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ON THE CLASSIFICATION AND BIFURCATION OF
MULTIGERMS OF MAPS FROM SURFACES TO

3-SPACE

C. A. HOBBS and N. P. KIRK∗

Abstract

The A -classification of multigerm singularities is discussed, based on the theory of complete
transversals. An A -classification of r-multigerms from the plane to 3-space of A -codimension ≤
6 − r is carried out and the bifurcation geometry of these singularities analysed. This work
has applications to the study of two-dimensional spatial motions, giving local models for the
singularities which appear on general trajectories of rigid body motions from the plane to 3-
space. In addition, our classification is extensive enough to give the full list of simple multigerm
singularities from the plane to 3-space.

1. Introduction

In theoretical singularity theory one usually concentrates on strictly local phe-
nomena (monogerms). However, in applications there is often no reason to
restrict to such cases, it is just as important to consider the semi-local singu-
larities (multigerms). We consider two main objectives in this paper. Firstly
to give an account of how certain techniques from singularity theory apply in
the case of multigerms. Although multigerms have been considered in previ-
ous articles there are few works which have them as their central concern. We
show how various familiar techniques for monogerms carry over to concrete
examples. In addition we describe new, efficient and general techniques for
the classification of multigerms. Specifically, we describe how the method of
Complete Transversals developed in the recent article by Bruce, du Plessis and
the second author [2] may be applied to the case of multigerm classification.
This work demonstrated that typical calculations required in the classification
process may be carried out using a computer and subsequently a specialist
classification package called Transversal was written by the second au-
thor [9]. The present work involved writing and using an extension of this
package which deals with multigerms.
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Our second objective is to apply these techniques to an important case:
the classification and bifurcation of multigerm singularities R2, S → R3, 0.
Although some listing has been undertaken by Mond [12] and Goryunov [7]
ours is the first systematic classification of multigerm singularities. Our aim
is to give a comprehensive and extensive list which is suitable as a reference
for future applications. We also give a detailed description of the bifurcation
geometry which, in the case of semi-local surface singularities in three-space,
is rich and can be presented graphically. A comprehensive series of pictures,
analysed with the help of a specialist computer graphics package, is given.

The following problem from theoretical kinematics provided our primary
motivation: describe the geometry associated to singularities of trajectories
for general rigid body motions of the plane and space, with various degrees of
freedom. Some work has been carried out in this area by Gibson and the first
author. In particular [4] in which a theorem relating classical singularity theory
to this problem is proved; [5] in which this theory is applied to planar motions;
and [6] which describes the geometry associated with singularities of trajector-
ies in 3-space with 2 degrees of freedom and a single branch. The main theorem
from [4] enables us to decide which singularities will appear generically on
trajectories of rigid body motions by giving restrictions on the possible codi-
mension of such singularities. The results from this paper, together with those
for the monogerm case [6], give us the local models describing the geometry
of trajectories of rigid body motions with 2 degrees of freedom in 3-space,
thus providing a mathematical foundation for future analysis.

Classifications of the type presented in this paper are of importance in
singularity theory also. For example, it is natural to ask how Mond’s topological
study of A -finite monogerms [13] extends to the multigerm case. To extend the
work of Goryunov [7] on local invariants of mappings of surfaces into three-
space to higher order invariants, one needs a classification of multigerms up
to a corresponding higher codimension. A classification list such as ours thus
provides basic results which are needed for a variety of future avenues of
research.

Our list of singularities based on codimension appears in Table 2. Further
calculations gave us the full list of simple singularities; see Table 1. These
represent our main results on multigerm classification and are summarised in
Theorems 1.2 and 1.1 following. The classification techniques are described
in Section 2; Section 3 provides the details of the classification and notation
used; finally Section 4 describes the bifurcation geometry.

Some of the results in this paper appeared in the first author’s Ph.D. thesis [8].
The results are verified and then considerably extended in this paper using the
computer classification package Transversal. Since writing this paper it
has been brought to our attention that a similar project is currently under in-
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Table 1. Simple Multigerms R2, S → R3, 0.

Name Normal Form Det Ae-cod Ref

A0 (immersion) (x, y, 0) 1 0 –

S0 (cross-cap) (x, y2, xy) 2 0 –

S±
k (x, y2, y3 ± xk+1y) k + 2 k –

B±
k (x, y2, x2y ± y2k+1), k ≥ 2 2k + 1 k –

C±
k (x, y2, xy3 ± xky), k ≥ 3 k + 1 k –

F4 (x, y2, x3y + y5) 5 4 –

Hk (x, xy + y3k−1, y3), k ≥ 2 3k − 1 k –

A2
0 (x, y, 0; 0, X, Y ) 1 0 1

A2
0|A±

k (x, y, 0;X, Y,X2 ± Y k+1) k + 1 k 2

A2
0|D±

k (x, y, 0;X, Y,X2Y ± Y k−1), k ≥ 4 k − 1 k 2

A2
0|E6 (x, y, 0;X, Y,X3 + Y 4) 4 6 2

A2
0|E7 (x, y, 0;X, Y,X3 + XY 3) 4 7 2

A2
0|E8 (x, y, 0;X, Y,X3 + Y 5) 5 8 2

(A0S0)k (x, y, 0;Y 2, XY + Y 2k+1, X) 2k + 1 k 3.1

A0S
±
k (x, y, 0;Y 3 ± Xk+1Y, Y 2, X) k + 2 k + 1 3.2.1/2

A0S0|A±
k (x, y, 0;X,XY, Y 2 ± Xk+1) k + 1 k + 1 4

(A0S0|A∞)k (x, y, 0;X, Y 2, XY + Y 2k), k ≥ 2 2k k + 1 4

A3
0 (x, y, 0;X, 0, Y ; 0, x̄, ȳ) 1 0 1

A3
0|Ak (x, y, 0;X, 0, Y ; x̄, ȳ, ȳ + x̄k+1) k + 1 k 2

(A2
0|A±

k )(A0) (x, y, 0;X, 0, Y ; x̄, ȳ, x̄2 ± ȳk+1) k + 1 k + 1 3.1/2

(A2
0|A∞)(A0)|Ak (x, y, 0;X, 0, Y ; x̄, ȳ, x̄ȳ + x̄k+1), k ≥ 2 k + 1 k + 1 3.3

(A2
0|A2)(A0)|A2 (x, y, 0;X, 0, Y ; x̄, ȳ, ȳ2 + x̄3) 3 4 3.4

A4
0 (x, y, 0;X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ + X̄) 1 1 1

(A3
0|Ak)(A0) (x, y, 0;X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ + X̄k+1) k + 1 k + 1 2

k ≥ 1 unless otherwise stated.

vestigation by Atique, Mond and Ruas [1]. However, their main concern is
with the simple singularities and they use a completely different classification
scheme, more suited to identifying series rather than a complete stratification
of the jet-space with respect to codimension. In classifications of this nature
we cannot hope to describe all of the details, indeed Section 3 is mainly a sum-
mary of our findings. It is therefore worth pointing out that parts of our list have
been reproduced and verified using different techniques in the aforementioned
work. The two projects therefore serve as a useful check on their common res-
ults. They only overlap in parts of the classification and here our work predates
theirs; the other parts of the two articles address different applications.
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Table 2. r-multigerms satisfying A -codimension(strata) ≤ 6 − r .

Name Normal Form Det Ae-cod Ref

A2
0 (x, y, 0; 0, X, Y ) 1 0 1

A2
0|A±

1 (x, y, 0;X, Y,X2 ± Y 2) 2 2 2

A2
0|A2 (x, y, 0;X, Y,X2 + Y 3) 3 3 2

A2
0|A±

3 (x, y, 0;X, Y,X2 ± Y 4) 4 4 2

(A0S0)1 (x, y, 0;Y 2, XY + Y 3, X) 3 2 3.1

(A0S0)2 (x, y, 0;Y 2, XY + Y 5, X) 5 3 3.1

(A0S0)3 (x, y, 0;Y 2, XY + Y 7, X) 7 4 3.1

A0S
±
1 (x, y, 0;Y 3 ± X2Y, Y 2, X) 3 3 3.2.1

A0S2 (x, y, 0;Y 3 + X3Y, Y 2, X) 4 4 3.2.2

A0B2 (x, y, 0;X2Y + XY 3 + aY 5, Y 2, X) 5, a �= 0, 1
4 5 3.2.3

A0H2 (x, y, 0;Y 3 + Y 4, XY + Y 4 + aY 5, X) 5, a �= 1 5 3.3

A0S0|A±
1 (x, y, 0;X,XY, Y 2 ± X2) 2 3 4

A0S0|A2 (x, y, 0;X,XY, Y 2 + X3) 3 4 4

A0S1|A±
1 (x, y, 0;X, Y 3 + aX2Y, Y 2 ± X2) 3, a �= 0,±1† 5 4

(A0S0|A∞)2 (x, y, 0;X, Y 2, XY + Y 4) 4 4 4

S0S0 (x, xy + y3, y2;XY + aY 3, X, Y 2) 3, a �= 0 5 5

A3
0 (x, y, 0;X, 0, Y ; 0, x̄, ȳ) 1 0 1

A3
0|A1 (x, y, 0;X, 0, Y ; x̄, ȳ, ȳ + x̄2) 2 1 2

A3
0|A2 (x, y, 0;X, 0, Y ; x̄, ȳ, ȳ + x̄3) 3 2 2

A3
0|A3 (x, y, 0;X, 0, Y ; x̄, ȳ, ȳ + x̄4) 4 3 2

(A2
0|A±

1 )(A0) (x, y, 0;X, 0, Y ; x̄, ȳ, x̄2 ± ȳ2) 2 2 3.1

(A2
0|A2)(A0) (x, y, 0;X, 0, Y ; x̄, ȳ, x̄2 + ȳ3) 3 3 3.2

(A2
0|A∞)(A0)|A2 (x, y, 0;X, 0, Y ; x̄, ȳ, x̄ȳ + x̄3) 3 3 3.3

A2
0S0|A1 (x, y, 0;X, 0, Y ; x̄ȳ + aȳ3, x̄, x̄ + ȳ2) 3, a �= 0, 1 3 4

A2
0S0|A1(0)± (x, y, 0;X, 0, Y ; x̄ȳ ± ȳ5, x̄, x̄ + ȳ2) 5 3 4

A2
0S0|A1(1)± (x, y, 0;X, 0, Y ; x̄ȳ + ȳ3 ± ȳ5, x̄, x̄ + ȳ2) 5 3 4

A2
0S

±
1 |A1 (x, y, 0;X, 0, Y ; ȳ3 ± x̄2ȳ, x̄, x̄ + ȳ2) 3 3 4

A2
0S0|A2 (x, y, 0;X, 0, Y ; ȳ2, x̄, x̄ + x̄ȳ + ȳ3) 3 3 4

(A0S0|A±
1 )(A0)1 (x, y, 0;X, 0, Y ; x̄ȳ + ȳ3, x̄, ȳ2 ± x̄2) 3 3 5

A4
0 (x, y, 0;X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ + X̄) 1 0 1

(A3
0|A1)(A0) (x, y, 0;X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ + X̄2) 2 1 2

(A3
0|A2)(A0) (x, y, 0;X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ + X̄3) 3 2 2

(A2
0|A1)(A

2
0) (x, y, 0;X, 0, Y ; 0, x̄, ȳ; 2, a �= 0, 1

4 3 3

X̄, Ȳ , Ȳ 2 + X̄Ȳ + aX̄2)

table continues on next page
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Table 2. continued

A5
0 (x, y, 0;X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , X̄ + Ȳ ; 1‡ 2 1

x̃, ỹ, ax̃ + bỹ)

(A3
0|A1)(A

2
0) (x, y, 0;X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ + X̄2; 2, a �= 0, 1 2 2

x̃, ỹ, x̃ + aỹ)

A6
0 (x, y, 0;X, 0, Y ; x̄2, x̄, ȳ; X̄, Ȳ , X̄ + Ȳ ; †† 6 –

x̃, ỹ, a1x̃ + a2ỹ + a3x̃
2;

X̃, Ỹ , a4X̃ + a5Ỹ + a6X̃
2)

†Here a �= ±1 is respective of the sign of the X2 coefficient.
‡1-determined provided a, b, a − 1, b − 1, a − b �= 0.

††finitely-determined for generic values of the ai ; see Section 3.5.

Theorem 1.1. Table 1 lists, up to A -equivalence, all simple multigerms
R2, S → R3, 0 of multiplicity greater than 1. The simple monogerms were
classified by Mond in [12], these are also shown.

Theorem 1.2. Table 2 lists all multigerms R2, S → R3, 0 (and multigerm
strata where moduli feature) which can be local models for the singularities
appearing on the trajectories of rigid body motions from the plane to space.
Explicitly, we list all r-multigerms satisfying A -codimension(strata) ≤ 6 − r .
The table is divided into sections according to the multiplicity r = 2, . . . , 6
of the multigerm. The column marked ‘Det’ gives the determinacy degree and
restrictions on any moduli. Moduli are denoted by a, b or ai and when moduli
feature the A -codimension refers to the A -codimension of a member of the
stratum. (For the classification of monogerms we refer the reader to Mond’s
Table 1, p.337 in [12]. Those monogerms relevant to the kinematics problem
were analysed in [6].)

The column labelled ‘Ref’ in Tables 1 and 2 references the ‘case number’
which deals with the multigerm in Sections 3.1 to 3.5. The ± signs appearing
in the normal forms in Table 2 represent distinct types. In Table 1 the notation
is used as a convenient method of representing the whole series: here the ±
signs represent distinct types depending on the parity of the exponent k.

Acknowledgements. We would like to thank Professor J. W. Bruce and
Dr. C. G. Gibson for helpful discussions and Dr. R. J. Morris whose computer
package LSMP, The Liverpool Surface Modelling Package [14], was used to
investigate the unfolding spaces in Section 4. We would also like to thank the
referee for making several useful suggestions which we have incorporated. The
second author was supported by the EPSRC grants GR/J28162, GR/L33948
and GR/L17245; computational work was supported by grant GR/H59855.
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2. Multigerms: Preliminaries and Techniques

We refer to the survey article of Wall [15], for background singularity theory.
A few further remarks concerning multigerms will be helpful. Given S ⊂ Rn

and T ⊂ Rp, a multigerm f : Rn, S → Rp, T will mean an equivalence class
of C∞ mappings f̃ : U → Rp, where U is an open neighbourhood of S in
Rn and f̃ (S) ⊂ T , with two representatives deemed to be equivalent if they
agree on an open neighbourhood of S. In the special case S = {0} ⊂ Rn,
T = {0} ⊂ Rp we call such germs monogerms. The notion of A -equivalence
extends to multigerms in the obvious way.

The ring of function germs f : Rn, 0 → R is denoted En; this is a local
ring with maximal ideal Mn consisting of those germs f with f (0) = 0. The
En-module of monogerms f : Rn, 0 → Rp is denoted E (n, p); the submodule
consisting of those germs f with f (0) = 0 is given by MnE (n, p).

We will be interested in multigerms for which S is of finite cardinality, S =
{x1, . . . , xr} say, and T = {0}. The set of all multigerms f : Rn, S → Rp, 0 is
then isomorphic to the direct sum of r copies of MnE (n, p). This realisation
is far easier to work with and from now on such r-multigerms will be denoted
(f1; . . . ; fr), where fi : Rn, 0 → Rp, 0. (Note that ⊕r

1MnE (n, p) is a finitely
generated ⊕r

1En-module, where scalar multiplication is given by (λ1; . . . ; λr) ·
(f1; . . . ; fr) = (λ1f1; . . . ; λrfr).) The integer r is called the multiplicity of
the multigerm, and the fi its branches. In this notation A -equivalence of
multigerms can be defined as follows: (f1; . . . ; fr) ∼A (g1; . . . ; gr) if there
exists germs of diffeomorphisms h1, . . . , hr : Rn, 0 → Rn, 0 and H : Rp, 0 →
Rp, 0 such that

(f1; . . . ; fr) = (H ◦ g1 ◦ h1; . . . ;H ◦ gr ◦ hr).

As in the monogerm case, this equivalence may be induced by the natural
action of the group A = (⊕r

1R) ⊕ L .

Remark 1. (i) In the source we are free to change coordinates about each
base point independently of the associated branch, whereas in the target the
same coordinate change must be applied to each branch.

(ii) Strictly speaking the order of branches is irrelevant so we are really
working with the quotient of ⊕r

1MnE (n, p) under the natural action of the
permutation group S(r) as well as that of A .

Let (x1, . . . , xn) denote coordinates on Rn; {e1, . . . , ep} denote the standard
basis vectors on Rp (considered as monogerms Rn, 0 → Rp); and let f be the
multigerm (f1; . . . ; fr). The tangent space to the orbit A · f is given via the
standard technique of considering paths in A through the identity. We find
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that, in coordinate form, LA · f = LR · f + LL · f where

(1)
LR · f = Mn

(
∂f1

∂x1
, . . . ,

∂f1

∂xn

)
⊕ · · · ⊕ Mn

(
∂fr

∂x1
, . . . ,

∂fr

∂xn

)
,

LL · f = (f1; . . . ; fr)
∗ (Mp

) · {(e1; . . . ; e1), . . . , (ep; . . . ; ep)
}
.

Given u ∈ Mp, (f1; . . . ; fr)
∗(u) is defined to be (f ∗

1 (u); . . . ; f ∗
r (u)), and we

therefore have explicitly:

(f1; . . . ; fr)
∗(u) · (ei; . . . ; ei) = (f ∗

1 (u)ei; . . . ; f ∗
r (u)ei).

Note the restricted form of the left tangent space in comparison with the right
tangent space which is the direct sum of each of the individual right tangent
spaces LR · fi . This is related to point (i) of the preceding remark.

2.1. Classification Techniques

We will use the standard philosophy of reducing all classifications to calcu-
lations in jet-spaces. The problem is then one of Lie groups acting on affine
spaces and techniques such as Mather’s Lemma [11, Lemma 3.1], and Com-
plete Transversals [2], may be applied. The technical details are merely a
generalisation of those from the familiar monogerm case. We will just state
the results which provide the machinery behind the classification. From the
discussion above and the analogy with the standard monogerm case, the nota-
tion used should be clear. It will suffice to use one of the more elementary
of the complete transversal theorems presented in [2], namely the use of A -
equivalences whose 1-jet is the identity.

The standard k-jet-space MnE (n, p)/M k+1
n E (n, p) is denoted J k(n, p).

Since we choose to represent the space of all r-multigerms as ⊕r
1MnE (n, p),

the corresponding multijet space can then be realised as ⊕r
1J

k(n, p). Let Rk

be the normal subgroup of R consisting of those germs whose k-jet is equal to
that of the identity; and similarly for L . We consider the (multi) k-jet-groups
(⊕r

1R/Rk)⊕ (L /Lk) and (⊕r
1R1/Rk)⊕ (L1/Lk) denoted rJ

kA and rJ
kA1

respectively (or simply J kA and J kA1 for short). These are Lie groups and
act on the affine space ⊕r

1J
k(n, p); see [10, Section 7]. Let Hk denote the

image of ⊕r
1M

k
n E (n, p) in ⊕r

1J
k(n, p), the vector subspace of ⊕r

1J
k(n, p)

consisting of the homogeneous jets of degree k.

Theorem 2.1. Let f be a multigerm Rn, S → Rp, 0. If T ⊂ Hk+1 is a
vector subspace of Hk+1 such that

Hk+1 ⊂ T + L(rJ
k+1A1) · jkf



64 c. a. hobbs and n. p. kirk

then every (k + 1)-jet F with jkF = jkf is in the same rJ
k+1A1-orbit as

some (k + 1)-jet of the form jkf + t , for some t ∈ T .

For determinacy and complete transversal calculations we must work with
the tangent space LA1, or more precisely the Lie algebra L(rJ

kA1). This is
just the projection of LA1 into the jet-space and, in coordinate form, LA1 is
given by the expressions (1) above, only now the maximal ideals Mn and Mp

are raised to the power of 2.
Theorem 2.1 allows us to classify jets with respect to rJ

kA1-equivalence
(and therefore rJ

kA -equivalence) inductively at the jet level. This provides an
A -classification of finitely determined multigerms. From [10], a multigerm f

is finitely determined if and only if it has finite A -codimension (or equivalently
finite Ae-codimension). Applying the methods of [3] (or indeed Theorem 2.1
above) we obtain the following determinacy criterion.

Theorem 2.2. A multigerm f of multiplicity r is k-determined if

⊕r
1M

k+1
n E (n, p) ⊂ LA1 · f.

To make this suitable for implementation on a computer we need to reduce
it to a question in some appropriate jet-space.

Corollary 2.3. A multigerm f of multiplicity r is k-determined if

⊕r
1M

k+1
n E (n, p) ⊂ LA1·f+f ∗(Mp)(⊕r

1M
k+1
n E (n, p))+⊕r

1M
2k+2
n E (n, p).

Remark 2. Corollary 2.3 follows from [3, Lemma 2.6], extended to the
multigerm case. The proof is similar to the original, only now we work with
the finitely generated ⊕r

1En-module ⊕r
1E (n, p) and the Ep-module structure

is induced via the ring homomorphism (f1; . . . ; fr)
∗ : Ep → ⊕r

1En. The
technical tools needed in this (and many of the other standard results, such
as the determinacy and unfolding theorems) are Nakayama’s lemma and The
Preparation Theorem and both hold in this setting. Note that the foundational
work of Mather applied to the case of multigerms; for example, see [10] for
the determinacy theorems and The Preparation Theorem.

2.2. Codimension Restrictions

We now return to the specific case of multigerms R2, S → R3, 0. From [6] the
condition for a stratum of the jet space rJ

k(2, 3) to be relevant to the kinematics
problem is that it must have A -codimension ≤ 6 − r , where r is the number
of branches (multiplicity) of the multigerm. This tells us immediately that we
need look for multigerms with at most 6 branches. In Section 3 we classify
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r-germs with these conditions in mind, stopping when we have found all of
the relevant strata. The following proposition helps rule out many of the initial
branches of the classification tree on codimension grounds.

Proposition 2.4. Let f be the multigerm (g1; . . . ; gr;h1; . . . ;hs) of mul-
tiplicity r + s. Consider the associated multigerms g = (g1; . . . ; gr) and
h = (h1; . . . ;hs) of multiplicity r and s respectively. Then

A -codim(f ) ≥ A -codim(g) + A -codim(h).

Proof. From the definition of the A tangent space given in equations (1)
we see that there is a natural inclusion LA · f → LA · g ⊕ LA · h. Thus,
there is a natural surjection

⊕r+s
1 MnE (n, p)/LA · f → ⊕r+s

1 MnE (n, p)/(LA · g ⊕ LA · h)
∼= (⊕r

1MnE (n, p)/LA · g) ⊕ (⊕s
1MnE (n, p)/LA · h).

Looking at the real dimension of these spaces we obtain the result.

Corollary 2.5. Let f be the multigerm (f1; . . . ; fr) then

A -codim(f ) ≥
r∑

i=1

A -codim(fi).

(The codimension referred to on the right hand side of the above inequality is,
of course, the standard A -codimension of a monogerm fi .)

We make the following preliminary observations. For monogerms R2, 0 →
R3, 0 the possible 1-jets are (x, y, 0), (x, 0, 0) and (0, 0, 0) of J 1A -codimen-
sion 0, 2 and 6, respectively. Therefore none of the multigerms we are interested
in can have a branch with zero 1-jet. In the cases r = 3 and r = 4 at most
one branch cannot be immersive. In the cases r = 5 and r = 6 all branches
must be immersive. Further restrictions on the classification of r-multigerms
transpire once the classification of (r − 1)-multigerms has been achieved.

Since the J kA -codimension is increasing with k we achieve the bounds
on codimension using inductive classification at the jet-level. More precisely,
given a multigerm f , the natural projection π : (J k+1A ) · jk+1f → (J kA ) ·
jkf from the J k+1A orbit of f to the J kA orbit of f , is surjective. There-
fore π−1((J kA ) · jkf ) is a submanifold of J k+1(n, p) with codimension
equal to the codimension of (J kA ) · jkf in J k(n, p). But π−1((J kA ) ·
jkf ) ⊃ (J k+1A ) · jk+1f and we have the following well known result:
J kA -codim(f ) ≤ J k+1A -codim(f ). Finally, if f is k-A -determined then,
by the determinacy theorems of [3], there exists some unipotent subgroup G of
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A such that ⊕r
1M

k+1
n E (n, p) ⊂ LG ·f , and in particular ⊕r

1M
k+1
n E (n, p) ⊂

LA · f . It then follows that J kA -codim(f ) = A -codim(f ).
Thus, it is natural to work with A -codimension at the jet-level. In Section 4

we study the geometry of our multigerms via versal unfoldings. The following
relation between A - and Ae-codimension is useful.

Proposition 2.6. Let f : Rn, S → Rp, 0 be an A -finite multigerm of
multiplicity r . If f is not stable then the following relation holds: Ae-codim =
A -codim + r(p − n) − p.

A proof appears in the unpublished notes of Wilson [16] and, in the case
r = 1, in the survey article ofWall [15, p.510]. We remark that our codimension
restrictions A -codim ≤ 6 − r are therefore equivalent to the single condition
Ae-codim ≤ 3 for all multigerms under consideration.

3. Classification

In this section we describe the classification of multigerms up to the codimen-
sion restrictions discussed in Section 2.2. The results are summarised in The-
orem 1.2. By taking the classification further we obtain series which provide us
with the full list of simple multigerms given in Theorem 1.1. To give full details
of the calculations would extend the paper, whose main concern is obtaining
a stratification of the jet-space with respect to codimension, by a significant
length. We provide a summary of the classification process which should act as
a suitable guide for anyone keen enough to repeat any parts of the calculation!
However, for brevity, the full details are omitted.

We name the multigerms by exploiting existing notation in a systematic
way. The notation of Mond is used to describe each branch of the multigerm
(A0 will represent an immersed branch). In addition, if the branches intersect in
a non-transverse manner then the contact type of their intersection is appended
(following the symbol | ). For example, the bigerm consisting of 2 transverse
sheets is denoted A0A0, whereas the case of 2 sheets intersecting with A±

k -
contact is denoted A0A0|A±

k (shortened to A2
0 and A2

0|A±
k , respectively). For

trigerms the contact type applies to all three branches of the trigerm (in all of
our examples this is the contact of the third branch with the intersection curve
of the first two) unless brackets dictate otherwise. Thus, A3

0 represents the
transverse triple point and A3

0|Ak denotes the case where two sheets intersect
transversely and the third makes (k + 1)-order contact with their intersection
curve (specifically, the contact map is Ak , (y, xk+1) in this case). When two
sheets intersect with A±

k -contact (as a bigerm) and the third sheet is trans-
verse to both we use the notation (A2

0|A±
k )(A0)|A1. The final A1 refers to the

contact type of all three branches, but since this is the least degenerate case



on the classification and bifurcation of multigerms . . . 67

(contact to order A1 or higher is inevitable) we drop this A1 to simplify the
notation. The full notation is required to distinguish higher contact types such
as (A2

0|A2)(A0)|A2. Finally, in a few cases the branch and contact type are
enough to describe only a stem. A subscript is therefore appended to the nota-
tion describing the whole series. The transverse intersection of a sheet and a
cross-cap (A0S0)k and A∞ intersection (A0S0|A∞)k are examples of this kind.

The rest of this section will summarise the details of the classification. We
will describe the stratification of the low degree jet-spaces but, for brevity,
describe how the classification proceeds only along a few selected branches.
We will adhere to the following conventions. Coordinates in the source will be
denoted (x, y) (extending this to (X, Y ), (x̄, ȳ), etc., to help distinguish each
branch); while coordinates in the target will be denoted (u, v,w). We will use
the term complete transversal to mean the affine space f +T (and occasionally
just give a basis for T ) referred to in Theorem 2.1. At each given jet-level J k we
will summarise all the relevant jets in the form of a table, listing the jets in order
of increasing J kA -codimension. The columns of the table contain: a numeric
label for future reference to the jet; the jet itself; the J kA -codimension of the
jet; and finally comments — for example, the symbol # will be used to indicate
the jet is ruled out of further consideration on codimension grounds.

As mentioned above, for brevity we present a summary of the classification
and, as such, only provide a guide to the reader on how to produce the list of
singularities in Table 1. In particular, in most cases it is a straightforward matter
to identify adjacencies which prove that a jet is non-simple. For example, in
Section 3.1 (bigerms), Case 3.2.4 deforms to 3.2.3, all of whose germs are
found to be modular. Such considerations are implicit at several stages of
the classification of the simple multigerms. However, for completeness we
mention the slightly more involved Case 4 (from Section 3.1 also). It is not
entirely clear from the details describing this case that all of the simples are
captured. In particular, the 2-jet (x, y, 0;X, Y 2, X2), of A -codimension 5,
must be considered further. It turns out that the jets lying over this case are
modular families and the following series.

A0S
±
k |A2 (x, y, 0;X, Y 2, X2 + Y 3 ± Xk+1Y )

k ≥ 1, (k + 2)-determined, A -codim = k + 4.

Adjacencies with A0S1|A±
1 confirm that all members of this series are non-

simple, thus completing the treatment of this case. Finally, we remark that to
prove the singularities in Table 1 are simple one only has to establish a set of
all possible adjacencies, and not the more difficult task of identifying which
adjacencies actually exist.
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3.1. Classification of Bigerms

Here we classify bigerms with A -codimension ≤ 4. Recall that no such bigerm
can have a branch with zero 1-jet. Up to A -equivalence the possible 1-jets are
as follows.

1-jet J 1A -codim

1 (x, y, 0; 0, X, Y ) 0 1-det
2 (x, y, 0;X, Y, 0) 2
3 (x, y, 0; 0, 0, X) 2
4 (x, y, 0;X, 0, 0) 3
5 (x, 0, 0; 0, X, 0) 4
6 (x, 0, 0;X, 0, 0) 6 #

Case 2. The bigerm can be written in the form (x, y, 0;X, Y, φ(X, Y )). For
such bigerms we refer to φ as the separation function and have the following
result.

Theorem 3.1. [12, Thm. 7.2], Bigerms of immersions are classified for A by
the K -classes of the separation functionφ(X, Y ). The Ae-codimension (which
equals the A -codimension − 1) of the bigerm is given by the Ke-codimension
of φ.

Using this we find that the bigerms of immersions with A -codimension ≤ 4 are
A2

0|A±
1 , A2

0|A2 and A2
0|A±

3 . So the first part of the stratification of ⊕2
1J

k(2, 3)
is given by the first four entries in Table 2. We also obtain the simple series
A2

0|A±
k , A2

0|D±
k , A2

0|E6, A2
0|E7 and A2

0|E8 in Table 1. The contact type of the
two branches is just the K -class of the separation function and appears in the
notation.

Case 3. A 2-transversal is (x, y, 0; aY 2 + bXY, cY 2 + dXY,X). Here we
will describe the diffeomorphic changes of coordinates in the source and tar-
get which reduce the above family to four possible non-A -equivalent 2-jets.
Calculating the J 2A -codimension for each verifies that these represent four
distinct orbits.

First suppose a �= 0. We can scale a to equal 1 and then remove the cY 2

term via the coordinate change v �→ v − cu. This leaves us with j 2f =
(x, y − cx, 0;Y 2 + bXY, (d − cb)XY,X), but using a change of coordinates
y �→ y + cx in the source of the first branch gives j 2f = (x, y, 0;Y 2 +
bXY, (d−cb)XY,X). Now we can write Y 2+bXY as (Y +bX/2)2−b2X2/4,
and change coordinates in the source of the second branch via Y �→ Y −bX/2
to get j 2f = (x, y, 0;Y 2 − b2X2/4, (d − bc)XY − (d − bc)bX2/2, X).
(This is known as completing the square, a special case of the Tschirnhaus
transformation.) But we can change coordinates in the target via u �→ u +
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b2w2/4 and v �→ v + (d − bc)bw2/2 (which will not affect the first branch)
to get j 2f = (x, y, 0;Y 2, (d − bc)XY,X). Then either d − bc is zero, or it
can be scaled to equal 1.

By symmetry, a similar argument holds if c �= 0. Finally, consider a = c =
0. If b �= 0 we can scale it to be 1 and then use the target change of coordinates
v �→ v − du followed by a change of coordinates in the source of the first
branch to get j 2f = (x, y, 0;XY, 0, X). If b = 0 but d �= 0 we arrive at the
same 2-jet, leaving the final possibility: a = b = c = d = 0.

In summary, the possible 2-jets are as follows.

2-jet J 2A -codim

3.1 (x, y, 0;Y 2, XY,X) 2
3.2 (x, y, 0; 0, Y 2, X) 3
3.3 (x, y, 0; 0, XY,X) 4
3.4 (x, y, 0; 0, 0, X) 6 #

Case 3.1. For this case we appeal to the following theorem. This gives the
series (A0S0)k and corresponding entries in Table 2.

Theorem 3.2. [12, Thm. 7.5] (i) The bigerm (x, y, 0;Y 2, XY +Y 2k+1, X)

is (2k + 1)-determined and of Ae-codimension k, where k ≥ 1.
(ii) Any finitely determined bigerm consisting of an immersion and a cross-

cap, meeting transversely, is equivalent to one of the germs defined in (i).

Case 3.2. A 3-transversal is (x, y, 0; aY 3 +bX2Y, Y 2, X) and after further
simplification similar to that above we obtain the following 3-jets.

3-jet J 3A -codim

3.2.1 (x, y, 0;Y 3 ± X2Y, Y 2, X) 3 3-det
3.2.2 (x, y, 0;Y 3, Y 2, X) 4
3.2.3 (x, y, 0;X2Y, Y 2, X) 4
3.2.4 (x, y, 0; 0, Y 2, X) 5 #

Case 3.2.2. Further calculations give the series A0S
±
k .

Case 3.2.3. First note that the critical sets of the second branch of 3.2.2 and
3.2.3 are not diffeomorphic, so that these multigerms are not A -equivalent. A
4-transversal is (x, y, 0;X2Y + aXY 3, Y 2, X) and we may reduce this to the
following two cases.

4-jet J 4A -codim
(x, y, 0;X2Y + XY 3, Y 2, X) 4
(x, y, 0;X2Y, Y 2, X) 5 #
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Continuing with the first, a 5-transversal is (x, y, 0;X2Y+XY 3+aY 5, Y 2, X);
denote this family fa . We find that the J 5A -codimension is 5 for all values of
a, and that (0, 0, 0; 0, Y 5, 0) /∈ L(J 5A )·fa . So a is a genuine modulus and the
codimension of the stratum is 4. Further, fa is 5-determined for a �= 0, 1

4 and
this provides the first unimodular family in our classification. The exceptional
cases are of codimension at least 5 and can be discarded.

Case 3.3. Returning now to the 2-jets, a 3-transversal for (x, y, 0; 0, XY,X)

is fa,b,c = (x, y, 0; aY 3 + bXY 2, XY + cY 3, X). Direct computation of
L(J 3A )·fa,b,c shows that if a = 0 then the J 3A -codimension is at least 5. We
can therefore ignore this case and assume that (after scaling) a = 1. We then ap-
ply Mather’s Lemma and see that the family fb,c = (x, y, 0;Y 3+bXY 2, XY+
cY 3, X) is trivial in b and c. Specifically, we show that the J 3A -codimension
of fb,c is 4 and that the vectors tangent to this family, (0, 0, 0;XY 2, 0, 0) and
(0, 0, 0; 0, Y 3, 0), are contained in L(J 3A ) · fb,c for all values of b and c.
Thus we have one J 3A -orbit to consider, namely (x, y, 0;Y 3, XY,X).

Continuing, a 4-transversal is (x, y, 0;Y 3 + aY 4, XY + bY 4, X) and this
family has J 4A -codimension ≤ 4 only if a �= 0 and b �= 0. We can therefore
assume that (after scaling)a andb are equal to 1, giving (x, y, 0;Y 3+Y 4, XY+
Y 4, X).

A 5-transversal is (x, y, 0;Y 3+Y 4, XY+Y 4+aY 5, X). Here a is a modulus
and each member of the family is 5-determined and of J 5A -codimension 5
provided a �= 1. The codimension of the whole stratum is 4.

Case 4. The classification of branches over this 1-jet follows similar ar-
guments to those for Case 3; we will just add the following observations. A
2-transversal is (x, y, 0;X, aY 2 +bXY, cY 2 +dXY +eX2). After further sim-
plification we obtain four 2-jets of A -codimension ≤ 4 which, in turn, give
rise to the types A0S0|A±

1 through to (A0S0|A∞)2 and the series A0S0|A±
k and

(A0S0|A∞)k in Tables 2 and 1. (See the remarks at the end of the introduction
to Section 3 also.)

Case 5. A 2-transversal is (x, ay2+bxy, cy2+dxy; eY 2+fXY,X, gY 2+
hXY). We find there is only one orbit of J 2A -codimension ≤ 4, namely
(x, xy, y2;XY,X, Y 2). On continuing the classification, the only relevant case
to arise from this jet is type S0S0. This completes the classification of the
bigerms.

3.2. Classification of Trigerms

We know that a trigerm of A -codimension ≤ 3 must have at least two im-
mersed branches and that no branch can have zero 1-jet. Certainly we can have
three transverse immersions: this is Case 1 below. Now let us suppose that the
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first two branches are immersions. The possibilities are (x, y, 0;X, 0, Y ) and
(x, y, 0;X, Y, 0). Direct computation shows there are nine trigerms having
two immersed branches, those of A -codimension ≤ 3 are as follows.

1-jet J 1A -codim

1 (x, y, 0;X, 0, Y ; 0, x̄, ȳ) 0 1-det
2 (x, y, 0;X, 0, Y ; x̄, ȳ, ȳ) 1
3 (x, y, 0;X, 0, Y ; x̄, ȳ, 0) 2
4 (x, y, 0;X, 0, Y ; 0, x̄, x̄) 2
5 (x, y, 0;X, 0, Y ; 0, x̄, 0) 3

Case 2. Further calculations give the series A3
0|Ak .

Case 3. A 2-transversal is (x, y, 0;X, 0, Y ; x̄, ȳ, aȳ2 + bx̄ȳ + cx̄2). We
will show how to apply elementary coordinate changes to reduce this family
to five non-J 3A -equivalent 3-jets.

First suppose c �= 0, scale it to equal 1 and then complete the square in the
last component to give (x, y, 0;X, 0, Y ; x̄ +αȳ, ȳ, x̄2 +βȳ2) for some α and
β. Now change coordinates via u �→ u−αv to get (x−αy, y, 0;X, 0, Y ; x̄, ȳ,
x̄2 +βȳ2). Then a change in the source coordinates (x, y) and (x̄, ȳ) gives the
2-jet (x, y, 0;X, 0, Y ; x̄, ȳ, x̄2 ± ȳ2) or (x, y, 0;X, 0, Y ; x̄, ȳ, x̄2).

If c = 0 butb �= 0 then we can write the 2-jet as (x, y, 0;X, 0, Y ; x̄, ȳ, ȳ(x̄+
αȳ)). Changing the source coordinates (x̄, ȳ)gives (x, y, 0;X, 0, Y ; x̄−αȳ, ȳ,

ȳx̄). As before we can then reduce to give (x, y, 0;X, 0, Y ; x̄, ȳ, x̄ȳ).
Finally, c = b = 0 gives the remaining two cases. The complete stratifica-

tion is as follows.

2-jet J 2A -codim

3.1 (x, y, 0;X, 0, Y ; x̄, ȳ, x̄2 ± ȳ2) 2 2-det
3.2 (x, y, 0;X, 0, Y ; x̄, ȳ, x̄2) 3
3.3 (x, y, 0;X, 0, Y ; x̄, ȳ, x̄ȳ) 3
3.4 (x, y, 0;X, 0, Y ; x̄, ȳ, ȳ2) 4 #
3.5 (x, y, 0;X, 0, Y ; x̄, ȳ, 0) 5 #

Case 3.2. Further calculations give the series (A2
0|A±

k )(A0).

Case 3.3. Further calculations give the series (A2
0|A∞)(A0)|Ak . (Note that

we specify k ≥ 2 in this series because for k = 1 the resulting multigerm is
A -equivalent to Case 3.1.)

Case 3.4. Although this case is ruled out on codimension grounds, we must
consider it further to complete the list of simple multigerms. A 3-transversal
is (x, y, 0;X, 0, Y ; x̄, ȳ, ȳ2 + ax̄2ȳ + bx̄3). If b �= 0 then, applying Mather’s
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Lemma, we can reduce it to equal 1 and also find that the family in a is trivial.
The resulting jet (A2

0|A2)(A0)|A2 is 3-determined of A -codimension 4. The
case b = 0 gives rise to non-simples and is not considered further.

Case 4. A 2-transversal is (x, y, 0;X, 0, Y ; aȳ2 +bx̄ȳ, x̄, x̄+cȳ2 +dx̄ȳ).
Using arguments similar to those of previous examples we find that there are
three 2-jets of A -codimension ≤ 3 which, in turn, give rise to the types
A2

0S0|A1 through to A2
0S0|A2 in Table 2.

Case 5. A 2-transversal is (x, y, 0;X, 0, Y ; aȳ2+bx̄ȳ, x̄, cȳ2+dx̄ȳ+ex̄2).
The only orbit with J 2A -codimension ≤ 3 is found to be (x, y, 0;X, 0, Y ; x̄ȳ,
x̄, ȳ2 ± x̄2). Further calculations give the following series. (We remark that
the members of this series are non-simple.) The case k = 1 provides the final
trigerm in Table 2 and our classification of trigerms is complete.

(A0S0|A±
1 )(A0)k (x, y, 0;X, 0, Y ; x̄ȳ + ȳ2k+1, x̄, ȳ2 ± x̄2)

k ≥ 1, (2k + 1)-determined, A -codim = k + 2.

3.3. Classification of Four-germs

We need to consider 4-germs with A -codimension ≤ 2. We know that any 4-
germ (f1; f2; f3; f4) relevant to our problem must have at least three immersed
branches and can assume that these are f1, f2 and f3; in addition, f4 cannot
have zero 1-jet. If f4 is immersed then (f1; f2; f3) can be any of the trigerms
(1), (2) or (3) in Section 3.2. However, direct computation shows there are
two 4-germs of type (2), each of A -codimension 3, and two 4-germs of type
(3), each of A -codimension 4; the remaining germs being equivalent to those
obtained from type (1). Therefore the only relevant case is type (1) and we
obtain the following.

1-jet J 1A -codim

1 (x, y, 0;X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , X̄ + Ȳ ) 0 1-det

2 (x, y, 0;X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ ) 1

3 (x, y, 0;X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , 0) 2

Finally, iff4 isA -equivalent to (x, 0, 0) then, from Proposition 2.4, (f1; f2; f3)

must be A -equivalent to the trigerm (1). However, the only 4-germ of this type
is found to be (x, y, 0;X, 0, Y ; 0, x̄, ȳ; X̄, 0, 0), having A -codimension 4.

Case 2. Further calculations give the series (A3
0|Ak)(A0).

Case 3. A 2-transversal is (x, y, 0;X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , aȲ 2 + bX̄Ȳ +
cX̄2). Using elementary coordinate changes and Mather’s lemma we obtain
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only one 2-jet relevant to our problem, namely (x, y, 0;X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ ,

Ȳ 2 + X̄Ȳ + cX̄2)

The coefficient c is a genuine modulus and the whole stratum has codimen-
sion 2. If c �= 0, 1

4 the 4-germ is 2-determined. (The isolated cases c = 0 and
c = 1

4 are ruled out, being of too high a codimension.)

3.4. Classification of Five-germs

We need to consider 5-germs with A -codimension ≤ 1. From Proposition 2.4,
all branches must be immersed and the 4-germ formed by the first four branches
(say) must be of type (1) or (2) in Section 3.3. We find that there are five cases,
with two having A -codimension ≤ 1.

1-jet J 1A -codim

1 (x, y, 0;X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , X̄ + Ȳ ; x̃, ỹ, ax̃ + bỹ) 2 1-det

2 (x, y, 0;X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ ; x̃, ỹ, x̃ + bỹ) 2

Case 1. This is a bimodular family and the codimension of the stratum is 0.
We find that the 5-germ is 1-determined provided a, b, a−1, b−1, a−b �= 0.

Case 2. Provided b �= 0, 1, a 2-transversal is (x, y, 0;X, 0, Y ; 0, x̄, ȳ; X̄,

Ȳ , Ȳ + aX̄2; x̃, ỹ, x̃ + bỹ). We take the stratum as b �= 0, 1 from now on.
Applying Mather’s Lemma to the family in a we can reduce the above family
to the following two unimodular strata.

2-jet J 2A -cod
(x, y, 0;X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ + X̄2; x̃, ỹ, x̃ + bỹ) 2 2-det (b �= 0, 1)

(x, y, 0;X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ ; x̃, ỹ, x̃ + bỹ) 3 #

3.5. Classification of Six-germs

We need to consider 6-germs with A -codimension = 0. From Proposition 2.4,
the 5-germ formed by the first five branches (say) must be of type (1) in Sec-
tion 3.4. Ignoring several exceptional cases (which we may do on codimension
grounds) we find that the J 1A -stratum of 6-germs we need to consider is given
by

(x, y, 0;X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , X̄ + Ȳ ; x̃, ỹ, a1x̃ + a2ỹ; X̃, Ỹ , a3X̃ + a4Ỹ ).

For genericai a 2-transversal is (spanned by) {(x̄2, 0, 0), (0, 0, x̃2), (0, 0, X̃2)}.
The resulting family is 6-modular and with a little work can be reduced to the
form

(x, y, 0;X, 0, Y ; x̄2, x̄, ȳ; X̄, Ȳ , X̄ + Ȳ ;
x̃, ỹ, a1x̃ + a2ỹ + a3x̃

2; X̃, Ỹ , a4X̃ + a5Ỹ + a6X̃
2).
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A generic representative of this family has J 2A -codimension 6 and the stratum
therefore has codimension 0 and contributes to our list of singularities. We
do not determine the exceptional values for the moduli in this family. Com-
puter calculations indicate that the defining equations for the corresponding
varieties are extremely complicated and likely to be of little practical use. In-
stead we attempt to show that the family is finitely-determined for generic
ai . Computer calculations verify that for a fixed value of the moduli (say,
(a1, . . . , a6) = (2, 3, 1, 1, 5, 4), chosen following a preliminary investigation
of the exceptional values) the 6-germ is 2-determined. (Note, the calcula-
tion using fixed moduli is computationally far less intensive.) Since finite-
determinacy is an open condition the conclusion follows. In addition, should
we need to consider a specific example in applications then we have a member
of the family whose exact determinacy degree (2) is known.

4. Bifurcation Geometry

In this section we analyse the bifurcation geometry of the multigerms appear-
ing in Table 2. Versal unfoldings are calculated using the computer package
Transversal (unfolding parameters being denoted by a, ai , b and c). We
describe each bifurcation set via its stratification into the five components (de-
noted by B1, . . . ,B5) corresponding to the Ae-codimension 1 degenerations.
In many cases this is accompanied by diagrams of the bifurcation set and the
transitions which occur in the multigerm as one passes through the bifurcation
set. This analysis was carried out in real time using the computer package
LSMP [14] but, of course, it is not always possible to reproduce faithful rep-
resentations of the computer pictures. For example, in some cases it is more
informative to show the transitions in the intersection curves of the branches.
In addition, such analysis is meaningless for cases where the normal form
contains moduli. Here a topological treatment is needed but we do not con-
sider such issues as they would extend the article substantially. We stop at an
algebraic description of the bifurcation sets and summarise the types of trans-
itions exhibited; the geometry is notably more complex for the non-simples.
The bigerm A0H2 and the 6-germ A6

0 are the only cases we omit completely.
The algebraic description of both is extremely complicated (in the former case
due to the algebraic form of the double point curve D2(f2)). A more practical
approach would be to remove the moduli via topological methods at the outset.

There are five degenerations of Ae-codimension 1, characterised as follows.
The strata B1, . . . ,B5 of the bifurcation set B are given by taking the closure
of the corresponding sets.

B±
1 fusion/birth of two cross-caps via ‘bubbles’ (B+

1 ) or ‘cones’ (B−
1 ). This

is a single branch phenomenon which occurs when one branch of the
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multigerm is adjacent to the monogerm S±
1 , [12]. Conditions come dir-

ectly from the calculations for monogerms carried out in [6].

B±
2 non-transverse double points: elliptic (B+

2 ) or hyperbolic (B−
2 ). These

occur when two smooth branches intersect and have a common tangent
plane at the point in question. See A2

0|A±
1 below.

B3 cross-cap/immersion intersections. These occur when a smooth branch
intersects a cross-cap transversally. Precisely (for codimension 1 and not
higher degenerations) we require the immersion is transverse to both the
cross-cap’s tangent line and double point curve, and that we have the
least degenerate form of cross-cap, namely one with quadratic double
point curve. See (A0S0)1 below (the double point curve being given by
X + Y 2 = 0).

B4 non-transverse triple points. These occur when two smooth branches
intersect transversally, and a third smooth branch makes a tangential
intersection with this curve of double points. See A3

0|A1 below.

B5 transverse quadruple points. These occur when four smooth branches in-
tersect. Precisely (for codimension 1 and not higher degenerations) we
require each pair of branches to intersect transversally, with the remain-
ing two branches intersecting this curve of double points transversally.
See A4

0 below.

Figure 4.1 shows stable perturbations of these five types close to the bifurc-
ation point.

In the examples below the strata are often given by standard discriminants.
For example, discriminants of xk+1 + ak−1x

k−1 + · · · + a1x + a0 (Ak) and
discriminants of xk+1+akx

k+· · ·+a1x+a0. The latter cases are diffeomorphic
to the product of the corresponding Ak discriminant with a line; for example,
the parabola and the ‘twisted-cuspidal-edge surface’ for k = 1 and k = 2,
respectively; see bigerms A0S0|A±

1 and A0S0|A2 and Figures 4.13–4.15. By
‘discriminant of p(x)’ we will implicitly mean real discriminant and denote
this by/(p(x)), that is the hypersurface given by eliminating x fromp(x) = 0
and dp/dx = 0 for real x. For example, with p(x) = x2k + ak−1x

2k−2 +
· · · a1x

2 + a0 this imposes further restrictions and gives the ‘half-parabola’
(a2

1 − 4a0 = 0, a1 ≤ 0) and the ‘half twisted-cuspidal-edge’ for k = 2 and
k = 3, respectively. See bigerms (A0S0)2 and (A0S0)3 and Figures 4.8 and 4.9.

It is informative to calculate the bifurcation sets for general series of simple
singularities where possible. As the calculations are routine we give the proofs
in several cases and state the remaining ones. Table 3 summarises these results
for all of the simple singularities appearing in Table 2. The remaining non-
simples are discussed as individual cases below.
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Fig. 4.1

4.1. Bifurcation of the Simple Bigerms

Series A2
0|A±

k . This represents the intersection of two immersed sheets. An
Ae-versal unfolding is given by (f1; f2) = (x, y, 0;X, Y, p(X, Y )) where
p(X, Y ) = X2 ± Y k+1 + ak−1Y

k−1 + · · · + a1Y + a0 defines the intersection
curve of f1 and f2 and their contact type. The only non-empty stratum of B
is B2 which is given by the discriminant of p(0, Y ).

The proof is similar to that of case (A0S0)k , which we take as as our main
example. The bigerms A2

0|A±
1 are the archetypes of the non-transverse elliptic

and hyperbolic double points, respectively types B+
2 , and B−

2 . One may dis-
tinguish B+

2 and B−
2 points geometrically by the intersection curve of f1 and

f2 as this identifies the order of contact of the branches. Note that p is a versal
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±ȳ
2
+

b
—

b
—

±a
2
+

b
—

4.
20

/4
.2

1
(A

2 0
|A

2
)(
A

0
)

ȳ
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unfolding of the intersection curve, which in the general case is of type Ak , as
suggested by the computer pictures.

Fig. 4.2 A2
0|A+

1

Fig. 4.3 A2
0|A−

1

Fig. 4.4 A2
0|A2
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Fig. 4.5 A2
0|A+

3

Fig. 4.6 A2
0|A−

3

Series (A0S0)k . This represents the transverse intersection of a sheet and
a cross-cap. An Ae-versal unfolding is given by (f1; f2) = (x, y, 0;Y 2,

Yp(X, Y ),X) where p(X, Y ) = X + Y 2k + ak−1Y
2k−2 + · · · + a1Y

2 + a0

defines D2(f2). The non-empty strata of B are B3 and B4, given by a0 = 0
and the discriminant of p(0, Y ), respectively.
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Proof. The versal unfolding is calculated using the standard unfolding
theorem extended to the multigerm case. The details are routine and omitted.
We will need to consider the multilocal behaviour of each branch, in particular
determine its double point set in the source. The following remarks are useful in
many other cases as well. Given a monogerm f : R2, 0 → R3, 0 we define the
source double point setD2(f ) to be the closure of the set (x1, y1) ∈ R2 such that
there exists (x2, y2) ∈ R2 with (x1, y1) �= (x2, y2) and f (x1, y1) = f (x2, y2).
(Strictly speaking, D2(f ) is a set germ defined via representatives of the germ
f .) Given a monogerm f with 2-jet j 2f = (x, y2, 0) we can write f in the
form (x, y2, yp(x, y)) where p is even in y, that is p(x, y) = p̃(x, y2) for
some p̃; see [12]. In this case we can calculate D2(f ) from first principles: we
require x1 = x2, y1 = −y2 �= 0 and p(x1, y1) = 0. Taking the closure of such
{(x1, y1)} we see that D2(f ) is given by p(x, y) = 0. This applies to many
of the cases we have to consider and can be extended to the other cases using
similar arguments.

B1 stratum: since neither branch is more degenerate than a cross-cap it
cannot deform (be adjacent) to an S1 singularity. The B1 stratum is therefore
empty.

B2 stratum: the two branches intersect when X = 0. However, since

df2 =
( 0 2Y
Y∂p/∂X p + Y∂p/∂Y

1 0

)

one sees that the two branches are never tangential. Likewise one sees that a
point (X1, Y1) on D2(f2) and its corresponding point (X1,−Y1) never give
rise to a tangential intersection in the image. Thus B2 is empty.

B3 stratum: this type of degeneracy (or worse) can only occur when both
branches intersect andf2 has a cross-cap at the intersection point. Respectively,
X = 0 and, from the expression for df2: Y = 0, p(X, Y ) = 0. That is,
p(0, 0) = 0 and B3 is just {a0 = 0}.

B4 stratum: triple points can only occur when the image of f1 intersects
the image of D2(f2). Now f1 intersects f2 when X = 0. D2(f2) is given by
p(X, Y ) = 0 with tangent space (at a given point (X, Y )) given by the kernel
of dp. This is spanned by (−∂p/∂Y, 1) and so the tangent to the intersection
curve in the target is spanned by the image of this vector under df2. Therefore
f2(D

2) intersects f1 tangentially precisely when X = 0 and p = ∂p/∂Y = 0.
Thus B4 is given by the discriminant of p(0, Y ).

B5 stratum: since there are no quadruple points this stratum is empty.

The bigerm (A0S0)1 is the archetype of the degeneration type B3. Note that
in the calculation of B4 = /(p(0, Y )) we can assume that Y �= 0 so that
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(X, Y ) is a proper double point (otherwise (X, Y ) is a cross-cap point and the
condition for instability is a0 = 0, as found for the B3 stratum) allowing us to
eliminate Y . Thus, for (A0S0)2, B4 is the half-parabola {(a, b) : a2

1 − 4a0 =
0, a1 ≤ 0}, and for (A0S0)3 it is the half twisted-cuspidal-edge. Note that the
intersection curve of f1 and f2 in the target is given parametrically as the plane
curve (Y 2, Yp(0, Y ), 0), a versal unfolding of the planar cusp (t2, t2k+1). The
bifurcation geometry of (A0S0)1, (A0S0)2 and (A0S0)3 therefore coincides
with, respectively, that of the cusp (t2, t3), rhamphoid cusp (t2, t5) and higher
rhamphoid cusp (t2, t7), as suggested by the computer pictures.

Fig. 4.7 (A0|S0)1

Fig. 4.8 (A0|S0)2
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Fig. 4.9 (A0|S0)3

Series A0S
±
k . An Ae-versal unfolding is (f1; f2) = (x, y, a;Yp(X, Y ),

Y 2, X) where p(X, Y ) = Y 2 ± Xk+1 + bk−1X
k−1 + · · · + b1X + b0 defines

D2(f2). The non-empty strata of B are B1 and B3, given by the discriminant
of p(X, 0) and p(a, 0) = 0, respectively.

Proof. The proof follows similar arguments to that of case (A0S0)k . We will
just remark on the following. The B3 and B4 strata are calculated as before. For
the B3 stratum: the intersection condition is X = a; the conditions for f2 to be
singular are Y = 0, p(X, Y ) = 0. B4 stratum: again the intersection condition
is X = a; D2(f2) is given by p(X, Y ) = 0 with the tangency condition being
Y = 0. However, proper double points are given by p(X, Y ) = 0 with Y �= 0,
whereas the isolated double points with Y = 0 have multiplicity 2 and coincide
with cross-caps points. (This behaviour was noted above.) Thus, B3 is given
by p(a, 0) = 0 while B4 is empty. These observations provide a convenient
method for calculating the B1 stratum.

B1 stratum: here f2 is more degenerate than a cross-cap so we should expect
it to deform to an S1 singularity. Cross-cap points (in fact, any singular points)
are given by Y = 0, p(X, Y ) = 0. Such points therefore lie on the double point
curve D2(f2) and coalesce to form an S1 point when p(X, 0) has a repeated
root. Thus, B1 is given by the discriminant of p(X, 0).

Note that the intersection curve of f1 and f2 is given parametrically as a
versal unfolding of the standard planar cusp (t2, t3). For example, the bifurc-
ation set for A0S2 consists of a cuspidal edge meeting the cusp catastrophe
surface tangentially. Points on the cusp catastrophe surface correspond to a
cross-cap point (which appears in the unfolding of S2) intersecting a sheet,
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and in this situation the two branches f1, f2 always meet in a cusp. Inside the
cuspidal edge S2 deforms into three cross-cap points so there are three occa-
sions where the sheet f1 can meet f2 in a cusp as one varies a. Whereas outside
the cuspidal edge only one cross-cap appears and there is only one occasion
where f1 intersects f2 in a cusp.

Fig. 4.10 A0S
+
1

Fig. 4.11 A0S
−
1
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Fig. 4.12 A0S2

Series A0S0|A±
k . This represents a sheet and cross-cap intersecting tangen-

tially. AnAe-versal unfolding is given by (f1; f2) = (x, y, 0;X,XY, p(X, Y ))

where p(X, Y ) = Y 2 ±Xk+1 + akX
k + · · ·+ a1X+ a0. The non-empty strata

of B are B2 and B3, given by the discriminant of p(X, 0) and a0 = 0, re-
spectively.

Proof. The proof follows similar arguments to that of case (A0S0)k . The
same argument shows that D2(f2) is given by X = 0, with Y �= 0 required for
proper double points.

With a little work one can show that the intersection curve of the branches
is given by y2 ± xk+3 + akx

k+2 + · · · + a1x
3 + a0x

2 = 0 (minus the origin in
the case where it is an isolated point). This is a (non-versal) unfolding of an
Ak+2 singularity and exhibits the expected transitions. (In the case k = 2 we
only show the intersection curve, and do so for sections {c = constant} of the
cuspidal edge for clarity.)

Series (A0S0|A∞)k . This represents the most degenerate type of sheet/cross-
cap intersection, where the sheet is tangential to both the cross-cap and its
double point curve. An Ae-versal unfolding is given by (f1; f2) = (x, y, 0;X,

Y 2, p(X, Y ))wherep(X, Y ) = XY+Y 2k+ak−1Y
2k−2+· · ·+a1Y

2+a0+bX.
The non-empty strata of B are B2, B3 and B4, given by p(0, b) = 0, a0 = 0
and the discriminant of p(0, Y ), respectively.

We remark that D2(f2) is again given by X = 0. The geometry for type
(A0S0|A∞)2 is complicated and we do not try to depict the transitions. The
bifurcation set consists of a higher degree version of the cusp catastrophe sur-
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face, a plane, and a half-parabola edge, corresponding to the three components
B2, B3 and B4 respectively.

Fig. 4.13 A0S0|A+
1

Fig. 4.14 A0S0|A−
1
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Fig. 4.15 A0S0|A2

Fig. 4.16 (A0S0|A∞)2
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4.2. Bifurcation of the Non-simple Bigerms

For each case we can incorporate the modulus a as an unfolding parameter.
We use the notation ā to highlight the fact that ā is a modulus in the original
germ.

Type A0B2. An Ae-versal unfolding is (f1; f2) = (x, y, 0;Yp(X, Y ), Y 2,

X) where p(X, Y ) = X2 + XY 2 + āY 4 + bY 2 + cX + d defines D2(f2) and
ā �= 0, 1

4 . Singular points of f2 are given by Y = p(X, Y ) = 0, so B1 points
are characterised by the requirement that such points on D2(f2) coalesce,
the strata being defined by /(p(X, 0)), that is c2 − 4d = 0. Although f1

and f2 are never tangential we can obtain non-transverse double points from
a point (X, Y ) on D2(f2) and its partner (X,−Y ). This behaviour has not
been exhibited thus far. Such adjacencies are noted in the work of Mond [12],
where it is stated that the Bk series (x, y2, x2y ± y2k+1) is adjacent to the
bigerm A2

0|A±
k−1. In the present scenario f2 is A -equivalent to B2 and the

adjacency with A2
0|A±

1 provides B2 type tangencies. It turns out that the B2

stratum is given by eliminating X and Y from p = ∂p/∂X = ∂p/∂Y = 0,
giving the hypersurface (2b− c)2 + (1−4ā)(4d − c2) = 0 with the constraint
(1 − 4ā)(2b − c) ≥ 0. B3 points occur when f1 meets a singular point of f2.
The requirement is simply p(0, 0) = 0 so the stratum is given by d = 0. B4

points occur when f1 intersects f2(D
2(f2)) tangentially, the stratum is found

to be given by /(p(0, Y )), that is 4ād − b2 = 0 with āb ≤ 0. Finally, B5 is
empty.

Type A0S1|A±
1 . An Ae-versal unfolding is (f1; f2)=(x, y, 0;X, Yp(X, Y ),

Y 2 ± X2 + d) where p(X, Y ) = Y 2 + āX2 + bX + c defines D2(f2) and
ā �= 0,±1. Singular points of f2 are given by Y = p(X, Y ) = 0, so B1 is
defined by /(p(X, 0)), that is b2 − 4āc = 0. B2 points occur when f1 and
f2 are tangential, the stratum is shown to be given by d = 0. Combining the
conditions for f1 to meet a singular point of f2, we find that B3 is given by
eliminating X from ±X2 + d = āX2 + bX + c = 0, giving ā2d2 + c2 ±
(b2d − 2ācd) = 0 with b2 − 4āc ≥ 0 and d ≤ 0 (+ case), d ≥ 0 (− case).
B4 points occur when f1 meets f2(D

2(f2)) tangentially, the stratum is found
to be b2 + 4(c − d)(±1 − ā) = 0. B5 is empty.

Type S0S0.An Ae-versal unfolding is (f1; f2)=(x, yp(x, y), y2;Yq(X, Y ),

X, Y 2+d)wherep(x, y) = x+y2+b definesD2(f1), q(X, Y ) = X+āY 2+c

defines D2(f2) and ā �= 0. Neither branch is more degenerate than a cross-cap
so B1 is empty. B2 points occur when f1 and f2 are tangential and a little
work shows that the stratum is d = 0. B3 has two components given by f2

meeting a singular point of f1, and vice-versa. These components are given by
eliminatingY from āY 3+cY+b = Y 2+d = 0 giving b2+d(c−ād)2 = 0, and



88 c. a. hobbs and n. p. kirk

y from y3+by+c = y2−d = 0 giving c2−d(b+d)2 = 0, respectively. B4 has
two components given by f2 meeting f1(D

2(f1)) tangentially, and vice-versa.
These are both unimodular families of ‘twisted-cuspidal-edge surfaces’ given
by the discriminants of the polynomials āY 3+Y 2+cY +d and y3+āy2+by+
c − ād . Another feature with this example is that a point (x, y) ∈ D2(f1) can
meet a point (X, Y ) ∈ D2(f2) in the target which, together with their partners,
gives rise to a quadruple point in the target space. This bigerm is found to have
non-empty B5 stratum given by āb − ād − c = 0 with b, āc ≤ 0.

4.3. Bifurcation of Trigerms

The calculations are again routine and the case (A0S0|A±
1 )(A0)1 serves as our

main example. We discuss this next and then summarise the remaining cases.

Type (A0S0|A±
1 )(A0)1. This trigerm consists of two immersions and a

cross-cap. An Ae-versal unfolding is given by (f1; f2; f3) = (x, y, 0;X, 0, Y ;
ȳp(x̄, ȳ), x̄, ȳ2 ± x̄2 + cx̄ + b) where p(x̄, ȳ) = x̄ + ȳ2 + a defines D2(f3).
The non-empty strata of B are B2 which is given by c2 ∓ 4b = 0, B3 which
has two components given by a(±a2 − ac + b) = 0, B4 given by b = 0,
and B5 given by a − b = 0 with a ≤ 0. It is a simple exercise to sketch the
bifurcation set or reproduce it on a computer. However, it has five separate
components and the resulting picture is not particularly easy to interpret. We
will encounter similar problems with some of the other higher multigerms and
in such cases will omit the corresponding diagrams.

Proof. The versal unfolding calculation is routine and the fact that p

defines D2(f3) follows from the arguments in case (A0S0)k .
B1 stratum: since no branch is more degenerate than a cross-cap the B1

stratum is empty.
B2 stratum: one sees that only f1 and f3 can form a tangential intersection.

The condition for intersection is ȳ2 ± x̄2 + cx̄ + b = 0. Now

df3 =

 ȳ x̄ + 3ȳ2 + a

1 0

±2x̄ + c 2ȳ




so f1 and f3 intersect tangentially if, in addition, ±2x̄ + c = 0 and ȳ = 0. B2

is therefore given by the discriminant of ±x̄2 + cx̄ + b.
B3 stratum: this type of degeneracy (or worse) occurs when f1 or f2 inter-

sects a singular point of f3. The latter is given by ȳ = 0, x̄ = −a. Combining
with the respective intersection conditions, ȳ2 ± x̄2 + cx̄ + b = 0 and x̄ = 0,
we obtain the corresponding two components of the strata.

B4 stratum: triple points occur when all three branches intersect or when one
of the immersed branches meets a point ofD2(f3) in the target. This gives three
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possible components to B4 which we will consider in turn. (i): f1 andf2 meet in
the target in the u-axis. f3 intersects this curve when x̄ = 0 and ȳ2 +b = 0 and
tangency is a linear dependence condition on the vectors formed by the columns
of df3 and (1, 0, 0), that is ȳ = 0. The resulting component is therefore given
by b = 0. (ii): f1 intersects f3 when ȳ2 ± x̄2 + cx̄ + b = 0. D2(f3) is given
by p(x̄, ȳ) = 0 with tangent space (at a given point (x̄, ȳ)) given by the kernel
of dp. This is spanned by (−2ȳ, 1) and the required tangency condition, that
df3(Ker dp) lies in the (u, v)-plane, comes out as ±2x̄ȳ + cȳ − ȳ = 0. For
proper D2 points ȳ �= 0 and this reduces to x̄ = ±(1 − c)/2. However, we are
interested in semilocal phenomena, that is for all (a, b, c) ∈ B in a sufficiently
small neighbourhood of the origin, the corresponding points (x̄, ȳ) must lie in
a given (albeit arbitrary) neighbourhood of (0, 0). This is clearly not the case
so we can rule out the above behaviour and this component of the stratum is
empty. (iii): similarly the intersection condition for f2 and f3 is x̄ = 0 with
tangency condition ȳ = 0. However, such points on D2(f3) are not proper,
but cross-cap points. (Indeed, substituting these conditions into p(x̄, ȳ) = 0
gives a = 0, which is one component of the B3 stratum found above.) This
component of the strata is therefore empty.

B5 stratum: quadruple points occur when f1 and f2 intersect a point of
D2(f3) in the target. As already stated, all three branches meet when x̄ = 0
and ȳ2 + b = 0. The condition for (x̄, ȳ) to lie on D2(f3) then becomes
ȳ2 + a = 0 and B5 is given by a = b, both being non-positive.

Series A3
0|Ak . An Ae-versal unfolding is given by (f1; f2; f3) = (x, y, 0;

X, 0, Y ; x̄, ȳ, ȳ + p(x̄)) where p(x̄) = x̄k+1 + ak−1x̄
k−1 + · · · + a1x̄ + a0.

The only non-empty stratum of B is B4 which is given by the discriminant of
p(x̄).

The trigerm A3
0|A1 is the archetype of the non-transverse triple point,

type B4. Note that p is versally unfolded. Thus for trigerm A3
0|A2, B4 is

given by the A2 cusp discriminant; observe that for (a, b) inside the cusp the
trigerm has two ‘bubbles’, which degenerate to one bubble on the bifurcation
set and then disappear.

Fig. 4.17 A3
0|A1
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Fig. 4.18 A3
0|A2

Fig. 4.19 A3
0|A3
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Series (A2
0|A±

k )(A0). An Ae-versal unfolding is given by (f1; f2; f3) =
(x, y, 0;X, 0, Y ; x̄, ȳ + a, x̄2 + p(ȳ)) where p(ȳ) = ±ȳk+1 + bk−1ȳ

k−1 +
· · · + b1ȳ + b0. The non-empty strata of B are B2 and B4 which are given by
the discriminant of p(ȳ) and p(−a) = 0, respectively.

Fig. 4.20 (A2
0|A+

1 )(A0)

Fig. 4.21 (A2
0|A−

1 )(A0)
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Fig. 4.22 (A2
0|A2)(A0)

Series (A2
0|A∞)(A0)|Ak . An Ae-versal unfolding is given by (f1; f2; f3)=

(x, y, 0;X, 0, Y ; x̄, ȳ, x̄ȳ+p(x̄)) where p(x̄) = x̄k+1 +akx̄
k+· · ·+a1x̄+a0.

The non-empty strata of B are B2 and B4, given by a0 = 0 and by the
discriminant of p(x̄), respectively.

Fig. 4.23 (A2
0|A∞)(A0)|A2
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We now consider the remaining non-simple trigerms.

TypesA2
0S0|A1,A2

0S0|A1(0)±,A2
0S0|A1(1)± These trigerms consists of two

immersions meeting a cross-cap. For brevity, we will consider all the cases
simultaneously. Note that A2

0S0|A1 is a unimodular family (with a �= 0, 1),
the remaining cases arising from the exceptional values of the modulus. In
all cases a, b, c denote the unfolding parameters and for A2

0S0|A1 we take the
modulus as an unfolding parameter (denoting it by ā). An Ae-versal unfolding
is given by (x, y, 0;X, 0, Y ; ȳp(x̄, ȳ), x̄, x̄ + ȳ2 + c) where p defines D2(f3)

and is given by x̄ + āȳ2 + b, x̄ ± ȳ4 + aȳ2 + b, and x̄ ± ȳ4 + (1 + a)ȳ2 + b

for each of the respective cases. We summarise the findings.
For A2

0S0|A1 the B1 and B2 strata are empty; B3 has two components
which are given by f1 meeting a singular point of f3 (b − c = 0) and likewise
for f2 (b = 0). B4 points are given by the intersection curve of f1 and f2

meeting f3 tangentially, the stratum being given by c = 0. (The other possible
scenarios of f1 or f2 meeting D2(f3) tangentially do not occur.) Finally, B5

points occur where f1 and f2 meet D2(f3), the condition being āc − b = 0
with c ≤ 0.

For A2
0S0|A1(0)± the B4 stratum has the extra component 4b ∓ a2 with

a ≤ 0 (+ case) and a ≥ 0 (− case), due to tangency of f2 and D2(f3) in the
target; and B5 takes the form ±c2 − ac + b = 0 with c ≤ 0.

Similarly, A2
0S0|A1(1)± follows A2

0S0|A1 only B4 has the extra component
±a2 − 4b + 4c = 0 with a ≤ 0 (+ case) and a ≥ 0 (− case), due to tangency
of f1 and D2(f3) in the target; and B5 takes the form ±c2 − ac + b − c = 0
with c ≤ 0.

Type A2
0S

±
1 |A1 The trigerm consists of two immersions meeting an S±

1 sin-
gularity. An Ae-versal unfolding is given by (x, y, 0;X, 0, Y ; ȳp(x̄, ȳ), x̄, x̄+
ȳ2 + c) where p(x̄, ȳ) = ȳ2 ± x̄2 + bx̄ + a defines D2(f3). The B1 stratum
is defined by /(p(x̄, 0)), that is b2 ∓ 4a = 0; B2 is empty. B3 has two com-
ponents, ±c2 − bc + a = 0 and a = 0, which occur for the same geometrical
reasons as in case A2

0S0|A1 above. Similarly, B4 and B5 points occur as in
case A2

0S0|A1, the strata being given by c = 0 and a − c = 0 with a ≤ 0,
respectively.

Type A2
0S0|A2 This trigerm consists of two immersions and a cross-cap

meeting with A2 contact. An Ae-versal unfolding is given by (x, y, 0;X, 0, Y ;
ȳ2, x̄, x̄ + x̄ȳ + ȳ3 + cȳ2 + bȳ + a) and p(x̄, ȳ) = x̄ + ȳ2 + b defines D2(f3).
For the same reasons as in case A2

0S0|A1, we find that the B1 and B2 strata
are empty, the two components of B3 are a − b = 0 and b = 0; B4 is the
‘twisted-cuspidal-edge surface’ /(ȳ3 + cȳ2 + bȳ + a); and B5 is given by
a − bc = 0 with b ≤ 0.
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4.4. Bifurcation of Higher Multigerms

Type A4
0 and Series (A3

0|Ak)(A0) An Ae-versal unfolding of (A3
0|Ak)(A0) is

given by (f1; f2; f3; f4) = (x, y, 0;X, 0, Y ; 0, x̄, ȳ; X̄ + a, Ȳ , Ȳ + p(X̄))

where p(X̄) = X̄k+1 + bk−1X̄
k−1 + · · · + b1X̄ + b0. The non-empty strata of

B are B4 and B5 which are given by the discriminant ofp(X̄) andp(−a) = 0,
respectively. Note that these results also apply to the case A4

0 (this case could
be included as part of the above series but, by definition, we prefer not to).

Proof. Fortunately, all of the 4-germs that we must consider have non-
singular branches. This simplifies matters as the B1 and B3 strata are imme-
diately empty, as are all of the D2 curves. Now

df4 =
( 1 0

0 1
∂p/∂X̄ 1

)

and clearly no two of the branches can intersect tangentially, so B2 is empty.
The intersection curves of each pair of branches fi, fj with i, j ≤ 3 are the
three coordinate axes. Tangency of an axis with f4 is a determinant condition
involving df4 and one sees that only the u-axis (the intersection curve of f1 and
f2) can intersect f4 tangentially and this requires that ∂p/∂X̄ = 0. Intersection
requires, in addition, that Ȳ , p(X̄) = 0 and B4 is therefore given by the
discriminant of p. Finally, all four branches intersect, necessarily at the origin
in R3, when p(−a) = 0, and this determines B5.

Type (A2
0|A1)(A

2
0) An Ae-versal unfolding is given by (f1; f2; f3; f4) =

(x, y, 0;X, 0, Y ; 0, x̄, ȳ; X̄+d, Ȳ , Ȳ 2 + X̄Ȳ + āX̄2 +bX̄+ c). Using similar
arguments to those above we find that the bifurcation set for this unimodular
family is made up as follows. The B2 stratum is given by (1 − 4ā)c + b2 = 0
due to tangency of the f1 and f4 sheets. The B4 stratum has two components
given by b2 − 4āc = 0 and (4ā − 1)d2 − 4bd + 4c = 0 due to tangency of
f4 with the intersection curves of f1, f2 and f1, f3, respectively. Finally B5 is
given by ād2 − bd + c = 0.

Finally, we deal with the 5-germs. Again, B1, B3, and all D2 curves are
empty.

Type A5
0 The 5-germ consists of 5 planes going through the origin and

forms a bimodular family. An Ae-versal unfolding is (f1; f2; f3; f4; f5) =
(x, y, 0;X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , X̄+ Ȳ + d; x̃, ỹ, āx̃ + b̄ỹ + c). The only non-
empty stratum of B is B5. This has five components given by (c − d)(b̄d −
c)(ād−c)cd = 0 corresponding to the intersection off1, . . . , f̂i , . . . , f5 where
i = 1, . . . , 5 (and f̂i denotes the omission of fi from this list), respectively.
(Degeneracies of type B2 and B4 occur only for exceptional values of the
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moduli. For example, tangency of f5 with the intersection curve of f1, f4

occurs when ā− b̄ = 0 and ād−c = 0. But such points are exceptional points
on the B5 component formed by the intersection of f1, f2, f4, f5.)

Type (A3
0|A1)(A

2
0) Again, we have 5 planes going through the origin, only

this time the fourth branch meets the intersection curve of the first two branches
tangentially. An Ae-versal unfolding is given by (f1; f2; f3; f4; f5) = (x, y,

0;X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ + X̄2 + cX̄ + d; x̃, ỹ, x̃ + āỹ + b). The only non-
empty strata of B are B4 and B5. We obtain non-transverse triple points from
tangencies of f4 with the intersection curve of f1, f2, and from tangencies of f5

with the intersection curves f1, f4 and f2, f4. The three respective components
of B4 are given by

(c2 − 4d)
(
(āc − 1)2 − 4ā(ād − b)

)(
(c − 1)2 − 4(b − d)

) = 0.

Finally, the five components which go to make up B5 are given by

(b − d)(ād − b)(b2 − bc + d)bd = 0.
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