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TRANSFERRING ALGEBRA STRUCTURES UP TO
HOMOLOGY EQUIVALENCE

LEIF JOHANSSON and LARRY LAMBE

(This article is dedicated to Jim Stasheff on his 60th birthday)

Abstract

Given a strong deformation retract M of an algebra A, there are several apparently distinct ways
([91, [19], [13], [24], [15], [18], [17]) of constructing a coderivation on the tensor coalgebra of M
in such a way that the resulting complex is quasi isomorphic to the classical (differential tor) [7] bar
construction of A. We show that these methods are equivalent and are determined combinatorially
by an inductive formula first given in a very special setting in [16]. Applications to de Rham theory
and Massey products are given.

1. Preliminaries and Notation

Throughout this paper, R will denote a commutative ring with unit. The term
(co)module is used to mean a differential graded (co)module over R and maps
between modules are graded maps. When we write ® we mean ®g. The usual
(Koszul) sign conventions are assumed. The degree of a homogeneous element
m of some module is denoted by |m|. Algebras are assumed to be connected
and coalgebras simply connected. (Co)algebras are assumed to have (co)units.
(Co)algebras are, unless otherwise stated, assumed to be (co)augmented. The
differential in an (co)algebra is a graded (co)derivation.

The R-module of maps from M to N (for R-modules M and N) is de-
noted by hom(M, N) (if the context requires it, we will use a subscript to
denote the ground ring). The differential in this module is given by D(f) =
df — (=11 fd. Note that D is a derivation with respect to the composition
operation whenever it is defined. In particular, End(M) = hom(M, M) is an
algebra.

If A is an algebra and C is a coalgebra, the module hom(C, A) is an algebra
with respect to the operation defined by the following diagram

c_fYs 4
(1) Al Tm
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This productis called the cup or convolution product. The unit of this algebra
is given by o€, the composition of the counits of C and A.

Maps t € hom(C, A) which satisfy D(t) = tU7t,et = 0and tnp = 0,
where € is the augmentation and 7 is the coaugmentation, are called twisting
cochains. Any twisting cochain factors through the universal twisting cochain
defined as the map &= € hom(B(A), A) sending homogeneous elements of
tensor degree 1 to their desuspension and other elements to 0. This map is
a twisting cochain, and given another twisting cochain T € hom(C, A), the
following diagram commutes:

T A

B(A)
(2) c(t)

C

Here c(7) is the unique coalgebra map induced by t.
Given a twisting cochain 7 : C —— A, the cap product t N - is defined by
the following diagram:

C®A tn- CoA

3) A®1 l®m

| |
ColoA—2"% coama

By a classical result of E. Brown, [5] T is a twisting cochain if and only if
de ®1+1®ds + T N-is adifferential on C ® A, which together with this
differential is denoted C ®, A and is referred to as the twisted tensor product
(along 7).

Given two modules M and A, M is called a strong deformation retract
(SDR) of A if and only if there are maps as in the following diagram:

\Y%

f

Here ¢ : A —— Ais ahomotopy: 1 — Vf = d¢ — ¢d between V f and the
identity on A. Finally fV = 1. Without loss of generality (as demonstrated in
[20]) one may assume in addition that the following relations (called the side
conditions) hold:

&) ¢ =0, ¢V=0, f¢o=0.

4) M (A, ¢).
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For a given module M we let T (M) denote ) ®" (s M), where M denotes
the submodule of elements in positive degrees, and s denotes suspension. We
let T¢(M) denote T (M) with the standard coproduct given by

A(my,...om) =Y [my, . mi] @ [migy,...omy].

We will deonte the submodule of 7¢(M) tensor-degree n by 7,7 (M).

2. A Review of Past Results

Given a quasi isomorphism M —— A, where A is an algebra it is natural
to try to associate to it some construction on M which is quasi isomorphic
to B(A). Specifically one seeks a coalgebra differential 8 on T¢(M) and a
twisting cochain

(6) T¢(M)—— A,

such that ¢(7) is a quasi isomorphism. It is common practice to call the tensor
coalgebra T¢(M) along with a coderivation 9 an A.-structure (on M) [17],
[15].

When one has an SDR, as in (4) with A an algebra, this problem has a long
history. It was first solved in a special case, viz. when the differential in M is
zero (so that M = H(A)) and the characteristic of the ground ring is zero by
K. T. Chen in [8] and [9] using “iterated integrals”. The special case of zero
differential in M was also done by T. V. Kadeishvili in [19] and independently
of this by V. Smirnov in [24].

Again in the special case where the differential of M is trivial, Gugenheim
[13] gave an inductive construction of a twisting cochain t and a coderivation
d also solving the problem by abstracting the algebraic content of Chen’s work.
This gave a purely algebraic method of achieving Chen’s original result which
was not restricted to characteristic zero. We call this the obstruction method.

The general problem (no restriction on the differential of M) was solved in
[15] using what is called the tensor trick and [17] using a generalization of the
obstruction method.

The method of [15], first occurred in the literature in [14] for a special class.
It was independently discovered and used in [18] to obtain A-structures.

Seemingly unrelated at first, Gugenheim and Munkholm [16] gave an in-
ductive formula for lifting cochains when both objects in the general problem
are (co)algebras and one of the maps is a (co)algebra map. In this case, we
have an SDR (4) with A an algebra, M an algebra, f an algebra map, and

C—1+Ma twisting cochain. The Gugenheim-Munkholm formula gives a
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way to “lift” n to a twisting cochain C —1~ A. All of this will be explained
below.

In particular, one can lift the universal twisting cochain (6) in the special
case using the Gugenheim-Munkholm formula, but the tensor trick and the
obstruction method also give ways to lift the universal twisting cochain in this
case.

Thus one has three a priori distinct methods for defining the lift 7. The
purpose of the paper of Gugenheim and Lambe [14] was to show that these three
methods are essentially the same in this special setting (i.e. f multiplicative) —
they each give the same T. The purpose of this paper is to generalize this result to
the case where the differential on M is not necessairly zero. This is interesting
since the proof the validity of the method in [16] required multiplicativity of f.

In the course of our work, we will show that the methods used in [15]
and [17] to construct solutions to the problem above, are equivalent, yielding
the same A -structure and twisting cochain. Not only that, it will be shown
that the same inductive formula given in [16] to lift twisting cochains works
in the more general setting (of homotopy twisting cochains). Thus we have
found a complete generalization of [14] to the setting of [15]. We will begin by
reviewing the methods used in [15] and [17] and then review and generalize
the formula of [16].

2.1. The Obstruction Method

Gugenheim and Stasheff in [17] extended the results of Chen, Kadeishvili,
Smirnov and Gugenheim to the case where the differential in M is possibly
non-zero by using a non-standard filtration of 7°(M) to prove convergence of
inductive formulas for T and 9. The details of this construction are summarized
conviently in [14] and we refer the reader to this paper and the original for
detrails. We give equivalent formulas in section 4.2 for the construction of
7 and 9. The differential constructed this way is the one denoted by 9, in
theorem 4.1. Finally, we note that these ideas are also relavent to the work
in [1].

2.2. The Tensor Trick

We will begin by introducing a notation which will be used throughout this
paper. Foramap f : T(X)— > X let w(f) : T°(X)— > T°(X) be the
unique coextension of f as a coderivation, such that m;w(f) = sf where m;
is the projection to X and s as usual is the suspension.

This method for constructing T and 9 uses the perturbation lemma [6], [11],
[2] in the following way. First one applies the free tensor coalgebra functor
T°(-) to (4). T°(V) and T¢(f) are the obvious maps and T°(¢) on n tensors
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is given by

TSP =(p®1®---®1) +---
+(Vf® - @VfRIRIQ--- DN+ +(Vf® - QVf ).

We will often write ¢® = T(¢) and similarly V® = T¢(V), etc. Note that ¢
is uniquely determined by the fact that it is a skew-derivation, i.e.

(7) APp® = (p®° @1+ VI RP®A.

This follows from the commutativity of the diagram

T(A) T°(A) @ T (A)

() Pa+b Pa @ Db

)\a,b

TE(A) ® TS (A) T, ,(A)

using an argument similar to thatin §2 of [14]. Here p; is the obvious projection
and X, , the obvious natural isomorphism.
Now on the resulting SDR

v®

f®
one considers the transference problem given by changing the differential on
T¢(A) by the unique coderivation 3¢ determined by s (r U7 ) (which is exactly

the “algebra” part of the bar construction differential). The perturbation lemma
yields the desired result, viz., a limit SDR

9) T°(M) (T(A), %)

V& _
(10) (T(M), 9) ((B(A),d), $3)
f®
where 9 is the ordinary “differential-Tor” bar construction differential,
(1D doo = 0(=d) + fE(t1 + -+ +1, +-- )V,
(12) VE =V 4%+ 41, +-- )V,
(13) fR=fC+ O+t )9%,

(14) ¢ =%+ %+ ta+ )97,
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where t = 392, and t, = (t¢®)""'t, for n > 1. Note the use of w(—d) above,
which is the same thing as the “tensor-differential” part of the bar-construction.
In the notation of theorem 4.1 o, = 0,; and 7 A(Vg) is the twisting cochain
in (6). While this is straightforward enough to do, it is not obvious that this
method actually produces a coderivation. That this is indeed the case was
shown in [15] and independently in [18].

REMARK 2.1. As an aside note that if ¢ is an algebra homotopy, i.e. if
¢ (ab) = apb + ¢anb then ¢(VaVb) = 0. In this case T = 7V is a twisting
cochain and the A.,-structure collapses to an algebra-structure on M.

2.3. The Gugenheim-Munkholm Formula

There is a formula for lifting (see the diagram below) twisting cochains across
an SDR, in the special case when both A and M are algebras and f is an
algebra map. Consider the universal twisting cochain 7 : B(M) —— M
(here 7 is defined as before by desuspending tensor degree 1 elements and
sending elements of higher degree to 0). Gugenheim and Munkholm gave an
inductive formula [16] for lifting 7 to a twisting cochain 7.

A

15)

M = B(M)
One should think of the operator “ as a function going from hom(B(M), M)
to hom(B(M), A). By the universal property (2) of 7, this gives a lift of any

twisting cochain C —— M to A (for a given coalgebra C).

ProprosITION 2.2 (Gugenheim-Munkholm Construction). Given an SDR
as in (4) with both A and M algebras and f an algebra map. Consider the

universal twisting cochain B(M) —~+ M, ie. the map which is zero on all
terms of tensor degree not equal to one and such that [sm] = m. Define 7,
by the following inductive formula:

9=0

ﬁ'l =Vn

Aa= Y G UR.

i+j=n

(16)
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Define 7, : B(M) — A on all of B(M) by taking it to be 0 outside of tensor
degree n. Let 7 = > 7,.

Throughout this paper, the Gugenheim-Munkholm construction above for
the map 77 will be referred to as either the GM construction or the GM formula.

It is shown in [16] that 77 is a twisting cochain (they actually prove the dual
theorem). The proof requires the multipliciativity of f.

3. The Generalized GM Construction

Now consider again the general case where we are given an SDR (4) with A
an algebra, but neither f nor V are assumed to be multiplicative. Consider the
diagram

(17) fl|Vv

M

T¢(M)

Even though there is no multiplicative assumption on M or on f, we can
construct (at least formally) a map 7 : T°(M) —— A by using (16). It is
natural to wonder what significance this has. To understand the answer, some
notation will be introduced.

3.1. A Nonassociative Operation

We will use the notation @ = (—1)!a throughout this section. Note that the
generalized GM-formula can be written as the inductive formula

F=¢pFRUR) +Vr

(18) om(T @ A)A + V.

In general the composite
m ¢
ARA— A — A

is a non-associative product in A which we write as a x b = ¢ (ab).
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In this way, the higher terms of 7 can be seen to arise as the obstructions
to the associativity of * on the image of V. For this, note that clearly

n—1
Aalmi| . mal =Y (=D S Gy | mi] - Ry Imigal - )
i=1
n—1
= Y (=D g Iy ] R ilmiga ] ()
i=1

n—1
=Y A lml. . mid % Railmigal . my,
i=1
so that
falmlma] = =V @7) * V(m)

ft3[my|malms] = V(@) * (V(in2) * V(m3)) — (V@mr) * V(ma)) * V(ms3)

and so on. The main result of this paper is to show that these higher obstructions
are exactly reproduced in the tensor trick and in the obstruction method. In
essence, these higher obstructions are what create the associated A, structure.

4. The Main Result
In this section, we prove the following

THEOREM 4.1. Given an SDR as in (4), where N = A is an algebra, let 0,
denote the Ao-structures on M given by the tensor trick, 0,, denote the one
given by the obstruction method (cf section 2.1), and let gy, denote the map
given by the generalized Gugenheim Munkholm construction (cf section 3).

we have that
Oy = 8ggm = Jom.

4.1. The Tensor Trick Revisited

Consider the SDR (4) and suppose that A is an algebra and let 7 be the initiator
(in the language of [2]) for the SDR (9).
We begin with an algebraic observation that depends on the side conditions

(5).
LEMMA 4.2. On the image of V®, we have that

A@ED* = (@0* @ 1+ @°0* 'V ® 9% + @'V [ ® (¢6°1)?
+o @OV B @D + V@ (970 )A.
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PrOOF. The result easily follows by induction on k using fact that ¢® is a
skew-derivation (7) and that ¢ is a derivation and the side conditions. Note that
since (¢®1) is of total degree 0 no signs are introduced.

By essentially just rearranging the terms in Lemma 4.2, we obtain

COROLLARY 4.3. Let V®" be the restriction of V® to terms of tensor degree
m, then

@2V = t(qﬁ(tqb@)k_ltV@kH ®V
+ (=) 2V @ p1VE 4+ 9192 VT @ p(1¢%) 1V

o IV @160 UV 4V @ g (199 V).

PrOOF. Using the commutative diagram (8), we see that p,A(¢®1)F =
ki{(pl ® p1)A@®1)E. But (¢®1)F restricted to the image of V®" lands in
T5 (A), so the result follows by rearranging the terms of Lemma 4.2 along with
the fact that V fV f = V f and that t applied to a term of tensor degree 2 is
just multiplication in A.

Using an easy inductive argument, we now have

ProrosITION 4.4. Forallk > 0,

T[A([(]S@)le@Hz = Z T Uﬁj.

i+j=k+2
and
COROLLARY 4.5. Forallk > 0,

(19) TA@2DHIVET = 7y,

ProOF. The proof of 4.4 and 4.5 will proceed by induction on k. We obtain
4.4 in degree k using 4.3 and 4.5 in degree < k to identify the terms of the
right-hand side of 4.3. Using 4.4 in degree k we have that

Ta(@OHVET = g (1921 VET) = ¢ Z 7 UMty = R
i+j=k+2
thus proving 4.5 in degree k + 1.

In a similar manner, we have
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COROLLARY 4.6. Foralls > 1,

(20) f?TA((l‘(ﬁ@)StV@ul) =f Z ;U ﬁj,

i+j=s+1

By noting tensor degree, we immediately have

COROLLARY 4.7. Forall s > 1,

21 7a(VE) lre,0om= Fsp1.

and

COROLLARY 4.8. Forall s > 1,

(22) Ta(Ooo e 0n) = Y f@RURA).

i+j=s+1

REMARK 4.9. Note that by the above results it is clear that d., is the co-
derivation induced by the maps } _;  ;_, sf (%; U 7;) so that we have a proof
of this fact independent of [15] and [18].

4.2. The Obstruction Method Revisited

In [17], Gugenheim and Stasheff constructed a sequence of maps t, and 9,
converging to a twisting cochain and coderivation respectively. We will show
that their 7, and 9, converges to the maps given in 3. We will begin by giving an
alternative formulation of the obstruction method which the reader can easily
see is equivalent with the one given in [17].

A sequence of maps t, : T°(M) — Aand o, : T°(M) — T°(M) for
n > 2 is defined by the following inductive scheme:

=Vn
Th+l = Tnp — ¢(Dn(fn) -, U Tn)
(23) 0y = w(—dym)

8n-ﬁ—l = an - w(f(Dn(Tn) -, U Tn))»

where D, (y) = y9, + dy. The twisting cochain and derivation are then the
limits of the sequences 1, and 9, as n — oo.

REMARK 4.10. In [17] the expression for T and 9 differs from the above but
the difference between the two is 0 in the limit. The convergence of the above
sequence follows from the results in this section.
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We will show that this construction reduces to the GM construction on the
universal twisting cochain. We begin by proving some lemmas.

LEMMA 4.11. ¢ D, (1) =0

PROOF. ¢ D, (15) = ¢p(dVrm —Vmd,) = Osince V is a chain map and since
¢V = 0.

LEMMA 4.12. 1,0 =T + (7, U Ty) forn > 2.
Proor. We will prove this by induction on n. For n = 3 we have
B=7—¢(Dr(n) —1Un)

=10 —¢Dr(n) + P (2 UTy)
=0+ ¢d(nUn),

which follows from lemma 4.12 together with the fact that V is a chain map.
For the inductive step (assuming the lemma is true up to and including n) we

have
Tap1 =T — @ (Dp(1) — 1, U T)

=T, — (‘[n —0) +¢(Tn U Tn)
=n+¢(t,Urty,)

We use the induction hypothesis when showing that ¢ D,,(t,,) = t, — 7 by the
following calculation:

¢Dn(fn) = ¢dfn - ¢Tnan
= _d(p(TZ - ¢(rn—1 ) tn—l)) + T
- Vf(772 + ¢(Tn71 U Tnfl)) - ¢Tnan

=T, — N0

Treating 9, in the same way we will start with the following lemma.
LEmMA 4.13. D, = dym + 70, forn > 2.
ProoF. The proof is simple enough,
fDyty = fdVr + fVnd, =dmn + mo,
Here we have used that V and f are chain maps and that fV = 1.

LEMMA 4.14. For n > 2 we have 0,41 = 0, + of (t, U )
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PRrROOF. As before we will proceed by induction on n. For n = 2 we have
3 =0, —o(f(D2(nn) -2 Umn)
=0 —w(dn) —h+o(f(rUn))
=h+of(nUn)
For the inductive step (assuming that the lemma holds up to and including »)
we have
On1 =0 — 0 (f(D(m)) + & (f (1, UTy))
=0, —0—0, +o(f(t,Ut,))
= 82 + w(f(fn U tn))

In this calculation we used lemma 4.13 and the fact that wf D(1;) = 9, +
wmd, = 0, + 9, where the last step uses the uniqueness of coextension as a
coderivation.

The astute reader will have noticed the following:

PROPOSITION 4.15. Let 0, and t, be as before, then t, |r»= 7,_1, and
n
Ty 7= E i1
i=2

ProoF. The proof of this is a simple induction on n > 3. Note that for n =2,
wehave 1) = Vr = 7. Forn = 3 we have 13 = 711 + T°(¢) (711 + 711) =
71 + 72. Assuming the result is true up to and including n notice that in 7, U 7,
we have the homogeneous sum ) _ +j=n 7; U7t;. The extra terms in 7, U T, are
all maps taking more than n arguments (remember the shift in degree from the
double induction T to the GM construction 7).

This proposition concludes the proof of theorem 4.1.

5. An Application to de Rham Theory

Let X be a simplicial complex. Sullivan has defined a rational version of the
de Rham complex [27] denoted by A*(X). On the other hand, we have the
(normalized) simplicial cochains with rational coefficients C*(X; Q).

It is well known (Sullivan—de Rham’s theorem) that the transformation

(24) A*(X) — C*(X; Q)

given by

(25) k(@)(s) = /a
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where s € Ci(X; Q), o € A¥(X), yields an isomorphism in homology [4], [3],
[23].

We will from now on assume that X is a finite complex which is connected
as a space. This is strictly for convenience. Everything we say generalizes to
an arbitrary connected semi-simplicial complex.

Suppose that X has vertices {vg, ..., v,} and embed X into the standard
simplex A, with corresponding vertices. Let {ty, ..., #,} be the barycentric
coordinates of A,. Penna [22] has proven the following:

PROPOSITION 5.1.
A%A) =Qlt, ..o tal/(to+ .+ 1y — 1)
and if
k Ak
AT (D) — AN(X)
is the onto map given by restriction, we have
ker(r®) = (t, ...ty | iy ... v) € X)

(the ideal of all monomials such that the corresponding simplex is not a simplex
of X). Furthermore,

ker(r*) = (&, ...ty dty, ...dt;, | (Ui, ... i), V), ..., 0;,) € X).

iy
REMARK 5.2. Note that the representation of A°(X) as A°(Ay_1)/ker(r®)
is related to the Stanley-Reisner ring of the simplicial complex X [25].

REMARK 5.3. As is well-known (e.g. [10, pp. 158]), if C and D are free
chain complexes (as modules over the ground ring) then any onto map inducing
an isomorphism in homology is the projection of an SDR.

Using this remark we have the following:

LEMMA 5.4. Let X and A*(X) — C*(X; Q) be as above. There is an SDR

(26) C*(X; Q) (A*(X), ¢).

Explicit formulae can be given for this SDR, but we will only give the
inclusion here. Full details and applications will appear elsewhere. We have
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LEMMA 5.5. Let ey be the zero vector in R" and {e;} be the standard basis
vectors so that A, is the convex hull of {ey, e, ...,e,}. Then an explicit
formula for a map V as above is determined as follows.

k
27) V(e - e)") =k (=Dt d;,...d ...dy,

j=0

where (ej, . . . ;)" is the cochain dual to the simplex (e;, .. .e;) € X, i.e.
the cochain which has value 1 on (e;, . . . ¢;) and 0 on all other k-simplices of
X.

Note the similarity with the proof [23, pp. 148—151] where a partition of
unity is used in place of our barycentric coordinate functions. The straightfor-
ward proof makes use of the relations given in Penna’s theorem and will be
omitted.

Now recall thatamap f : A —— A’ between algebras is said to be strongly
homotopy multiplicative [16] if there exists a twisting cochain 7, making the
following diagram commute:

A

(28)

B(A) A

Ty
where 7 is the universal twisting cochain.

We generalize this notion by saying that a map f : A —— A’ between

A algebras is strongly homotopy A if there is a homotopy twisting cochain
77 : (T°(A), ) — A’ analogous to the situation in diagram (28).
Recall that ahomotopy twisting cochainis amodule map t:(T°(A), 3) — A’
such that the induced coalgebra map c(7) : (T¢(A), d) — (T°(A’),d)isa
chain map. Using the above and our main theorem along with the full thrust
of the tensor trick we have the following theorem.

THEOREM 5.6. Let X be a connected simplicial complex.

1. The GM formula applied to V from above defines a graded commutative
Aoo-structure on the dual cochain complex C*(X; Q).

2. The map k from de Rham’s theorem is strongly homotopy A .
3. The map V from above is strongly homotopy A .
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REMARK 5.7. This should be compared with the main result of [12] where
k is shown to be strongly homotopy multiplicative using acyclic models.

Proor. Convergence of the obstruction method is given in [17, pp. 244],
but we have proven that this is equivalent to the tensor trick and our main
theorem gives the connection of this with the GM formula. Thus we have an
SDR

\

(29) (T(C*(X; Q)), 9) (B(A*(X)), )

~

K

where V and ¥ are the coalgebra maps given by the tensor trick.

The first part of the theorem follows from our main theorem. The second
part follows by the fact that 77 Bk is a twisting cochain extending « and the last
part follows similarly.

6. Relations with Massey products

In this section we will use the formula for an A, -structure (derived from an
SDR) given in section 3 to study Massey products. Throughout this section
we will assume that in (4), A an algebra and M = H (A) the cohomology of
A. When the ground ring is a field (see 5.3) such an sdr always exists. In this
setting V may be interpreted as a uniform choice of a representative in each
homology class.

Consider the term my = m 0|72 = f(Vmr U V). This map is the ordinary
cup product in cohomology. The next term of the A, -structure, m3 = 7 doo| 73
is given by

(30) f(VnU¢p(Vr UVr)+¢(Vr UVa)U V).

This expression is reminiscent of {(a, b, ¢}, the classical Massey product. In
fact we have the following

PrROPOSITION 6.1. The elements ¢ (Vr UVm)[a, bl and p (Vo UVr)[b, c]
constitute a defining system for (a, b, c), whenever this Massey product is
defined.

ProoOF. Let a,b,c € H(A) be elements such that ab = bc = 0 so that
{a, b, c) is defined. Since ¢ is a homotopy, Va Vb projects to the class of 0 and
the product of two cycles is a cycle we have d¢p(VaVb) = VaVb. Since d,
is a derivation and since the multiplication in A is associative,the argument to
f in (30) is a cycle.
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This result can be generalized to higher Massey products (where as usual
7 denotes the universal twisting cochain 7¢(M) —— M). Let’s begin by
introducing the following notation:

vii= Y. {(#mURMa....ql,

r4s=j—i+l
and set o = (]5'}/,‘,1'. Thus Qi j = 7Tj_,'+1(a,', [/ 75 PN (Zj).
LEMMA 6.2. y; ; is a cycle.

PRrROOF. evident since d is a derivation and since V selects a cycle repres-
entative for each homology class.

THEOREM 6.3. If Vf(y; ;) = O then the set {a; ; | n > j > i > 1}isa
defining system associated with {a,, ay, . .., ay).

ProoF. Notice that it follows from 6.2 that if V(y; ;) = O then y; ; is a
boundary. For the proof of the theorem apply the homotopy relation for ¢ to
vi,j to get the following calculation:

doyij+¢dvi; =vij—VIvij
dOli,j = Vi,j —-0-0

where the last two zeros being V f'y; ; and ¢dy; ;).

THEOREM 6.4. Ify; jisaboundary(i.e. V fy; j = 0)forn > j > i > 1then
theset{a; ; | n > j > i > 1} constitutes adefining systemfor(ai, az, . .., a,).

Proor. If one applies the chain homotopy relation for ¢ to y; ; One gets
da; j =y j —¢dy; jbutdy,; ; = 0since d is a derivation and by an induction
over the number of elements in the defining system (j — i). Thus we have the
following relation.

3D da; j =y for n>j>i>1.

Also note that <ay, az, ..., a,> = fyi,.

This relation between Massey products and the GM formula can be used
to give an explicit reconstruction of the Golod resolution. When all Massey
products vanish (in the sense of theorem 6.4) the A, -structure on M is the
trivial one, but, of course, the twisting cochain 7 is non-trivial (indeed the
induced coalgebra map gives an isomorphism in homology). An example of this
was given in [14, 4.2.2] where M is the exterior algebra on one 1-dimensional
element, A = C*(Z; Z) is the functional cochain complex for the group of



TRANSFERRING ALGEBRA STRUCTURES UP TO HOMOLOGY EQUIVALENCE 197

integers Z and 7 is the binomial twisting cochain whose n-th component in A'

is given by the function
i — (=1 (’)
n

For the Golod resolution, consider the twisted tensor product T H (A) ®; A.
When the Massey products vanish, then by the results in this section the A .-
structure is trivial and it follows directly from the construction of the twisted
differential that it fulfills conditions (i) and (ii) from [21, pp. 320]. That the
complex is contractible follows from [14, lemma 4.1]. This twisted tensor
product can therefore be identified with the Golod resolution. The key point is
that once an SDR has been chosen no more choices are necessary for computing
the Golod resolution.

The interested reader should see [26] for a correspondence between A -
structures and the differentials in Eilenberg-Moore type spectral sequences.

7. Co-A. Structures

For the reader’s convenience, we present the results dual to those in section 4
for (simply connected) coalgebras.
Given a simply connected coalgebra C and a module M, suppose that

(32) M (C, 9).

f
is an SDR. Let T%(M) be the tensor algebra on the desuspension s~ (M)

of the elements of positive degree in M. We write elements of 7¢(M) as

<cy|...|lcp>. Let M CHLEN T(M) be the map given by 7(m) = <s 'm>.

The generalized GM-formula in this case is given by the inductive formula
T=FUmp+nf

so that c

fl v \%

M— T,

with TV = 7.
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Using the Heyneman-Sweedler (H-S) notation for coproducts,
Ac =ca) ® ¢,

h ~
we have 20() = 0

Tie) = <s~' flo)>
n—1

Fu(0) = Y <T(P(O) 1) ® Fui(B()2)>.

k=1

We introduce the non-coassociative operation A¢ on C and write

1> ®cos =)y ® ()
to see that the first few terms of the generalized GM-formula are

Ti(e) = <s7' fo)>
ﬁz(C) = <Silf(z<l>)> &® <f(c<2>)>
T3(0) = <5 f(€o12)> ® <5 f(Caro 1) |Caro can>

+ <S_lf(C<1><1>)|S_lf(E<1><2>)> &® <S_lf(c<2>)>-

Dual to our observation in section (3.1), we see that these terms are made up
from obstructions to the non-coassociativity of A¢. Once again, the point of
the main theorem is that these higher obstructions are exactly reproduced in
the tensor trick and the double induction. We can think of these obstructions
as creating the associated co-A, structure.

Now for a map X —— T9(X), let T%(X) 2L+ T7(X) be the extension
of f as a derivation. Let = w(A) where A is the composite

C 2+ C®C— TO).
For the proof of the dual theorem, observe that in the case of the tensor trick
we want to show that
T(f)oomw =T,
but
T(Noct =T(NHHmw + T (HE + TNt +-- )T (P)7

and clearly T9(f)oom(c) = < f(c)> so that the main result again amounts to

showing that N
T(NHaT ()" = T,
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for n > 2. The proof of this uses formula for D and Q analogous to those
used in section 4.1.

The results dual to those in section 4.2 are also true by analogous proofs
using the following expression for r and §:

my=nf
41 = Ty — (Dy(tp) — 1, UTy)0
(33) 0y = w(—mdy)

8n«I»l = 8}1 - a)((Dn(Tn) -7, U tn)v)
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