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LINEAR SYZYGIES OF STANLEY-REISNER IDEALS

V. REINER and V. WELKER∗

Abstract

We give an elementary description of the maps in the linear strand of the minimal free resolution of
a square-free monomial ideal, that is, the Stanley-Reisner ideal associated to a simplicial complex
�. The description is in terms of the homology of the canonical Alexander dual complex �∗. As
applications we are able to
• prove for monomial ideals and j = 1 a conjecture of J. Herzog giving lower bounds on the

number of i-syzygies in the linear strand of j th-syzygy modules.
• show that the maps in the linear strand can be written using only ±1 coefficients if �∗ is a

pseudomanifold,
• exhibit an example where multigraded maps in the linear strand cannot be written using only

±1 coefficients.
• compute the entire resolution explicitly when �∗ is the complex of independent sets of a

matroid.

1. Introduction

The goal of this paper is to describe in a simple topological fashion the maps in
the linear strand of the minimal free resolution of a Stanley-Reisner ideal. It is
an outgrowth of two recent trends in the theory of minimal free resolutions. The
first is a series of results [1], [2], [4], [5], [7], [20] giving explicit descriptions
of the maps in the minimal free resolutions for various classes of ideals. The
second is the realization that when dealing with resolutions of Stanley-Reisner
ideals I� associated to a simplicial complex �, it can be easier to work with
the canonical Alexander dual �∗ (see [3], [8], [14], [22]). Our description of
the linear strand for the resolution of I� will be in terms of natural maps on
the homology of links of faces in �∗.

We note that our description of the linear strand is in some sense not new, as
it may be derived with a little work from known results [1], [2], [7], [9], [15],
[23]. However, the exact form in which we describe the linear strand seems
not to appear elsewhere, and we give an elementary proof of its correctness
here. This form is extremely useful for certain applications. In particular, in
Section 4 we use it to prove for monomial ideals a special case of a conjecture
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of J. Herzog [13], asserting that when the linear strand of a homogeneous j th-
syzygy module contains p-syzygies for some p > 0 then it must contain at

least

(
p + j

i + j

)
i-syzygies for each i < p. In Section 5 we show that the maps

in the linear strand can be written using only ±1 coefficients whenever �∗
is a pseudomanifold, and exhibit a small example of a non-pseudomanifold
where this fails. Section 6 gives the entire resolution explicitly when �∗ is the
complex of independent sets of a matroid.

2. Minimal free resolutions and notation

We first review minimal free resolutions and their linear strand. Let A =
F[x1, . . . , xn] be a polynomial ring over a field F, and I ⊂ A an ideal which
is homogeneous with respect to the standard grading setting deg(xi) = 1.
Regarding I as an A-module, it has a finite minimal free resolution

(1) 0 −→
⊕
m

A(−m)βp,m
dp−→ · · · d1−→

⊕
m

A(−m)β0,m
d0−→ I → 0

in which the notationA(−m) denotes a freeA-module with basis element in de-
gree m, with the m’s chosen to make the maps homogeneous. It is well-known
that the number βi,m is the dimension of the mth graded piece TorAi (I, F)m of
the graded F-vector space TorAi (I, F). For an ideal I let t (I ) be the minimal
degree of a homogeneous generator of I . Note that TorAi (I, F)m vanishes unless
deg(m) ≥ i + t (I ).

From grading considerations, the map

di :
⊕
m

A(−m)βi,m →
⊕
m

A(−m)βi−1,m

has a direct summand

d linear
i : A(−(i + t (I )))βi,i+t (I ) → A(−(i − 1 + t (I )))βi−1,i−1+t (I ) .

We call the collection of maps {d linear
i }i≥0 the linear strand of the resolution.

The maps in the linear strand inherit a uniqueness property from the uniqueness
of maps in the minimal free resolution. To be more precise, since the maps in
the resolution are unique up to a simultaneous A-linear change of bases in the
free modules that they map between, the maps in the linear strand are unique
up to a simultaneous F-linear change of bases in the lowest graded components
of these free modules. We say that I has linear (or t (I )-linear) resolution if
di = d linear

i for all i, or equivalently, if TorAi (I, F)m = 0 for m = i + t (I ).
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When I is generated by square-free monomials, it is traditional to associate
with it a certain simplicial complex �, for which I = I� is the Stanley-
Reisner ideal of � and A/I� is the Stanley-Reisner ring. The definition of �
as a simplicial complex on vertex set [n] := {1, 2, . . . , n} is straightforward:
the minimal non-faces of � are defined to be the supports of the minimal
square-free monomial generators of I . Since I respects the fine Nn-grading by
monomials on A, one can find an Nn-graded minimal free resolution for I as
an A-module, and define for any monomial xα

βi,xα := dimF TorAi (I, F)xα .

Instead of working with � (as in [16]), we will instead work with a certain
canonical Alexander dual �∗,

�∗ := {F ⊆ [n] : [n] − F ∈ �}.
which in [14] we called the Eagon complex associated to I . Alternatively one
can describe �∗ in terms of the square-free monomial ideal as follows: The
maximal faces (or facets) of �∗ are the complements of the supports of the
minimal square-free monomial generators of I = I�.

3. Description of the linear strand

In this section we describe the linear strand in the minimal free resolution
of a Stanley-Reisner ideal I� in the polynomial ring A = F[x1, . . . , xn]. The
description will be in terms of the homology of links of faces in the Eagon
complex �∗.

In [8], the following reformulation of a famous result of Hochster [16] was
proved:

Theorem 3.1.

TorAi (I�, F)xα ∼= H̃i−1(link�∗ F ; F)

if xα = xV := ∏
i∈V xi for some subset V of [n] whose complement F =

[n] − V is a face of �∗, and otherwise the above Tor-group vanishes.

Here H̃•(−; F) denotes reduced simplicial homology with coefficients in
F. Also the link, star, and deletion of a face F in a simplicial complex K are
subcomplexes of K defined by

linkK F := {G ∈ K : G ∪ F ∈ K,G ∩ F = ∅}
starK F := {G ∈ K : G ∪ F ∈ K}
delK F := {G ∈ K : G ∩ F = ∅}.
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We begin by noting a consequence of Theorem 3.1: Only top-dimensional
homology of links of faces in �∗ can contribute to the linear strand. To see this,
note that the linear i-syzygies are measured by TorAi (I�, F)i+t , where t = t (I�)

is the minimal degree of a generator of I�. In the notation of Theorem 3.1, this
implies

n − |F | = |V | = i + t = i + n − dim(�∗) − 1

or equivalently,

i − 1 = dim(�∗) − |F | ≥ dim(link�∗ F).

Therefore, the group H̃i−1(link�∗ F ; F) appearing in Theorem 3.1 will van-
ish unless i − 1 = dim(link�∗ F), and in this case it is the top-dimensional
homology of this link.

Thus to specify the Nn-graded maps d linear• in the linear strand, it suffices to
specify for every face F in �∗ and every vertex v in [n] a map as follows:

∂link�∗ F,v: H̃i−1(link�∗ F ; F) → H̃i−2(link�∗(F ∪ {v}); F)

where i − 1 = dim(link�∗ F) as before. Given such a family of maps, one can
then postulate the following candidate for the (xV , xV−v)-graded component
of d linear

i , that is, the component of the linear syzygies of multidegree xV which
are A-linear combinations of the syzygies of multidegree xV−v:

(2)
(d linear

i )(xV ,xV−v):A ⊗F TorAi (I�; F)xV −→ A ⊗F TorAi (I�; F)xV−v

f ⊗ z �−→ xvf ⊗ ∂link�∗ F,v(z)

where z represents a cycle in H̃i−1(link�∗ F ; F). Since

link�∗(F ∪ {v}) = linklink�∗ F (v)

we can rename the complex link�∗ F by the name K , and it suffices to define
in general for any simplicial complex K and any of its vertices v a map:

∂K,v : H̃dim K(K; F) → H̃dim K−1(linkK v; F).

Setting D := dim K , a natural candidate for such a map ∂K,v is the connecting
homomorphism in the Mayer-Vietoris exact sequence
(3)

0 → H̃D(starK v) ⊕ H̃D(delK v) → H̃D(K)
∂K,v−−−→ H̃D−1(linkK v) → · · ·

arising from the decomposition

K = starK v ∪ delK v

linkK v = starK v ∩ delK v.
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Note that in the exact sequence (3) we have suppressed the field coefficients
F for notational convenience, and we will continue to do so when it causes no
confusion.

We point out for future use that if one is given an explicit representing
cycle z ∈ H̃dim K(K), then one can obtain ∂K,vz very explicitly in two different
ways. On the one hand, from the definition of the maps in any Mayer-Vietoris
sequence,

∂K,v(z) = ∂
(
z|starK v

)
i.e. one obtains ∂K,vz by applying the simplicial boundary operator ∂ to the
chain one gets by restricting z to the faces supported in starK v. On the other
hand, if one defines for each vertex v of K an F-linear map δv on oriented
simplicial chains by

δv[i1, i2, . . . , ir ] =
{
(−1)j [i1, i2, . . . , îj , . . . , ir ] if v = ij

0 if v ∈ {i1, i2, . . . , ir}
then we claim that ∂K,v(z) = δv(z). To deduce this description of ∂K,v(z) from
the previous one, note that any terms in ∂

(
z|starK v

)
supported on faces of K

containing v must cancel each other, since the result has to be a cycle supported
in linkK v. The remaining terms in the simplicial boundary map are exactly
those in δv .

We can now prove:

Theorem 3.2. The maps d linear
i in the linear strand of the Nn-graded minimal

free resolution of a Stanley-Reisner ideal I� are given by equation (2), where
for a complex K and vertex v, the map ∂K,v is described above.

Proof. Let d ′
i be the map asserted by the theorem to coincide with d linear

i .
We first show that d ′

i−1d
′
i = 0, so that these maps do form a complex, and then

show that this complex must be the linear strand.
The fact that d ′

i−1d
′
i = 0 comes from a separate analysis of each N-graded

component. The (xV , xV−{v,w})-component of d ′
i−1d

′
i is determined by a map

γ having the form

γ : H̃dim K(K) −→ H̃dim K−2(linkK{v,w})
where here K = link�∗ F for F = [n] − V . The map γ is the sum of two
composite maps

H̃dim K(K)
∂K,v−−−→H̃dim K−1(linkK{v}) ∂linkK v,w−−−−−→ H̃dim K−2(linkK{v,w})

H̃dim K(K)
∂K,w−−−→H̃dim K−1(linkK{w}) ∂linkK w,v−−−−−→ H̃dim K−2(linkK{v,w}).
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From our second description of ∂K,v we have

γ = ∂linkK v,w ◦ ∂K,v + ∂linkK w,v ◦ ∂K,w = δwδv + δvδw

and the righthand side is easily checked to be 0. Hence d ′
i−1d

′
i = 0 in each

Nn-graded component.
To show that d ′

i coincides with d linear
i , we use induction on i. For the case

i = 0, note that H̃−1(link�∗ F) vanishes unless F is maximal face of �∗,
and then it is one-dimensional. When F is a maximal face F of �∗, setting
V = [n] − F we have that xV is a minimal generator of I�, and it is easy
to check that the xV -component of d ′

0 is simply the monomial xV , just as in
d linear

0 .
For the inductive step, assume thatd ′

i−1 coincides withd linear
i−1 . Sinced ′

i−1d
′
i =

0, it follows that the A-linear combinations of the (i − 1)-syzygies defined by
d ′
i are all genuine i-linear syzygies. Hence they must form an F-subspace in

the space of all linear i-syzygies. By construction d ′
i produces exactly the

same number of xV -graded linear i-syzygies as predicted by Theorem 3.1 for
the space of all xV -graded linear i-syzygies, although some of these syzygies
might, a priori, be linearly dependent over F. Therefore, it suffices to show
for each set V that all of the xV -graded linear i-syzygies produced by d ′

i are
linearly independent over F. Setting K = link�∗ F for F = [n] −V as before,
this amounts to showing injectivity of the map

H̃dim K(K)
⊕v∂K,v−−−−→

⊕
v

H̃dim K−1(linkK v).

To prove injectivity, we use the following lemma.

Lemma 3.3. Let z be a cycle in H̃dim K(K)(= Z̃dim K(K)). Then ∂K,v(z) = 0
if and only if z does not involve the vertex v.

Proof. Consider the Mayer-Vietoris exact sequence (3). Since starK v is
a cone, it is contractible and H̃dim K(starK v) vanishes. Hence exactness at
H̃dim K(K) shows that if ∂K,v(z) = 0, then z is represented by a cycle in
delK v. But since there are no (dim K)-boundaries to create ambiguity, this
means that z does not involve v. The converse is obvious.

Injectivity of the map ⊕v∂K,v is now clear: Any cycle z in H̃dim K(K) which
is sent to 0 must involve no vertices of K by Lemma 3.3.

This concludes the proof of Theorem 3.2.
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4. A conjecture by Herzog in the case of monomial ideals

In this section we prove for monomial ideals a conjecture by J. Herzog [13]
about linear syzygies. Recall that a j th-syzygy module is a module that occurs
as the kernel in the (j − 1)st -homological degree in the resolution of a finitely
generated module N over the polynomial ring A. For example any ideal I in
the polynomial ring A is a first syzygy module, since I is the kernel of the
natural surjection A → N = A/I .

Conjecture 4.1 (Herzog [13]). Let M be a j th-syzygy module for some
graded A-module N , where A = F[x1, . . . , xn] is given the standard grading.
If M has non-zero p-syzygies in its linear strand for some p ≥ 0, then it will

have at least

(
p + j

i + j

)
i-syzygies in its linear strand for each i.

A homogeneous ideal I in A is a graded first syzygy module. So when M is
such an ideal I we can reformulate the conjecture as follows: if TorAp (I, F)p+t (I )

does not vanish for some p ≥ 0, then

dimF TorAi (I, F)i+t (I ) ≥
(
p + 1

i + 1

)

for each i.
Herzog’s conjecture is motivated by a result of M. Green [12] (see also [10])

that contains the case i = 0, j = 1, and his own results that show the conjecture
in full generality for j = 0 [13].

By the technique of polarization [11], the j = 1 case of Conjecture 4.1
follows for all monomial ideals I (= M) once it is proven for square-free
monomial ideals. For square-free monomial ideals, we will in fact show some-
thing slightly stronger:

Theorem4.2. Let I be a square-free monomial ideal inA. If TorAp (I, F)xV =
0 for some set V with |V | = p + t (I ), then for each i there exist at least(
p + 1

i + 1

)
subsets V ′ ⊆ V having |V ′| = i + t (I ) and TorAi (I, F)xV ′ = 0.

Note added in proof: Meanwhile Conjecture 4.1 has been verified for
j = 1 in full generality by T. Römer: Bounds for Betti numbers, preprint
(2000).

Proof. The result will be deduced from the following lemma, whose state-
ment involves only simplicial topology, but whose proof relies heavily on the
maps ∂K,v which appear in the linear strand:
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Lemma 4.3. Let K be a (q − 1)-dimensional simplicial complex and F any
field. If H̃q−1(K; F) = 0, then there exist at least q + 1 vertices v of K with
the property that H̃q−2(linkK v; F) = 0.

Proof. Let z be a non-trivial cycle in H̃q−1(K; F). Because it is a non-trivial
(q − 1)-cycle, z must involve at least q + 1 vertices. Hence by Lemma 3.3, at
least q + 1 of the maps ∂K,v must have ∂K,v(z) = 0. Therefore at least q + 1
vertices must have H̃q−2(linkK v; F) = 0.

To deduce Theorem 4.2, we use induction on p − i. It is trivially true for

p − i = 0. In the inductive step, assume that there are at least

(
p + 1

i + 1

)
subsets V ′′ ⊆ V having |V ′′| = i + t (I ) and TorAi (I ; F)xV ′′ = 0. For each
such V ′′, we can apply Lemma 4.3 and Theorem 3.1 to K = link�∗ F ′′ where
F ′′ = [n] − V ′′. In this way, we obtain a collection CV ′′ of at least i + 1
subsets V ′ ⊂ V ′′ with |V ′| = i − 1 + t (I ) and TorAi−1(I ; F)xV ′′ = 0. It remains

then to show that the cardinality of the union
⋃

V ′′ CV ′′ is at least

(
p + 1

i

)
. If

we fix attention on a particular subset V ′ ⊂ V having |V ′| = i − 1 + t (I )

elements, then it can occur in at most p+ 1 − i different collections CV ′′ since
|V − V ′| = p + 1 − 1. Therefore∣∣∣∣⋃

V ′′
CV ′′

∣∣∣∣ ≥ 1

p + 1 − i

∑
V ′′

|CV ′′ | ≥ 1

p + 1 − i

(
p + 1

i + 1

)
(i + 1) =

(
p + 1

i

)
.

This concludes the proof of Theorem 4.2.

5. Pseudomanifolds and a counterexample

In this section we give some consequences of Theorem 3.2. It is easy to see
for any monomial ideal I , the matrix entries in the maps in the multigraded
minimal free resolution will always be single terms, that is a monomial times
some coefficient. We show that the coefficients occurring in the linear strand
can always be chosen to be ±1 whenever �∗ is a pseudomanifold, and give a
non-pseudomanifold example where this property fails.

Say that a d-dimensional simplicial complexK is a pseudomanifold without
boundary, or just a pseudomanifold, if every (d − 1)-face lies in exactly two
d-faces. Examples of such complexes are triangulations of manifolds or sin-
gular spaces whose singularities have real codimension at least two, such as
complex varieties. We emphasize that our definition differs somewhat from
the definition of pseudomanifolds sometimes given in the literature (e.g. [18,
p. 261]), where it is further assumed K is pure, and that any two d-faces are
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gallery-connected, i.e. connected by a path of d-faces in which every pair of
d-faces forming a step in the path share a common (d−1)-face. Note however,
that dropping the assumption of purity gives us only a spurious extra general-
ity with regard to results on the linear strand: The linear strand in the minimal
free resolution of I� depends only on the minimal generators of I� of lowest
degree, and hence depends only on the pure subcomplex of �∗ generated by
its faces of maximum dimension.

Recall that H̃d(K; F) for a d-dimensional pseudomanifold K takes on a
particularly simple form and has a canonical basis (up to negating basis vec-
tors) of orientation cycles ([18, p. 394]). To be precise, let )1, . . . , )m be the
gallery-equivalence classes of d-faces of K , where gallery-equivalence is the
equivalence relation generated by the relation F ∼ F ′ if the two d-faces F,F ′
share a common (d − 1)-face F ∩ F ′. For each class )i it is easy to see that
either there exists a unique way (up to an overall sign change) to choose signs
so that

z)i
=

∑
F∈)i

±[F ]

forms an cycle (called an orientation cycle), or else )i contributes no orient-
ation cycle to the basis of H̃d(K; F). Note that the latter cannot happen if F
has characteristic 2. Also note that any cycle z in H̃d(K; F) is completely de-
termined by its coefficients c[Fi ] on any system of representatives of d-faces
Fi ∈ )i of the classes )i : If z)i

is normalized so that the oriented simplex [Fi]
has coefficient +1, then

z =
∑
i

c[Fi ]z)i
.

As a consequence of this discussion, we have the following:

Proposition 5.1. If �∗ is a pseudomanifold, then the maps in the linear
strand of the minimal free resolution of I�∗ can be written using only ±1
coefficients.

Proof. Note that if �∗ is a d-dimensional pseudomanifold and F is a face
of � with

dim(link�∗ F) = d − |F |
(i.e. F is a face whose link in �∗ has top homology that might contribute
to the linear strand), then link�∗ F is also a pseudomanifold. Therefore by
Theorem 3.2, it suffices to show that for any pseudomanifold K and vertex v,
the map ∂K,v is a ±1-matrix when written with respect to the basis of orientation
cycles for H̃d(K; F) and H̃d−1(linkK v; F).

To see this, let )i (resp. )′
j ) be a gallery-equivalence class of d-faces (resp.

(d − 1)-faces) for K (resp. linkk v), which gives rise to an orientation cycle
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z)i
(resp. z)′

j
) over F. Then it is easy to check from the description ∂K,v = δv

that the coefficient of z)′
j

in ∂K,v(z)i
) will be 0 unless any chosen (d − 1)-face

F ′ in )′
j has the property that F = F ′ ∪ {v} is in )i . In the latter case, the

coefficient will be ±1, depending upon the sign of [F ] in z)i
and of [F ′] in

z)′
j
.

The proof of Proposition 5.1 shows that the maps in the linear strand when
�∗ is a pseudomanifold are essentially “incidence matrices” for the orientation
cycles of all of the links of faces in�∗. An interesting special case of this occurs
when �∗ is a homology sphere over F, that is when every face F of �∗ has

H̃i(link�∗ F ; F) =
{

F if i = dim �∗ − |F |
0 else.

This condition may also be phrased in terms of local homology groups
H̃ (|�∗|, |�∗|−x; F), and hence is topologically invariant. In [8] it was pointed
out that for homology spheres�∗, the Betti numbers in the (linear) resolution of
I� coincide with thef -vector listing the number of faces of various dimensions
in �∗. In [21, page 3] Sturmfels further remarked that this linear resolution is
essentially the coboundary complex for the simplicial complex �∗. Although
this can be deduced from Theorem 3.2, it is easy enough to prove directly so
we omit the proof.

The previous results raise the question of whether there exists a monomial
ideal I for which the maps cannot be written using only ±1 coefficients.
The following example illustrates that this can happen, even when the whole
resolution is linear, and even when it is linear over an arbitrary field F.

Example. Let I� be the ideal in A = F[x1, x2, x3, x4, x5, x6, xv]

(x3x4x5x6, x2x4x5x6, x1x4x5x6,

x3x4x5xv, x2x4x5xv, x1x3x5xv, x1x2x4xv, x1x4x6xv,

x1x5x6xv, x3x4x6xv, x2x5x6xv, x2x3x6xv, x1x2x3xv)

where F does not have characteristic 2 or 3. Then �∗ is the simplicial complex
on vertex set {1, 2, 3, 4, 5, 6, v} with maximal faces

{12v, 13v, 23v, 126, 136, 246, 356, 235, 234, 125, 134, 145, 456},
and can be described in the following fashion: The induced subcomplex of �∗
on the vertices {1, 2, 3, 4, 5, 6} is a minimal triangulation of the real projective
plane having the property that 123 is not a 2-face, and �∗ is obtained from
this subcomplex by adding the three triangles v12, v13, v23. One can think
of this addition as first adding in the missing 2-face 123 and then subdividing
this 2-face with a vertex v into three smaller triangles.
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It is easy to check that the order in which the maximal faces of �∗ are listed
above is a shelling order, and hence �∗ is Cohen-Macaulay over any field F, so
that I� always has a 4-linear resolution whose Betti numbers are independent
of F (see [8]). The complex �∗ has the interesting property that even though
it is shellable and homotopy equivalent to a 2-sphere, the orientation cycle
in H̃2(�

∗, F) cannot be written as a linear combination of 2-faces with ±1
coefficients. This property was shown to us by G. M. Ziegler in a similar
example, where the triangle 123 is not subdivided into three smaller triangles.
Unfortunately, this original example had a resolution with only ±1 coefficients
in the maps, requiring the subdivision by vertex v.

A computation with the computer algebra package Macaulay shows that
the 4-linear resolution of I� has the form

0 −→ A(−7)1 −→ A(−6)10 −→ A(−5)21 −→ A(−4)13 −→ I� −→ 0.

This resolution has all ±1 coefficients in the maps except for the last map

A(−7)1 −→ A(−6)10

which contains some coefficients of ±2. Call this Macaulay resolution M•.
We now assume that we have such a multigraded minimal free resolution F•
which uses only coefficients ±1, in its maps, and will reach a contradiction.

Obviously, the map A(−4)13 −→ I� in F• must simply list the minimal
generators of I�, possibly with ±1 coefficients in front, so without loss of gen-
erality, we may alter the basis for A(−4)13 in F• by ± signs so that the coeffi-
cients are all +1, as in M•. Since the edges e = v1, v2, v3, 16, 26, 36, 46, 56
have links in �∗ which are 0-spheres, they each give rise to a unique 1-syzygy
having multidegree complementary to e by Theorem 3.1. In M• these 1-
syzygies have only ±1 coefficients, and so F• must choose a ±1 multiple
of these same syzygies, hence we may assume that the columns of the map
A(−5)21 −→ A(−4)13 in these multidegrees are the same as in M•. A sim-
ilar remark applies to the vertices v, 6 whose links in �∗ are 1-spheres, once
we note for reasons of multidegree that the unique 2-syzygies to which they
correspond will only involve the 1-syzygies which correspond to the edges e

listed previously, and hence are the same in F• as in M•. Let us name the
basis elements of A(−6)10 corresponding to these two 2-syzygies by ev, e6,
respectively, in both M• and F•.

Lastly, we compare the unique 3-syzygy in M• and F•. In M•, this 3-syzygy
has coefficient x6 on e6 and 2xv on ev . Since F does not have characteristic 2
or 3, there is no way for F• to rescale this unique 3-syzygy to have both a ±x6

on e6 and ±xv on ev . Contradiction.
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6. The resolution for matroidal ideals

In this section we use Theorem 3.2 to explicitly describe the minimal free resol-
ution when I� is matroidal, i.e. if m,m′ are two minimal monomial generators
of I and xi divides m, then there exists a j such that xj divides m′ and xi

xj
m′ is in

I�. In this case, the supports of the square-free monomial generators of I form
the bases of a matroid M on ground set [n] (see [19] for definitions and facts
about matroids). It was observed in [8] that in this case �∗ is the complex of
independent sets IN(M∗) or matroid complex associated to the dual matroid
M∗. Since matroid complexes are pure and shellable (see [6]) this implies that
I� has a linear resolution for any field F. To make this resolution explicit, we
recall some terminology from matroid theory from [6].

Given a base B of a matroid M and an element e not in B, there is a
unique circuit ciM(B, e) contained in B ∪ {e} called the basic circuit for e

and B. Dually for any b in B there is a unique bond boM(B, b) contained in
([n] − B) ∪ {b} called the basic bond for b and B. An element e in [n] − B

(resp. b in B) is called externally (resp. internally) active with respect to B if
it is the smallest element of its basic circuit (resp. bond) in the usual order on
[n]. The external (resp. internal) activity of a base B is the number of elements
of [n] which are externally (resp. internally) active with respect to B.

Given a subset V ⊆ [n] such that its complement F = [n] − V is a face of
�∗ = IN(M∗), it is easy to check that

link�∗ F = IN(M∗/F )

where M∗/F denotes the quotient matroid of M∗ by F . Alternatively, we have

M∗/F ∼= (M|V )∗

where M|V is the restriction of M to the ground set V .
In order to apply Theorem 3.2, we need a basis for the top homology of

link�∗ F = IN(M∗/F ). There are two (conjecturally equivalent) choices for
us to use. Given any matroid M ,

• Björner [6, Prop. 7.8.4] constructs a basis {σB} for the top homology of
IN(M) which is indexed by bases B of M having internal activity 0, or

• from Theorem 14 and Remark 15 of [17], one obtains a basis {τC} for the
top homology of of IN(M) which is indexed by bases C of M∗ having
external activity 0, sometimes called nbc-bases for M∗.

We choose to use the latter basis for convenience. Fortunately, bases of
internal activity 0 for M are the same as bases of external activity 0 for M∗
by complementation within the ground set [n], since the internal activity of b
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with respect to B in M equals the external activity of b with respect to [n] −B

in M∗. Conjecturally, τC = σ[n]−C , but we will not need this.
For the purpose of stating the theorem, let us fix the following notation. Let

I� be matroidal for a matroid M , so that �∗ = IN(M∗). Given V ⊆ [n] and
v ∈ V and F = [n] − V as usual, choose as bases for the top homology of

link�∗ F = IN(M∗/F )

link�∗ F + v = IN(M∗/(F + v))

the sets {τC}, {τC ′ } where C,C ′ run through the bases of external activity 0
for M|V ,M|V−v . With respect to the above bases, let dC,C ′ denote the (C,C ′)-
entry of the (xV , xV−v)-graded component of the map in the minimal free
resolution of I�.

Theorem 6.1. The matrix entry dC,C ′ is 0 unless either

• C = C ′, or

• C = C ′ − {w} ∪ {v} for some w in ciM|V−v
(C ′, v).

In either of these cases, dC,C ′ = (−1)j xv where v is the j th smallest element
of C,

Proof. The basis elements τC constructed in the proof of [17, Theorem 14]
have the following properties:

• The coefficient of τC on any particular oriented simplex is 0 or ±1,

• The coefficient of τC on the oriented simplex [[n] − C] is +1,

• The coefficient of τD on [[n] − C] is 0 for any other basis D of external
activity 0.

As a consequence, from Theorem 3.2 and the description ∂K,v = δv , com-
puting dC,C ′ comes down to checking whether [([n]−v)−C ′+v] = [[n]−C ′]
appears with non-zero coefficient in τC . It remains to show that this happens
exactly under the circumstances described in the theorem (and under those
circumstances the appropriate ±1 coefficient then follows easily).

To simplify the analysis, we let yC = f (τC) where f maps chains in
IN((M|V )∗) to chains in IN(M|V ) by sending the oriented simplex [B] to the
oriented simplex [V −B]. We then need to show that C ′ occurs with non-zero
coefficient in yC only in the circumstances of the theorem. From the proof of
[17, Theorem 14], the chain yC has a fairly simple description: If one writes
the elements c1 < c2 < · · · < cr of C in increasing order, then

yC =
∑

(e1,...,er )

[e1, . . . , er ]
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where (e1, . . . , er ) runs over all sequences of r elements in [n] such that ei
is in the flat Ci spanned by Ci := {cr , cr−1, . . . , ci+1, ci} but not in the flat
Ci+1. Renaming the restricted matroid M|V by N , we are left with proving the
following claim:

Claim. If N is a matroid, v an element of its ground set, and C,C ′ bases of
external activity 0 for N,N − v respectively, then [C ′] occurs with non-zero
coefficient in yC if and only if C = C ′ or C = C ′ − w + v for some w in
ciN(C ′, v).

Before proving this claim, we recall two important properties of bases of
external activity 0 from the proof of [17, Theorem 14]:

(a) If C is a base of external activity 0, then any non-empty subset C0 ⊆ C

is a base of external activity 0 for the flat C0.

(b) If C = {c1 < · · · < cr} and Ci = {cr , cr−1, . . . , ci} as above, then ci is
the smallest element of Ci − Ci+1.

To prove the claim, there are two cases to check depending on v’s external
activity with respect to C.

Case 1: The element v is not externally active for C ′. In this case, C ′ still has
external activity 0 when considered as a base for N rather than N − v. It then
follows from the bulleted facts at the beginning of the proof that C ′ occurs
with non-zero coefficient in yC if and only if C = C ′.

Case 2: The element v is externally active for C ′. We wish to show in this
case that C = C ′ − {w} ∪ {v} for some w in ci(M|V−v)∗(C

′, v). Recalling the
notation Ci = {cr , cr−1, . . . , ci}, let s be the unique index such that v lies in
Cs − Cs+1. Since C ′ occurs with non-zero coefficient in yC , by the definition
of yC we can also number the elements {c′

1, . . . , c
′
r} = C ′ in such a way that

C ′
i := {c′

r , c
′
r−1, . . . , c

′
i} has C ′

i , Ci span the same flat of N for all i. We will
now show that w = c′

s has property asserted in the claim.

Since v is not inCs+1(= C ′
s+1 ), it follows from assertion (a) that Cs+1, C

′
s+1

are both bases of external activity 0 for this flat. But by construction, [C ′
s+1]

appears as a term in yCs+1 , so we must have C ′
s+1 = Cs+1. Now v, cs, c

′
s all

lie in Cs − Cs+1(= C ′
s − C ′

s+1), so by assertion (b), cs must be the smallest
element of Cs −Cs+1 . On the other hand, the fact that C ′ has external activity
0 for N − v but not for N implies that C ′

s has external activity 0 for Cs − v but
not for Cs . Therefore, v must be externally active for C ′

s in C ′
s , which means

that it is the smallest element of Cs − Cs+1 and so we must have v = cs .
Consequently, Cs = C ′

s − c′
s + v = C ′

s − w + v. The fact that c′
i = ci for

i > s follows again from assertion (b), since Ci −Ci+1 = C ′
i −C ′

i+1 for i > s.
Therefore C = C ′ − w + v as desired.
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