of vector bundle maps and ampleness 17

Of course if E is ample relative to a map f , then E is ample on the fibers
of f , these being closed subschemes of X. Conversely, if f is a proper map,
this condition is also sufficient: E is ample rel f if and only if for all (closed)
points y ∈ Y , the restriction E|f −1(y) is an ample vector bundle [7, Prop. 4.4].
It is this very explicit description of relative ampleness that we shall use.

Example 1. Let π : Blpt(P2)→ P2 be the blow-up of the projective plane
at a point. If E denotes the exceptional divisor, then OX(−E) is ample relπ .
Because on the fiber E = P1 it is OP1(1) which is ample, and all other fibers
are points so there is no condition. For the same reason, OX(E) isn’t ample
relπ .

Example 2. Consider

A1 × P1

�↙p1 ❅↘p2

A1 P1.

Then p∗2O(1) is ample relp1 because on the fibers P1 it’s just OP1(1). Since p2

is an affine morphism, p∗2O(1) is also ample relp2.

The following lemma will be used in the proof of Theorem 1.

Lemma 3. Suppose f : F ′ → F is a birational map of positive dimensional
complete varieties and E an ample vector bundle on F . Then

H 0(F ′, f ∗E∗) = 0.

Proof. To begin, note that the morphism f is automatically proper. Indeed,
F is a variety, hence separated overK , and the composition F ′ → F → K is
proper.

We first prove the lemma in case E = L is a line bundle. Assume σ ∈
H 0(F ′, f ∗L ∗) is a non-zero section. Then c1(f

∗L )∩[F ′] = −[Z(σ)]; hence
∫
F ′
c1(f

∗L )dim F ′ ∩ [F ′] = −
∫
F ′
c1(f

∗L )dim F ′−1 ∩ [Z(σ)]

= −
∫
F

c1(L )dim F ′−1 ∩ f∗[Z(σ)]
≤ 0

by the projection formula and Nakai’s criterion for ampleness. But since f is
birational, f∗[F ′] = [F ] and dim F ′ = dim F , so again by Nakai’s criterion
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and the projection formula,∫
F ′
c1(f

∗L )dim F ′ ∩ [F ′] =
∫
F

c1(L )dim F ∩ [F ] > 0;

a contradiction. What we have done is basically to observe that since L is big
and nef and these notions are birationally invariant, the pull-back f ∗L is also
big and nef, hence the dual doesn’t have sections.

Now let E be an ample vector bundle of arbitrary rank on F . Suppose to
the contrary that 0 
= σ ∈ H 0(F ′, f ∗E∗) is a non-zero section. Then the map
f ∗E σ ∗−→ OF ′ is non-zero. Choose an ample line bundle L onF – for example,
the determinant of E will do. Pick n ∈ N so L ∗ ⊗ Symn E is generated by its
global sections. Then also f ∗L ∗ ⊗ Symn f ∗E is globally generated. Hence
there is a surjection

(∗) O⊕l
F ′ −→ f ∗L ∗ ⊗ Symn f ∗E −→ 0.

Since the map f ∗E σ ∗−→ OF ′ is non-zero, also the symmetric power map
Symn f ∗E Symn σ ∗−−−−−→ OF ′ is non-zero. Tensoring with f ∗L ∗ we see that the
map

f ∗L ∗ ⊗ Symn f ∗E 1⊗Symn σ ∗−−−−−−→ f ∗L ∗

is non zero. Comparing with (∗), we conclude that the composition

O⊕l
F ′ −→ f ∗L ∗ ⊗ Symn f ∗E −→ f ∗L ∗

is non-zero. But this means thatH 0(F ′, f ∗L ∗) 
= 0, in contradiction with the
first part of the proof. This concludes the proof of Lemma 3.

Remark 2. The conclusion of the lemma holds under the weaker assump-
tion that dim F = dim F ′ and f is any dominant (=surjective) map, not nec-
cesarily birational. All we have to do in the proof of Lemma 3 is to change
the equality f∗[F ′] = [F ] to f∗[F ′] = d[F ] where d > 0 is some positive
integer. Then the exact same proof applies.

3. Degeneracy loci

Let X be an algebraic scheme and E,F vector bundles on X of ranks e, f
respectively. Suppose φ : E→ F is a map. The k’th degeneracy locus of φ is
the set

Xk(φ) := {x ∈ X | rank φ(x) ≤ k}.
This is a closed subscheme of X, given locally by the vanishing of the k + 1-
minors of φ. To analyze the degeneracy loci Xk(φ) we use the following
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construction. Put k′ = e − k and consider G := Gk′(E), the grassmanian
bundle of k′-planes in E with its natural projection map π : Gk′(E) −→ X.

On G we have the tautological exact sequence

0 −→ S −→ π∗E −→ Q −→ 0

where S ,Q are the tautological sub- and quotient bundles respectively. We
denote a point in G by (x,Hx); Hx is a k′-plane in the vector space E(x). The
fiber of S over the point (x,Hx) ∈ G is just the k′-plane Hx ⊂ E(x), and the
fiber of Q over (x,Hx) is E(x)/Hx . Consider the composition:

σ : S ↪→ π∗E π∗φ−−→ π∗F.

Then Z(σ) = {(x,Hx)|Hx ⊂ ker φ(x)}. So Z(σ) maps onto Xk(φ) by π ,
because the map φ(x) : E(x)→ F(x) has rank ≤ k if and only if the kernel is
at least k′-dimensional, i.e. contains some k′-plane. The fiber of the restriction
π : Z(σ) −→ Xk(φ) over the point x ∈ Xk(φ) is just the grassmanian of
k′-planes contained in ker φ(x). If x ∈ Xk(φ) \Xk−1(φ), i.e. the rank of φ(x)
is exactly k, then dim ker φ(x) = k′ and π−1(x) = {ker φ(x)} is a point. In
other words, in case Xk(φ) \Xk−1(φ) 
= ∅, π is birational.

The idea of the grassmanian construction is to reduce questions on general
degeneracy loci to questions on zero-schemes of sections of vector bundles.
This is achieved by constructing the section σ ∈ 
(G,S ∗⊗π∗F)whose zero-
scheme maps onto Xk(φ) and in good cases even is birational to Xk(φ). Then
we would like to transport the information we have on E∗ ⊗F to information
on S ∗ ⊗ π∗F :

G ⊃ Z(σ)

↓π ↓
X ⊃ Xk(φ)

↓f ↓
Y ⊃ f (Xk(φ)).

In the setting of Theorem 1, we know that E∗ ⊗F is ample on the fibers of f .
So we would like to have S ∗ ⊗π∗F ample on the fibers of f ◦π , in particular
S ∗ ⊗π∗F would then have to be ample on the fibers of π . But on these fibers

S ∗ ⊗ π∗F |π−1(pt) =
f︷ ︸︸ ︷

S ∗|π−1(pt) ⊕S ∗|π−1(pt) ⊕ . . .⊕S ∗|π−1(pt)

so we are really asking for the ampleness ofS ∗|π−1(pt). However,π−1(pt) is just
the ususal grassmanian G = Gk′(E(pt)) of k′-planes in the vector space E(pt)
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and S ∗|π−1(pt) is just the dual of the tautological subbundle on G. Unfortunately
this bundle is almost never ample, as the following proposition (which surely
belongs to folklore) shows.

Proposition 4. LetV be a finite dimensional vector space and G := Gk(V )

the grassmanian of k-planes inV . LetS be the tautological subbundle of G×V .
Then S ∗ is ample⇔ k = 1.

Proof. If k = 1, G = P(V ) and S ∗ = O(1) is ample.
If k > 1, pick a k − 1-dimensional subspace W ⊂ V and put

P := {H ∈ G|H ⊃ W } ∼= P(V/W).

Then P = Pn−k is a projective space (here n = dim V ). For x ∈ P, denote by
lx the line in V/W corresponding to x. Then it is clear that S |P(x) = lx ⊕W,
hence S |P = OP(−1)⊕O⊕k−1

P . So S ∗|P = OP(1)⊕O⊕k−1
P which isn’t ample

for k > 1.

However, the key to prove Theorem 1 turns out to be the fact that the dual
of a certain vector bundle does not have any non-zero global sections, and for
ample vector bundles this property is preserved under birational maps (Lemma
3) even though the property of amplitude itself is not preserved.

Suppose now that the bundleE∗⊗F is globally generated, on the algebraic
variety X. Let V ⊂ 
(X,E∗ ⊗ F) be a finite dimensional vector space of
sections that generate E∗ ⊗ F . Consider the projection:

X × V
↓p1

X.

There is a tautological map τ : p∗1E→ p∗1F defined by

τ(x, φ) : p∗1E(x, φ) −−−→ p∗1F(x, φ)

E(x)
φ(x)−−−→ F(x).

Alternatively, let τt be the tautological section ofp∗1(OX⊗V ) onX×V ; then τ
is just the image of τt under the (surjective) map p∗1(OX⊗V )→ p∗1(E∗ ⊗F).
Denote by Dk(τ) the k’th degeneracy locus of τ . Then by definition Dk(τ) =
{(x, φ) | rank φ(x) ≤ k} = {(x, φ) | x ∈ Xk(φ)}.

We can apply the grassmanian construction described earlier to the map
τ : p∗1E → p∗1F on the scheme X × V . Hence we consider the grassmanian
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G = Gk′(p
∗
1E) with its projection map π to X × V . We have the tautological

exact sequence on G:

0 −→ S −→ π∗p∗1E −→ Q −→ 0,

and the section σ ∈ 
(G,S ∗ ⊗ π∗p∗1F) defined as the composition

σ : S ↪→ π∗p∗1E
π∗τ−−→ π∗p∗1F.

The crucial point is:

Proposition 5. σ is a regular section of S ∗ ⊗ π∗p∗1F and Z(σ) is an
irreducible variety, of dimension dimX + dim V − (e − k)(f − k).
Proof. To prove the proposition we use another description of σ and then

employ a general result (Lemma 6) on locally free sheaves and their associated
vector bundles. First note that Gk′(p

∗
1E) identifies with Gk′(E)× V and that

we have a commutative square

Gk′(E)× V q1−−−→ Gk′(E)

↓ ↓
X × V −−−→ X,

where q1 is the projection on the first factor. We denote the natural map
Gk′(E) → X by π ′. Let S ′,Q′ denote the tautological sub- and quotient
bundles on Gk′(E); under q1 these bundles pull back to S and Q. On X we
have the exact sequence

OX ⊗ V −→ E∗ ⊗ F −→ 0,

hence on Gk′(E) the following exact diagram

OGk′ (E) ⊗ V −−→ π ′∗(E∗ ⊗ F) −−→ 0

↓
S ′∗ ⊗ π ′∗F

↓
0.

Denote the kernel of the composition by K :

0 −→ K −→ OGk′ (E) ⊗ V −→ S ′∗ ⊗ π ′∗F −→ 0.

Then K is a locally free sheaf of rank dim V−(e−k)f onGk′(E). Viewing G as
Gk′(E)×V amounts to considering it as the total space of the locally free sheaf
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OGk′ (E)⊗V onGk′(E), and the tautological section σt ∈ 
(G, q∗1 (OGk′ (E)⊗V ))
is simply the pull-back viaπ of the tautological section τt ∈ 
(X×V, p∗1(OX⊗
V )). Now σ is defined as the image of π∗τ in 
(G,S ∗ ⊗ π∗p∗1F), hence as
the image of π∗τt ∈ 
(G, π∗p∗1(OX ⊗ V )) in 
(G,S ∗ ⊗ π∗p∗1F) via the
composition π∗p∗1(OX ⊗ V ) → π∗p∗1(E∗ ⊗ F) → S ∗ ⊗ π∗p∗1F . Viewing
π∗τt = σt as a section of π∗p∗1(OX ⊗ V ) = q∗1 (OGk′ (E) ⊗ V ) and noting
S ∗⊗π∗p∗1F = q∗1 (S ′∗ ⊗π ′∗F), this means that σ is the image of σt under the
map q∗1 (OGk′ (E) ⊗ V )→ q∗1 (S ′∗ ⊗ π ′∗F). Now the total space Spec Sym K ∗
of K is a subscheme of Spec Sym(OGk′ (E) ⊗ V ) = G. The proposition will
certainly follow if we show that Spec SymK ∗ = Z(σ), because any closed
embedding of an affine space bundle in another is always regular, and the
dimension of Spec Sym K ∗ is dimGk′(E)+ rank K = dimX + (e− k)k +
dim V − (e− k)f = dimX+dim V − (e− k)(f − k). Now Spec Sym K ∗ =
Z(σ) follows from the next general observation, suggested by Anders Thorup:

Lemma 6. Let T be a scheme and

0 −→ H ′′ −→ H −→ H ′ −→ 0

an exact sequence of locally free sheaves on T . Let H = Spec Sym H ∗ be
the total space associated to H and p : H → T the projection map. Let
σt ∈ 
(H, p∗H ) be the tautological section of p∗H and σ ∈ 
(H, p∗H ′)
its image global section. Then as schemes,

Z(σ) = Spec Sym H ′′∗.

Proof. We show that the corresponding functor of points are equal, see
[10, Prop. 1, Chap. II.6]. Hence let Q be a scheme. We must show that

Hom(Q,Z(σ)) = Hom(Q,Spec Sym H ′′∗).

Now by the universal property ofZ(σ), to give a morphism fromQ toZ(σ) is
the same thing as giving a morphism f : Q→ H such that f ∗σ = 0. But to
give a morphism f : Q→ H is equivalent to give a map g = p ◦f : Q→ T

+ a section of g∗H (namely f ∗σt ). Hence we see that

Hom(Q,Z(σ)) = morphisms g : Q→ T + a section s of g∗H
such that the image of s is 0 in 
(Q, g∗H ′).

But the kernel of the map 
(Q, g∗H ) → 
(Q, g∗H ′) is 
(Q, g∗H ′′).
Hence

Hom(Q,Z(σ)) = morphisms g : Q→ T + a section of g∗H ′′

= Hom(Q,Spec Sym H ′′∗).
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This proves Lemma 6.

The fact that σ is a regular section is important for the following reason.
Suppose T is any scheme and H is any locally free sheaf on T , of rank r . Let
σ ∈ 
(T ,H ) be a section. Then there is a Koszul resolution corresponding
to σ :

(∗) 0 → ∧rH ∗ → ∧r−1H ∗ → · · · → H ∗ → I → 0

where I is the ideal sheaf of Z(σ). Now σ is a regular section of H if and
only if this resolution is exact. By restricting toZ(σ) one sees that in this case,
H ∗|Z(σ) ∼= I /I 2, hence that the normal sheaf NZ(σ)/T = H |Z(σ) is locally
free, of rank r .

4. Degeneracy loci and amplitude

In this section we prove

Theorem 7. SupposeX is a complex algebraic variety andE,F are vector
bundles on X. Let f : X → Y be a proper surjective map to another variety
Y , and suppose E∗ ⊗ F is ample rel f . Suppose furthermore that E∗ ⊗ F is
globally generated.

Let φ : E→ F be any vector bundle map. Then

(1) If tk ≤ dim Y , then for any irreducible component Z ⊂ f (Xk(φ)) we
have dimZ ≥ tk .

(2) If tk > dim Y , then f (Xk(φ)) = Y .

(3) Furthermore, if mk ≤ dim Y , then tk ≤ dim Y . If mk = dim Y , then
f (Xk(φ)) = Y .

To motivate the proof, let’s sketch the idea in the simplest case where
E = OX and k = 0. Then degeneracy loci of morphisms φ : OX → F are just
zero sets of sections φ ∈ 
(X,F ). Suppose φ ∈ 
(X,F ) is a regular section
so that in particular the dimension of Z(φ) is the expected dimX − rank F .
Then t0 = dimX− rank F and the real problem is to prove statement (1), i.e.
that if dimX − rank F ≤ dim Y then Z(φ) doesn’t drop dimension under f .
Suppose to the contrary that dim f (Z(φ)) < dimZ(φ). Then restricting the
map of normal sheaves NZ(φ)/X → f ∗Nf (Z(φ))/Y to a positive dimensional
fiber one gets a map to a trivial bundle. Since φ is regular, NZ(φ)/X = F |Z(φ),
so the map must be zero since F is ample on the fibers of f . On the other
hand, if p ∈ Z(φ) is chosen suitably the tangent map TX(p) → TY (f (p))

is surjective and also TY (f (p))→ Nf (Z(φ))/Y (f (p)) is surjective. Hence the
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composition TX(p)→ Nf (Z(φ))/Y (f (p)) is surjective. But in the diagram

TX(p) −−→ NZ(φ)/X(p)

↓ ↓
TY (f (p)) −−→Nf (Z(φ))/Y (f (p)).

the vertical right hand map is zero, which is a contradiction.
This idea of proof uses that φ is a regular section of F . In general it is not

clear whether F has any regular sections at all! But we can always construct
the regular section σ as in Prop. 5, and it is in this setting the above idea will
be applied.

Proof. Let φ : E → F be any map and pick a finite dimensional vector
space V ⊂ 
(X,E∗ ⊗ F) that generates E∗ ⊗ F and such that φ ∈ V .

We can consider the tautological map τ : p∗1E → p∗1F on X × V as
described on the half page before Proposition 5. Recall that τ is defined as

τ(x, φ) : p∗1E(x, φ) −−−→ p∗1F(x, φ)

E(x)
φ(x)−−−→ F(x).

The degeneracy locus Dk(τ) is given by Dk(τ) = {(x, φ) | x ∈ Xk(φ)}.
Consider the diagram

X × V f×1−−−−−→ Y × V
�↙p1 ❅↘p2

X V.

Then f × 1 is a proper surjective map, and p∗1(E∗ ⊗F) is ample on the fibers
of f ×1. Put W := p2(Dk(τ )) ⊂ V (i.e. W is the Zariski closure of the image
ofDk(τ) by p2) and let p2 : Dk(τ)→ W denote the restriction. Then the fiber
p2
−1(ψ) ∼= Xk(ψ) so the generic fiber dimension is equal to tk by definition

of tk and semi-continuity of fiber dimension. Hence

tk = dimDk(τ)− dim W = mk + dim V − dim W

where as usual mk = dimX − (e − k)(f − k). Consider

f × 1(Dk(τ )) = {(y, φ) | y ∈ f (Xk(φ))}.
Then by the propernes of f×1 and irreducibility ofDk(τ), this set is closed and
irreducible inY×V . If alsop2 denotes the projection ofY×V toV , then clearly
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p2(f × 1(Dk(τ ))) = p2(Dk(τ )) = W and the map p2 : f × 1(Dk(τ ))→ W
is dominating. For ψ ∈ W with Xk(ψ) 
= ∅ then

dim f (Xk(ψ)) = dim p2
−1(ψ) ≥ dim f × 1(Dk(τ ))− dim W .

I claim that

mk ≤ dim Y ⇒ dimDk(τ) = dim f × 1(Dk(τ ))(A)

mk > dim Y ⇒ f × 1(Dk(τ )) = Y × V.(B)

Let’s see that the claim implies the theorem. Suppose tk ≤ dim Y ; then also
mk ≤ dim Y . If Xk(φ) 
= ∅ then by the above

dim f (Xk(φ)) ≥ dim f × 1(Dk(τ ))− dim W

= dimDk(τ)− dim W

= tk.
Sincef (Xk(φ)) is realized as a fiber of a certain dominating map, the inequality
holds also for any irreducible component of f (Xk(φ)), by [10, I.8]. Hence part
(1) of the theorem.

On the other hand suppose that tk > dim Y . Now ifmk ≤ dim Y then since
Xk(0) = X is certainly non-empty, dim Y = dim f (Xk(0)) ≥ tk as before, a
contradiction. Hence we must have mk > Y , so f × 1(Dk(τ )) = Y × V . But
then for any φ ∈ V ,

f (Xk(φ)) = p−1
2 (φ) = Y,

which is (2). Finally, (3) follows from the above and (A). So it remains to
prove the claim. We first prove (B) which is easy: if mk > dim Y then
dimX − dim Y > (e − k)(f − k). Let p ∈ Y × V be any point and con-
sider the fiber (f × 1)−1p over p. (f × 1)−1p is projective, of dimension
≥ dimX− dim Y > (e− k)(f − k). But by assumption p∗1(E∗ ⊗F) is ample
on (f × 1)−1p, so the restriction of τ must drop rank according to the theorem
of Fulton and Lazarsfeld [4, Th. 1.1]. That is,Dk(τ)∩ (f × 1)−1p 
= ∅. Since
p was arbitrary, we conclude that f × 1(Dk(τ )) = Y × V .

To prove (A), let k′ = e − k and consider the Grassmanian π : G :=
Gk′(p

∗
1E)→ X × V with its tautological exact sequence

0 −→ S −→ π∗p∗1E −→ Q −→ 0.

Denote by σ the composition S ↪→ π∗p∗1E
π∗τ−−→ π∗p∗1F. Then by Propos-

ition 5, σ is a regular section of S ∗ ⊗ π∗p∗1F , and Z(σ) is an irreducible
variety. By construction Z(σ) surjects onto Dk(τ). In fact, most concretely,

Z(σ) = {(x, φ,H) | H ⊂ ker φ(x)},
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and the map toDk(τ) is just (x, φ,H) !→ (x, φ). In this case the surjection is in
fact birational, for the following reason. We need to find a point (x, φ) ∈ X×V
such that rank τ(x, φ) is precisely equal to k, that is, rank φ(x) = k. But the
map V −→ (E∗ ⊗ F)(x) −→ 0 is surjective so we just take any φ ∈ V

mapping to a matrix of rank k.
Now we need to collect some open sets in Dk(τ). First, since Z(σ) →

Dk(τ) is birational, there are open sets U ′1 ⊂ Z(σ) and U1 ⊂ Dk(τ) with
U ′1 ∼= U1. Next let Ysm ⊂ Y , Xsm ⊂ X be the open set of smooth points on Y
and X and consider the map

Xsm ∩ f −1(Ysm) −→ Ysm.

Since the map is dominant, by generic smoothness [8, III.10] there is an open
set U2 ⊂ Xsm so the tangent map

Tf : Tx −→ Tf (x)

is surjective for all x ∈ U2 and f (x) is smooth on Y . Notice that (u, 0) ∈
U2 × V ∩ Dk(τ) for any u ∈ U2 so U2 × V ∩ Dk(τ) 
= ∅. Finally, there is
of course an open set U3 ⊂ Dk(τ) such that for all x ∈ U3, the image point
f × 1(x) is smooth on f × 1(Dk(τ )).

Now since Dk(τ) is irreducible, the open set

U := U1 ∩ U2 × V ∩ U3 ⊂ Dk(τ)

is non-empty. Denote by U ′ the corresponding open set of Z(σ). For any
point p ∈ U we then have: f × 1(p) is smooth on both Y × V and on
f × 1(Dk(τ )); the tangent map Tf×1(p) has full rank and p lies in the open
set where Z(σ)→ Dk(τ) is an isomorphism.

Now assume, contrary to the claim, that dim f × 1(Dk(τ )) < dimDk(τ).
Look at the restriction

U ↪→ Dk(τ) −→ f × 1(Dk(τ )).

This is a dominating map between irreducible varieties so by our assumption on
the dimension of f × 1 (Dk(τ )) all non-empty fibers of the map are positive
dimensional. Pick a point p ∈ U and denote by W an irreducible positive
dimensional component of the fiber ofDk(τ)→ f ×1(Dk(τ )) over f ×1(p)
that intersects U . Then W is a complete variety, by the propernes of f × 1.
(ActuallyW is projective because there is an ample line bundle onW , namely
the determinant of p∗1(E∗ ⊗ F)|W ). Now the composition

h := f × 1 ◦ π : G −→ X × V −→ Y × V
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is proper, so we can pick a complete positive dimensional variety W ′ of Z(σ)
that intersects U ′ and maps birationally ontoW . Pick any g ∈ U ′ ∩W ′ and let
q = h(g). Consider the square:

TG(g) −−→ NZ(σ)/G(g)

↓ ↓
TY×V (q) −−→Nf×1(Dk(τ ))/Y×V (q).

Here N denotes normal sheaves of the varieties Z(σ) in G and f × 1(Dk(τ ))

in Y × V , respectively (the first is locally free by Prop. 5, and the second is
locally free around q by choice of q). Because the projection map π : G →
X × V is smooth, the tangent map TG(g) → TX×V (π(g)) is surjective. And
TX×V (π(g)) → TY×V (q) is surjective by the choice of U2. So the compos-
ition TG(g) → TY×V (q) is surjective. Also TY×V (q) → Nf×1(Dk(τ ))/Y×V (q)
is surjective because we chose g such that q is smooth both on Y and on
f × 1(Dk(τ )). Summing up, the composition

TG(g) −→ TY×V (q) −→ Nf×1(Dk(τ ))/Y×V (q)

is surjective. Since by assumtion f × 1(Dk(τ )) drops dimension, it can’t be
equal to Y × V , so Nf×1(Dk(τ ))/Y×V (q) 
= 0. Since the square commutes, to
obtain a contradiction it is therefore enough to show that the composition of
the other maps in the square is 0.

To this end I claim that in fact the map of vector spaces

NZ(σ)/G(g) −→ Nf×1(Dk(τ ))/Y×V (q)

is 0. NowW ′ ⊂ h−1(q) so by restricting h∗Nf×1(Dk(τ ))/Y×V toW ′ we obtain a
trivial vector bundle; sayh∗Nf×1(Dk(τ ))/Y×V |W ′ = O⊕l

W ′ where l = dim Y×V−
dim f×1(Dk(τ )) > 0. To prove that NZ(σ)/G(g)→ Nf×1(Dk(τ ))/Y×V (q) is 0, it
is clearly enough to prove that the map NZ(σ)/G|W ′ → h∗Nf×1(Dk(τ ))/Y×V |W ′ =
O⊕l
W ′ is 0. By Proposition 5, σ is a regular section of S ∗ ⊗ π∗p∗1F , hence

S ∗ ⊗ π∗p∗1F |Z(σ) = NZ(σ)/G.

Note that since the map π∗p∗1E∗ −→ S ∗ −→ 0 is surjective, also the
map π∗(p∗1E∗ ⊗ p∗1F) −→ S ∗ ⊗ π∗p∗1F is surjective so to show the map
NZ(σ)/G|W ′ → O⊕l

W ′ is 0 it will be enough to show that any map

π∗(p∗1E
∗ ⊗ p∗1F)|W ′ −→ O⊕l

W ′

is in fact 0. By assumption p∗1(E∗ ⊗ F)|W is an ample vector bundle and
π : W ′ → W is a birational morphism of complete varieties so this fact
follows from Lemma 3. This concludes the proof of Theorem 7.
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Remark 3. The proof of the theorem goes through in arbitrary characteristic
if in addition to the hypothesis of Theorem 7 one assumes that the map f is
generically smooth.

Corollary 8. Suppose X is a projective variety (over a field of arbitrary
characteristic) and F an ample, globally generated vector bundle on X of
rank F ≥ dimX. Then there is a section σ ∈ 
(X,F ) such that Z(σ) is a
finite non-empty set of points.

Proof. The structure map X → Spec K (where K is the ground field) is
generically smooth so by Remark 3, Theorem 7 applies with Y = Spec K ,
E = OX and k = 0. By Theorem 7 (3) we have m0 ≤ 0 ⇒ t0 ≤ 0. Now
m0 = dimX − rank F , and t0 ≤ 0 means precisely that there exist a section
as stated.

Sub-corollary 9 ([2]). Suppose X is a projective variety of dimension n
and F an ample, globally generated vector bundle on X, of rank greater than
or equal to n. Then cn(F ) > 0.

Proof. If rank F = n, pick a section σ ∈ 
(X,F ) which vanishes at
finitely many points. Then cn(F ) is represented by a positive cycle with support
on Z(σ) [3, Prop. 14.1]. If rank F > n, pick a trivial line subbundle OX of F
and let Q be the quotient of F by OX. Then cn(Q) = cn(F ) and Q is globally
generated and ample, so induction finishes the proof.

In fact, in the next section we will see how the ideas of the proof of Theorem
7 give an explicit formula for cn(F ). For the rest of this section we will give
some examples to illustrate Theorem 7.

Example 3. Referring back to Example 2 in §1, let A1 × pt be a section
of p∗2O(1). Then p1(A1 × pt) = A1 doesn’t drop dimension, as predicted by
Theorem 7. But p2(A1×pt) = pt drops dimension. In the latter case, however,
p2 is not a proper morphism (in fact it is affine).

In Example 1, the exceptional divisor E is a section of the bundle OX(E)

that drops dimension under the projection map π (E is mapped to a point).
But as we saw, OX(E) isn’t ample relπ .

Example 4. Theorem 7 is optimal, in the following sense. It says that the
generic degeneracy locus doesn’t drop dimension, so one could ask if in fact
noXk(φ) drops dimension. However this is not true. For example, in Example
2, let x be the coordinate on A1 and (s : t) coordinates on P1 and consider the
section

σ = (sx, tx) ∈ 
(A1 × P1, p∗2O(1)⊕ p∗2O(1)).

Then Z(σ) = {0} × P1 so dimZ(σ) = 1. On the other hand, p1(Z(σ )) = {0}
has dimension 0.
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Example 5. Theorem 7 fails without the globally generated hypothesis.
Let C be a non-hyperelliptic curve of genus g > 2. Pick two different points
P,Q on C and consider the divisor D := 2P − Q. Let L = O(D). Then
H 0(C,L ) = 0 because C is non-hyperelliptic. And L is ample because its
degree is 1 > 0. I claim there is a rank 2 vector bundleF onC and a non-trivial
extension

(∗) 0 −→ OC −→ F −→ L −→ 0.

Now Ext1(L ,OC) ∼= H 1(C,L ∗) and this group can be calculated from
Riemann-Roch:

h0(C,L ∗)− h1(C,L ∗) = −1+ 1− g = −g.
Since L is ample, h0(C,L ∗) = 0, so this reads h1(C,L ∗) = g > 0. So we
can pick a non-trivial extension (∗) corresponding to a non-zero element of
Ext1(L ,OC). According to Gieseker’s theorem 2.2 [5] F is an ample vector
bundle. F has a trivial subbundle by (∗) and hence a nowhere vanishing section
1. But H 0(C, F ) = C · 1 by the long exact sequence of cohomology coming
from (∗), since L has no sections. Hence the only global section of F that
does vanish somewhere is the zero-section, which vanishes everywhere. So the
number t0 = dimC = 1 in this case. Consider the projection f : C → Spec C
of the curve to the ground field. If Theorem 7 (2) was true without the globally
generated hypothesis, then for any section σ ∈ 
(C, F ), f (Z(σ)) = Spec C;
in other words every section of F should vanish somewhere. But as we have
seen, F has a nowhere vanishing section, so this is a contradiction. In this case,
m0 = −1 ≤ 0 = dim Y < t0 so statement (3) also fails.

This example proves that the second and third statement of Theorem 7 do not
hold if one omits the globally generated hypothesis. Modifying the example
a bit, it also gives a counterexample to the first statement, for a non-globally
generated bundle. Namely, consider the variety C× A1 with its two projection
maps

C × A1

�↙p1 ❅↘p2

C A1.

The bundle p∗1(F ) is ample relp2. If x denotes the coordinate on A1 then
H 0(C × A1, p∗1(F )) = H 0(C, F )⊕ x ·H 0(C, F )⊕ x2 ·H 0(C, F )⊕ . . .. But
sinceH 0(C, F ) = C ·1, this can be identified with C[x]. Hence if σ = P(x) ∈
H 0(C× A1, p∗1(F )) is a section, and x1, x2, . . . , xn denotes the roots of P(x),
then Z(σ) = C × {x1} ∪ C × {x2} ∪ . . . ∪ C × {xn}. Therefore, all sections
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that do vanish somewhere vanish in dimension 1, so t0 = 1. Also note that
p2(Z(σ )) = {x1, x2, . . . , xn} is a finite set of points.

Now consider the proper surjective mapp2 : C×A1 → A1. If Theorem 7 (1)
was correct without the globally generated hypothesis then dim p2(Z(σ )) ≥ 1
for any section σ ∈ H 0(C× A1, p∗1(F )). But p2(Z(σ )) is a finite set of points
for all non-zero σ , which is a contradiction.

5. Globally generated bundles of high rank

Let X be any projective variety (over an algebraically closed field of arbitrary
characteristic) andE a globally generated vector bundle onX. Let n = dimX

and e = rankE. Our purpose is to show how some of the ideas that prove
Theorem 7 give an explicit formula for cn(E) in case E has a section that
vanishes on a finite set of points (for instance when E is ample). We start with

Proposition10. SupposeE is a globally generated bundle on the projective
variety X of dimension n. Then

(1) cn(E) ≥ 0;

(2) cn(E) > 0 ⇐⇒ ∃σ ∈ 
(X,E) : Z(σ) is a finite non-empty set of
points.

Proof. Let V = 
(X,E) be a finite dimensional space of sections that
generate E. Then there is an exact sequence

0 → K −→ OX ⊗ V −→ E→ 0.

ConsiderX×V with its two projections p1, p2 toX resp. V . The tautological
section σt ∈ 
(X × V, p∗1(OX ⊗ V )) maps to a section σ of p∗1(E) whose
zero-set is the incidence correspondance

Z(σ) = {(x, s) | s(x) = 0} ⊂ X × V.
Lemma 6 shows that Z(σ) can be considered as an affine space bundle over
X, in fact

Z(σ) = Spec Sym K ∗.

Note that the image of Z(σ) under p2 is the cone C := {s ∈ V | Z(s) 
=
∅} of sections with non-empty zero-scheme. We now projectivize the whole
situation. Thus we get a diagram

Proj Sym K ∗ = {(x, [s] | s(x) = 0} ⊂ X × PV

↓p2

PC = {[s] | Z(s) 
= ∅} ⊂ PV.
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We let PK = Proj Sym K ∗. There is a tautological line bundle OPK(1) on
PK; this is the restriction to PK of the line bundle OX×PV (1) = p∗2OPV (1). By
the definition of Segre classes [3, Chap. 3] we have

sn(K ) =
∫

PK
c1(OPK(1))

dim PK

=
∫
X×PV

c1(p
∗
2OPV (1))

dim PK ∩ [PK]

=
∫

PV
c1(OPV (1))

dim PK ∩ p2∗[PK];

where the last equality is the projection formula for the proper mapping p2.
But the defining exact sequence of K reveals that sn(K ) = cn(E), hence

cn(E) =
∫

PV
c1(OPV (1))

dim PK ∩ p2∗[PK]

which immediately proves (1). Also the formula reveals that cn(E) is non-
zero precisely when p2∗[PK] is non-zero, i.e. when dim PK = dim p2(PK).
Now p2(PK) = PC and the dimensions are the same precisely when the map
PK → PC has a fiber consisting of a finite non-empty set of points. But for
every [s] ∈ PC, the fiber over [s] identifies with the zero-scheme of s, which
proves (2).

Now suppose E has a section which vanishes at a finite set of points - or
equivalently, that cn(E) > 0. Then in the notation of the proof of Proposition
10, p2∗[PK] = degp2 · [PC], and the degree of p2 : PK → PC is just the
length of a generic fiber, i.e. the length of the subscheme Z(s) for a generic
s ∈ C. We call this number l. Then since∫

PV
c1(OPV (1))

dim PC ∩ [PC] = deg PC,

we get the formula alluded to in the introduction:

Formula 11. Suppose E is a globally generated bundle of rank e on the
projective variety X, of dimension n. Suppose E has a section that vanishes
at finitely many points (or equivalently that cn(E) > 0). Let C := {s ∈

(X,E) | Z(s) 
= ∅} be the cone of sections that vanish somewhere. Then
C is an irreducible subvariety of 
(X,E) and codim
(X,E) C = e − n. If l
denotes the length of the subscheme Z(s) for a generic section s in C then

cn(E) = l · degC.
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Example 6. The formula applies if for instanceE is globally generated and
ample, as follows from Corollary 8. In general, let E be a globally generated
vector bundle of rank e on the projective variety X. Let v = dim 
(X,E)

be the dimension of the space of global sections of E. Then E defines a map
g : X→ Gv−e(
(X,E)) to the grassmanian of v−e-planes in
(X,E). If the
rank ofE is at least equal to the dimension ofX, and there is a smooth point on
X where the tangent map of g is injective, then one can show much in the spirit
of [5, Lemma 1.1] that E has a section which vanishes at finitely many points.
At least in characteristic 0, this condition is weaker than ampleness, since if
E is ample g must neccesarily have finite fibers so by generic smoothness
there exists a smooth point on X where the tangent map of g : X → g(X) is
surjective, hence injective. Then Formula 11 applies to the top Chern class of
E.

Example 7. If E is “sufficiently positive” – for instance, if E(−1) is
globally generated for some very ample line bundle OX(1) (which in particular
implies that E is globally generated and ample) – and rankE > dimX, then
the number l in Formula 11 is 1. To see this one simply counts the number of
sections of E that vanish at a point x ∈ X, and then the number of sections
that vanish at x and at another point of X, using that since E is a quotient of a
direct sum of very ample line bundles, the evaluation map


(X,E)→ 
(E ⊗ OZ)

is surjective for any length 2 subscheme Z of X.

Example 8. For an arbitrary ample, globally generated bundle l might be
bigger than 1. In fact, l might take any positive integer as value. To see this,
note that for g = 2d − 2, and r = 1, the Brill-Noether number ρ(g, r, d) :=
g − (r + 1)(g + r − d) is zero, and takes the value -2 if d is substituted by
d − 1. By the theorems of Kempf, Kleiman-Laksov (see e.g. [4]) and Griffith-
Harris [6], it follows that every curve of genus 2d − 2 has a linear system of
degree d and dimension 1 (a g1

d ) but the general curve of this genus has no
g1
d−1. LettingX be a general curve of genus 2d − 2, the linear system g1

d must
then neccesarily be base-point free, hence the corresponding line bundle Ld is
globally generated (and ample since deg Ld = d > 0). Let Ed := Ld ⊕Ld ,
then Ed is an ample and globally generated bundle on X. By construction, X
has no g1

d−1, so if two divisors in g1
d have a point in common, they must be

equal. This means that for Ed , the number l is equal to d, and d can be any
positive integer. In this case c1(Ed) = 2d, so Formula 11 reads 2d = d · 2.
Hence the cone C is a quadric hypersurface in the space of global sections of
E.
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We suppose now that E is any bundle on a projective varietyX such that E
satisfies the conditions in Formula 11. If rankE = dimX := n, then cn(E) = l
so by Formula 11 we see that degC = 1 and codimC = 0, i.e. C = 
(X,E)
so all sections ofEmust vanish. If rankE > dimX then degC = 1 means that
C is linear, hence has a complement C ′ inside 
(X,E) so 
(X,E) = C⊕C ′.
But then the defining sequence of E becomes

0 → K −→ OX ⊗ (C ⊕ C ′) −→ E→ 0,

and it is clear that K is contained in the summand OX ⊗ C. Hence E ∼=
(OX ⊗ C)/K ⊕

OX ⊗ C ′ so in particular E has a trivial direct summand. If
we let E′ = (OX ⊗ C)/K and E′′ = OX ⊗ C ′ so that E ∼= E′ ⊕ E′′, then E′
has rank n = dimX, and we have a good knowledge of E: it is a direct sum of
a vector bundle E′ of rank dimX, for which all sections vanish, with a trivial
bundle. The same argument shows that more generally, if one just assumes
C degenerate – i.e. contained in some linear space 
= 
(X,E) – then E has
a trivial direct summand. But if for instance E is ample, it cannot contain a
trivial direct summand. We mention two applications of this idea:

Corollary 12. Let E be a globally generated, ample vector bundle on a
projective varietyX such that rankE > dimX := n. Then if cn(E) is a prime
number, E has a section which vanishes at exactly one point.

Corollary 13 (due to L. Manivel). Let E be a globally generated, ample
vector bundle of rank e on a projective varietyX of dimension n. Then cn(E) ≥
e − n+ 1.

Proofs. Corollary 12 follows from Corollary 8 and Formula 11 in view
of the fact that degC > 1 since E is ample. As for Corollary 13 we may of
course assume that e ≥ n. Then by Corollary 8E has a section which vanishes
at finitely many points, so Formula 11 applies to show that cn(E) ≥ degC =
deg PC. Since E is ample, PC is non-degenerate, so the degree of PC is at
least equal to its codimension +1 [9, Cor. 18.12], which again by Formula 11
is e − n+ 1.

The conjecture of Ballico [1] states that the inequality in Corollary 13 can
be improved to cn(E) ≥

(
e

n

)
. For curves, this gives the lower bound e, coincid-

ing with the bound found in Corollary 13, but for higher dimensional varieties
Ballico’s conjectural bound is of course much stronger than the bound in Co-
rollary 13. Ballico’s conjecture is known to be true if one imposes certain
further positivity conditions on the bundle - for instance, if one asks E(−1)
globally generated for some very ample line bundle O(1), Ballico’s inequality
follows readily from Proposition 10 and [3, Example 3.2.2] – but is unknown
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for a merely ample and globally generated bundle. In this respect, Corollary 13
apparently gives the first non-trivial bound valid for any ample, globally gen-
erated bundle on a projective variety of arbitrary dimension.
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