CORRECTION OF AN ERROR IN THE PAPER "CHARACTERIZATION OF PERFECT INVOLUTION GROUPS"

TORBEN MAACK BISGAARD

The purpose of the present note is to point out a gap in the proof of Lemma 4 in [1] and to indicate how it can be mended. In the proof of Lemma 4 in [1], the following situation is encountered: *E* is a finite subset of \mathbb{R}^k ; φ is a real-valued function on *E*; $(\pi_t)_{t \in E}$ is a family of probability measures on *E* such that for $t \in E$,

$$t = \int u \, d\pi_t(u)$$
 and $\varphi(t) \leq \int \varphi \, d\pi_t$.

As in [1], we denote by *S* the set of those $t \in E$ such that π_t is ε_t , the Dirac measure. The problem is to construct, given $x \in E$, a probability measure μ on *S* such that

$$x = \int t \, d\mu(t)$$
 and $\varphi(x) \le \int \varphi \, d\mu$.

In [1], one defines a sequence $(\mu_n)_{n\geq 0}$ of probability measures on *E* by $\mu_0 = \varepsilon_x$ and $\mu_{n+1} = \sum_{t\in E} \mu_n(\{t\})\pi_t$; one then chooses an accumulation point μ of (μ_n) . It is claimed that $\mu = \sum_{t\in E} \mu(\{t\})\pi_t$. This conclusion is unwarranted. Indeed, it would be true if the whole sequence (μ_n) converged to μ . However, all that we know is that some subsequence (μ_{n_k}) of (μ_n) converges to μ . In this case, all that we get from $\mu_{n+1} = \sum_{t\in E} \mu_n(\{t\})\pi_t$ by inserting $n = n_k$ and going to the limit is $\lim_{k\to\infty} \mu_{n_k+1} = \sum_{t\in E} \mu(\{t\})\pi_t$, which is not good enough since the sequence (μ_{n_k+1}) might have a limit different from that of (μ_{n_k}) . To repair this, let \mathscr{D} be the set of those subsets *D* of *E*, containing *S*, such that there is a probability measure μ on *D* such that $x = \int t d\mu(t)$ and $\varphi(x) \leq \int \varphi d\mu$. Since *E* is a finite set, we can choose $D \in \mathscr{D}$ minimal with respect to the inclusion ordering. If D = S, we have the desired measure μ on *S*. Suppose $D \neq S$; we shall derive a contradiction. Choose $t \in D \setminus S$. Since

Received October 19, 1998.

 $t \notin S$, we have $\pi_t \neq \varepsilon_t$ by definition, that is, $\pi_t(\{t\}) < 1$. From $t = \int u \, d\pi_t(u)$, by subtracting $\pi_t(\{t\})t$ from both sides and dividing by $1 - \pi_t(\{t\})$, we get

$$t = \int u \, d\varrho(u)$$

where ρ is the probability measure $(1 - \pi_t({t}))^{-1}\pi_t | (D \setminus {t})$. Similarly,

$$\varphi(t) \leq \int \varphi \, d\varrho.$$

Define $D^* = D \setminus \{t\}$. Define a probability measure μ^* on D^* by $\mu^*(\{u\}) = \mu(\{u\}) + \mu(\{t\})\varrho(\{u\})$ for $u \in D^*$. Then

$$x = \int_{D} u \, d\mu(u) = \int_{D^*} u \, d\mu(u) + \mu(\{t\})t$$
$$= \int_{D^*} u \, d\mu(u) + \mu(\{t\}) \int_{D^*} u \, d\varrho(u) = \int_{D^*} u \, d\mu^*(u)$$

and (similarly) $\varphi(x) \leq \int_{D^*} \varphi \, d\mu^*$. The existence of a probability measure μ^* with these properties shows that $D^* \in \mathcal{D}$, in contradiction with the minimality of D.

REFERENCES

 Bisgaard, T. M., Characterization of perfect involution groups, Math. Scand. 65 (1989), 245– 258.

NANDRUPSVEJ 7 ST. TH. DK-2000 FREDERIKSBERG C DENMARK *E-mail:* torben.bisgaard@get2net.dk