
MATH. SCAND. 89 (2001), 5–45

HOMOTOPY THEORY OF MODULES AND
GORENSTEIN RINGS

APOSTOLOS BELIGIANNIS

1. Introduction

It is an old observation of Eckmann-Hilton [21], that the homotopy theory of
topological spaces has an algebraic analogue in the module category of a ring.
Inspired by the work of Eckmann-Hilton, various authors studied the problem
of constructing a homotopy theory in more general algebraic categories. We
refer to the works of Heller [18], [20], [19], Huber [23], Kleisli [29], Brown
[12], Auslander-Bridger [1] and Quillen [35]. Restricting to the case of a mod-
ule category, there are two different in general, homotopy theories defined. The
injective homotopy which is defined by killing the injective modules and the
projective homotopy which is defined by killing the projective modules. Let
� be an associative ring, and let Mod(�) be the category of right �-modules.
Using injective homotopy we obtain the stable category Mod(�) which is al-
ways right triangulated, and using projective homotopy we obtain the stable
category Mod(�) which is always left triangulated. The projective and the in-
jective homotopy coincide iff the ring is Quasi-Frobenius (QF-ring for short)
and in this case the stable category Mod(�) = Mod(�) is a compactly gen-
erated triangulated category. The stable module category of a modular group
algebra (which is a QF-ring), has been studied by many authors mainly from
the representation theoretic point of view. There is recently a big progress in
this study, which is developed using machinery from the theory of triangulated
categories, in particular Bousfield’s localization techniques, see for example
[36], [11]. Our main purpose in this paper is to study the stable module cat-
egories Mod(�) and Mod(�) of a ring � from the point of view of modern
algebraic homotopy theory. This is possible if the stable module categories are
compactly generated, so a theory of Brown Representability can be developed.

The paper is organized as follows.
In Section 2, we study general stable categories with products or cop-

roducts which are induced by homologically finite subcategories in the sense
of Auslander-Smalø [2]. In Section 3 we study Brown Representability and its
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consequences, in a given additive category with coproducts and weak coker-
nels. Here the notion of a Whitehead subcategory borrowed from topology is
of central importance. Brown’s Theorem in this setting has interesting applica-
tions to (right) triangulated categories, to t-structures in the sense of [4] and to
locally finitely presented additive categories in the sense of [13]. In particular
we show that Bousfield’s localization holds in a compactly generated right
triangulated category. In Section 4 we prove that a functorially finite subcat-
egory X of an additive category C , induces a closed model structure on C
in the sense of Quillen [35], with all objects fibrant and cofibrant. Conversely
any such closed model structure arises from a functorially finite subcategory.
The associated homotopy category is the stable category C/X which in many
cases has the structure of a pre-triangulated category, i.e. it is left and right
triangulated in a compatible way.

Section 5 is devoted to the characterization of rings, such that the stable
categories modulo projectives or injectives are “suitable" for doing homotopy
theory. For the injective homotopy this happens iff the ring � is right Morita.
For the projective homotopy this happens iff the ring� is left coherent and right
perfect. In both cases the stable categories are compactly generated Abstract
Homotopy Categories [12], and Brown Representability Theorem holds in this
setting. Note that our results on injective homotopy generalize recent results
of Jørgensen [25].

In Section 6, inspired from the construction of the stable homotopy category
of spectra [32], we study the existence of a stable homotopy category associated
to the projective or injective homotopy of a ring �. Since the stable module
categories are not in general triangulated, it is useful in many cases to replace
them by their stabilizations [8], [19], which are triangulated categories, and
this can be done in a universal way. We say that a ring � has a projective, resp.
injective, stable homotopy category if the stabilization of Mod(�), resp. of
Mod(�), is compactly generated. We prove that in case � is right Gorenstein
in the sense of [8], and the ring � is left coherent and right perfect or right
Morita, then such a stable homotopy category exists and can be described as
the triangulated stable category of Cohen-Macaulay modules. We close the
paper studying when the stable homotopy category is a phantomless or Brown
category in the sense of [6], [7].

Throughout this paper we compose morphisms in the diagrammatic order,
i.e. the composition of f : A→ B, g : B → C is denoted by f ◦ g.
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2. Stable Categories with Coproducts and Compact Objects

We fix in this section an additive category C with split idempotents and a
full additive subcategory X ⊆ C of C closed under isomorphisms and direct
summands. A morphism f : A→ B in C is called an X -epic if the morphism
C (X , f ) : C (X , A) → C (X , B) is surjective. We recall from [2] that the
subcategory X is called contravariantly finite in C if for any object A ∈ C ,
there exists an X -epic χA : XA → A with XA ∈ X . The morphism χA is
called a right X -approximation of A. The notions of an X -monic morphism
and of a covariantly finite subcategory are defined dually. A subcategory is
called functorially finite if it is both covariantly and contravariantly finite.

We denote the stable category of C modulo X by C/X . We recall that
the objects of C/X are the objects of C . If A,B are objects of C/X , then
C/X (A,B) = C (A,B)/IX (A,B), where IX (A,B) is the subgroup of
C (A,B) consisting of all morphisms factorizing through an object of X .
We denote by A the object A considered as an object of C/X and by f the
class of the morphism f : A → B in C/X (A,B). Then C/X is an additive
category and setting π(A) = A and π(f ) = f , we obtain the projection
functor π : C → C/X .

Proposition 2.1. Suppose that C has coproducts (products).
(1) The functor π : C → C/X preserves coproducts (products)⇔ X is

closed under coproducts (products). In this case C/X has coproducts
(products).

(2) If X is contravariantly finite (covariantly finite), then X is closed under
coproducts (products).

(3) If X is closed under coproducts (products), then idempotents split in
C/X .

Proof. (1)Assume first that X is closed under coproducts. Let {Ai; i ∈ I }
be a set of objects in C/X and let µi : Ai → ⊕Ai be the injections into
the coproduct in C . Then we have morphisms µ

i
: Ai → ⊕Ai in C/X .

Let f
i

: Ai → B be morphisms in C/X . Choose morphisms f ′i : Ai →
B in C , such that f ′

i
= f

i
,∀i ∈ I . Then there exists a unique morphism

f ′ : ⊕Ai → B such that µi ◦ f ′ = f ′i ,∀i ∈ I . Then in C/X we have
µ

i
◦ f ′ = f

i
,∀i ∈ I . Let h : ⊕Ai → B be another morphism in C/X

such that µ
i
◦ h = f

i
,∀i ∈ I . Then there are morphisms κi : Ai → Xi and

χi : Xi → B, where Xi ∈ X , such that µi ◦ f ′ − µi ◦ h′ = κi ◦ χi , where
h′ : ⊕Ai → B is a morphism in C with h′ = h. Let ⊕κi : ⊕Ai → ⊕Xi be
the unique morphism with µi ◦ ⊕κi = κi ◦ νi and let χ : ⊕Xi → B be the
unique morphism with νi ◦ χ = χi , where νi : Xi → ⊕Xi are the canonical
injections. Then µi ◦ f ′ −µi ◦ h′ = κi ◦χi = κi ◦ νi ◦χ = µi ◦⊕κi ◦χ . This
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implies that f ′ − h′ = ⊕κi ◦ χ . By hypothesis, ⊕Xi is in X and this implies
that f = f ′ = h′ = h in C/X . This shows that C/X has and π preserves
coproducts. Conversely if π preserves coproducts, let {Xi, i ∈ I } be a set of
objects of X . Then π(⊕Xi) = ⊕π(Xi) = 0 and this implies that ⊕Xi is in
X . Hence X is closed under coproducts. The parenthetical case is similar.

(2) Let Xi, i ∈ I be a set of objects in X and let χ : X→⊕Xi be a right
X -approximation of ⊕Xi . If µi : Xi → ⊕Xi are the injections, there are
morphisms αi : Xi → X such that αi ◦ χ = µi . Then there exists a unique
morphism ψ : ⊕Xi → X such that µi ◦ψ = αi , hence µi ◦ψ ◦χ = µi . Then
ψ ◦χ = 1⊕Xi

. Since X is closed under direct summands, we have⊕Xi ∈ X .
Hence X is closed under coproducts. Part (3) follows from [16].

If Y is a full subcategory of C , then add(Y ) denotes the full subcategory of
C consisting of all direct summands of finite coproducts of objects of Y . If C
has coproducts, resp. products, then Add(Y ), resp. Prod(Y ), denotes the full
subcategory of C consisting of all direct summands of arbitrary coproducts,
resp. products, of objects of Y . Trivially a morphism f : A → B is Y -epic
(resp. Y -monic)⇔ f is Add(Y )-epic, (resp. Prod(Y )-monic).

Lemma 2.2. If C has coproducts, resp. products, and X is skeletally small,
then Add(X ), resp. Prod(X ), is contravariantly finite, resp. covariantly fi-
nite, in C .

Proof. For any C ∈ C let IC := {X→ C : X ∈ Iso(X )}, where Iso(X )

is the set of isoclasses of objects of X and set XC := ⊕i∈ICXi . The set of
morphisms IC induces a canonical morphism χC : XC → C, which obviously
is a right Add(X )-approximation of C. The parenthetical case is dual.

Definition 2.3. ([33]) An object A in an additive category C is called
(countably) compact if the functor C (A,−) : C → A b preserves (countable)
coproducts. A full subcategory X of C is called (countably) compact if X
consists of (countably) compact objects.

The full subcategory of C consisting of all compact objects is denoted
by C b. If C has coproducts, then it is well known that A ∈ C is compact
iff any morphism f : A → ⊕i∈ICi factors through a finite subcoproduct⊕

j∈J⊆I Cj , |J | < ∞. Obviously if C has coproducts and X ⊆ C b, then
(C/X )b = C b/X ≈ (C/Add(X ))b.

Definition 2.4. ([13]) An object A in an additive category C is called
finitely presented if the functor C (A,−) : C → A b preserves (filtered) direct
limits. We denote by f.p.(C ) the full subcategory of C consisting of all finitely
presented objects. An additive category C is called locally finitely presented
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if C has (filtered) direct limits, any object of C is a direct limit of finitely
presented objects and finally if f.p.(C ) is skeletally small.

Let X be a skeletally small additive category. We denote by Mod(X ),
the Grothendieck category of contravariant additive functors from X to the
category A b of abelian groups. The full subcategory of projective, resp.
flat, functors is denoted by Proj(Mod(X )), resp. Flat(Mod(X )). By [13],
Flat(Mod(X )) is locally finitely presented and any locally finitely presented
category is of this form. For the concept of pure semisimplicity in these categor-
ies we refer to [13]; in particular C is pure semisimple iff C = Add(f.p.(C )).
For latter use we prove the following.

Proposition 2.5. Let C be an additive category with products and cop-
roducts and let X be a skeletally small full subcategory of C with X ⊆ C b.
Then the following are equivalent.

(i) Add(X ) is covariantly finite in C .

(ii) Add(X ) is a locally finitely presented pure semisimple category with
products.

Proof. (i) ⇒ (ii) Consider the restriction functor S : C → Mod(X )

defined by S(A) = C (−, A)|X . It is easy to see that S preserves products and
coproducts and induces an equivalence between Add(X ) and Proj(Mod(X )).
If Add(X ) is covariantly finite, then obviously Add(X ) is closed under
products in C . Hence Proj(Mod(X )) is closed under products in Mod(X ).
By Chase’s Theorem (see [5]), we have that Mod(X ) is perfect. In particular
Proj(Mod(X )), hence Add(X ), is equivalent to Flat(Mod(X )), which by
construction is pure semisimple.

(ii)⇒ (i)By hypothesis for any set {Xi; i ∈ I } of objects of X , the product∏
Xi is in Add(X ) and the pure monoµ : ⊕Xi →∏

Xi splits. IfA ∈ C , then
since Prod(X ) is covariantly finite, there exists a left Prod(X )-approximation
f : A→∏

A→X X of A as in Lemma 2.2. If g : A→ M is a morphism with
M is in Add(X ), then there exists a family of {Xi; i ∈ I } of objects of X
such that M ⊕ N = ⊕Xi . Let iM : M → ⊕Xi and pM : ⊕Xi → M

be the canonical injection and projection. Also let ν :
∏

Xi → ⊕Xi be a
splitting of the canonical morphism µ : ⊕Xi →∏

Xi . Then by the covariant
finiteness of Prod(X ), there exists a morphism α :

∏
A→X X → ∏

Xi such
that f ◦ α = g ◦ iM ◦ µ. Then f ◦ α ◦ ν = g ◦ iM ◦ µ ◦ ν = g ◦ iM . Hence
f ◦ α ◦ ν ◦ pM = g. This shows that f is a left Add(X )-approximation of A.
Hence Add(X ) is covariantly finite in C .

From (the proof of) Proposition 2.5 we deduce directly the following.

Corollary 2.6. Let C be a locally finitely presented category with pro-
ducts. Then Add(f.p.(C )) is covariantly finite in C iff C is pure semisimple.
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3. Weak Colimits and Brown Representability

3.1. Weak Limits and Weak Colimits

Let C be an additive category and let I : I → C be a functor from a small
category I . We use the notations: Ai = I (i) for i ∈ I and αij = I (i → j) :
Ai → Aj for an arrow i → j in I . We recall that a weak colimit w.lim→ Ai of

the functor I is defined as the colimit except the uniqueness property. A weak
colimit of a functor I : I → C is called a weak direct limit, if the category I is
filtered. An example of a (finite) weak colimit is a weak cokernel of a morphism
f : A→ B in C , which is defined as a morphism g : B → C with f ◦ g = 0
and such that any other morphism h : B → D with f ◦ h = 0 factors through
g (in a not necessarily unique way). A weak colimit is not uniquely determined
and in case C has coproducts and weak cokernels, then a weak colimit of the
functor I can be obtained as a weak cokernel θI :

⊕
i∈I Ai → w.lim→ Ai

of the canonical morphism ζI :
⊕

i→j∈I 2 Ai → ⊕
k∈I Ak , where I 2 is the

category of morphisms of I . Hence if C has coproducts and weak cokernels,
then C has weak colimits. We leave to the reader to formulate the dual notions
of weak limit and weak kernel. We note that if C has products and weak kernels,
then C has weak limits.

Proposition 3.1. (1) If C has weak kernels (weak cokernels) and if X
is a full additive contravariantly finite (covariantly finite) subcategory of C ,
then X , C/X have weak kernels (weak cokernels). Moreover the canonical
functor π : C → C/X preserves weak kernels (weak cokernels) of X -epics
(X -monics).

(2) If C has products and weak kernels and if X is contravariantly finite
and closed under products in C , then X , C/X have weak limits.

(3) If C has coproducts and weak cokernels and if X is covariantly finite
and closed under coproducts in C , then X , C/X have weak colimits.

Proof. (1) Suppose that X is contravariantly finite in C and C has weak
kernels. Let f : Y → Z be a morphism in X with weak kernel g : A → Y

in C . If χA : XA → A is a right X -approximation of A, then trivially the
morphism χA ◦ g : XA→ Y is a weak kernel of f in X . Now let f : A→ B

be a morphism in C/X and consider the morphism t (f, χB) : A⊕XB → B in
C . Let (g, k) : C → A⊕XB be a weak kernel of t (f, χB) in C and consider
the morphism g : C → A in C/X . Obviously g ◦ f = 0. If h : D → A is a
morphism with h◦f = 0, then we have a factorization h◦f = m◦χB , where
m : D → XB . Then (h,−m) ◦ t (f, χB) = 0, hence there exists a morphism
d : D → C with d ◦ (h,−m) = (g, k). Then d ◦ h = g and d ◦ h = g. This
means that g is a weak kernel of f in C/X . Finally let f : B → C be an
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X -epic and let g : A → B be a weak kernel of f . Then in C/X we have
g ◦ f = 0. Let h : D → B be a morphism with h ◦ f = 0. Then there exists
a morphism t : D → XC with h ◦ f = t ◦ χC , where χC : XC → C is
a right X -approximation of C. Since f is X -epic, there exists a morphism
r : XC → B with χC ◦ r = f . Then h ◦f = t ◦ r ◦f , hence h− t ◦ r = k ◦ g,
for a morphism k : D → A. But then h = k ◦ g and this means that g is a
weak kernel of f in C/X . The parenthetical case is dual. Parts (2), (3) are
consequences of (1) and Proposition 2.1.

Definition 3.2. Let P be a full subcategory of C . A weak colimit w.lim→ Ai

in C is called a P-minimal weak colimit if the canonical morphism

lim→ C (P, Ai)→ C (P,w.lim→ Ai)

is an isomorphism. The subcategory P is called minimal if

(†) Every tower A0 → A1 → A2 → · · · in C has a P-minimal weak
colimit.

Definition 3.3. A full subcategory P of an additive category C is called
a Whitehead subcategory if P has the following properties.

(i) P is skeletally small.

(ii) A morphism f : A → B in C is an isomorphism iff C (P, f ) :
C (P, A)→ C (P, B) is an isomorphism.

Corollary 3.4. If the additive category C has countable coproducts and
weak cokernels, then for any compact minimal Whitehead subcategory P of
C , any P-minimal weak colimit of a tower is uniquely determined, by a not
unique isomorphism.

Proof. Follows trivially from the fact that the functors C (P,−), P ∈P ,
collectively reflect isomorphisms.

For latter use we state the following useful result.

Lemma 3.5. Let C be an additive category with countable coproducts and
weak cokernels, and let X be a covariantly finite subcategory of C , satisfying
the following:

(i) Any tower A0
f0−→ A1

f1−→ A2 → · · · in C , where each fi, i ∈ I is
X -monic, has a direct limit in C .

(ii) If P is a full subcategory of C consisting of objects preserving the direct
limits of (i), then P is closed under left X -approximations.

Then P/X is a minimal subcategory of C/X , i.e. any tower A0 → A1 →
A2 → · · · in C/X has a P/X -minimal weak colimit.

Proof. See Lemma 1.6 in [25].
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3.2. Brown Representability

The concept of a Whitehead subcategory and of a P-minimal weak colimit,
enters in an essential way in the following Heller’s version of the very important
Brown Representability Theorem. We say that a contravariant, resp. covariant,
functor F : C → A b is half-exact if for any diagram A

f−→ B
g−→ C in C ,

where g is a weak cokernel of f , the sequence F(C)
F(g)−−→ F(B)

F(f )−−→ F(A),
resp. F(A)

F(f )−−→ F(B)
F(g)−−→ F(C), is exact in A b.

Theorem 3.6 (Brown). Suppose that C has coproducts and weak cokernels.
If C contains a minimal Whitehead subcategory P , then: an additive functor
H : C op → A b is representable iff H is half-exact and sends coproducts to
products.

Proof. See [12], [20] for proofs in the non-additive setting.

Corollary 3.7. Under the assumptions of Theorem 3.6, C has products
and any object of C is in a unique way a weak colimit of a tower.

Proof. If {Ci; i ∈ I } is a set of objects of C , then the functor F : C op →
A b defined by F(A) = ∏

C (A,Ci) is half-exact and sends coproducts
to products. Hence is representable with representing object the product of
{Ci; i ∈ I }. The proof of Brown Theorem in [20] applied to the functor
C (−, A) shows that A is a minimal weak colimit of a tower of objects.

Theorem 3.8 (The Adjoint Theorem). Let C be an additive category with
coproducts and weak cokernels and letF : C → D be an additive functor. If C
admits a minimalWhitehead subcategory P , then the following are equivalent:

(i) F has a right adjoint G : D → C .

(ii) F preserves coproducts, weak cokernels.

In case F has a right adjoint G, and the Whitehead subcategory P is compact,
then the following are equivalent:

(iii) G preserves coproducts.

(iv) F preserves compact objects.

Proof. For the first part, it suffices to show that (ii)⇒ (i), since trivially
any left adjoint preserves coproducts and weak cokernels. For any D ∈ D ,
consider the functor FD : C op → A b defined by FD(A) = D(F (A),D).
Obviously FD is half-exact and sends coproducts to products, so by Brown’s
Theorem, FD is representable. It is well known that this is equivalent to the
existence of a right adjoint of F . Suppose that F has a right adjoint G and
assume that F preserves compact objects. Let P ∈P and let {Di, i ∈ I } be a
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set of objects in D . Then using that P is compact and that F preserves compact
objects we have:

C (P,G(⊕Di)) ∼= D(F (P ),⊕Di) ∼= ⊕D(F (P ),Di) ∼=
∼= ⊕C (P,G(Di)) ∼= C (P,⊕G(Di)).

Since this happens for any P ∈P and P is a whitehead subcategory, we have
⊕G(Di) ∼= G(⊕Di), so G preserves coproducts. Conversely if G preserves
coproducts, let X be a compact object in C and let {Di, i ∈ I } be a set of
objects in D . Then using adjointness and the fact that G preserves coproducts,
we have:

D(F (X),⊕Di) ∼= C (X,G(⊕Di)) ∼= C (X,⊕G(Di)) ∼=
∼= ⊕C (X,G(Di)) ∼= ⊕D(F (X),Di).

Hence F preserves compact objects.

Definition 3.9. Let C be an additive category with coproducts and weak
cokernels. C is generated by a set G ⊆ C if the smallest full additive sub-
category of C which is closed under isomorphisms, coproducts and weak
cokernels and contains G , coincides with C . Then G is called a generating set.
The category C is called compactly generated if there exists a generating set
G consisting of compact objects.

Corollary 3.10. Let C be an additive category with coproducts and weak
cokernels and let P be a minimal Whitehead subcategory of C . Then C is
generated by Iso(P). Hence if the Whitehead subcategory P is compact, then
C is compactly generated.

Proof. Let U be the smallest full additive subcategory of C which is
closed under isomorphisms, coproducts and weak cokernels and contains P .
Then U has coproducts and weak cokernels and P is a minimal Whitehead
subcategory of U . Let A be an object in C and consider the functor F =
C (−, A)|U : U op → A b. Since F sends coproducts to products and is half-
exact, there exists U ∈ U and an isomorphism ω : U (−, U)

∼=−→ C (−, A)|U .
Then the morphism ω(1U) : U → A, has the property that C (P, ω(1U))

is an isomorphism. Since P is Whitehead, ω(1U) is an isomorphism. Hence
A ∈ U . We conclude that C = U .

3.3. Right Triangulated Categories

We recall from [9], [27], that a left, resp. right, triangulated category is an
additive category C equipped with an additive endofunctor / : C → C the
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loop functor, resp. 0 : C → C the suspension functor, and a class of diagrams
1, resp. ∇, of the form /(C) → A → B → C, resp. of the form A →
B → C → 0(A), called triangles, satisfying all the axioms of a triangulated
category [37], except that /, resp. 0, is not necessarily an equivalence. If C
is a left or right triangulated category, then (contravariant) half exact functors
are called (cohomological) homological functors: they send triangles to exact
sequences. If C is left triangulated then C (A,−) is homological and if the
loop functor / is fully faithful then C (−, A) is cohomological. If C is right
triangulated then C (−, A) is cohomological and if the suspension functor 0

is fully faithful then C (A,−) is homological.
We recall that if C is a (left or right) triangulated category, then a subcat-

egory E of C is called thick if E is a full additive (left or right) triangulated
subcategory of C , which is closed under direct summands. If C has coproducts,
then a thick subcategory L of C is called localizing if L is closed under cop-
roducts. A (left or right) triangulated category C is called compactly generated
if C has coproducts and a set S of compact objects, such that C coincides
with the smallest thick subcategory of C which contains S and is closed under
isomorphisms and coproducts.

Let C be a right triangulated category with coproducts. We define a full
subcategory Ĉ b of C as follows:

Ĉ b := {X ∈ C b | the functor C (X,−) : C → A b is homological}.
Hence a compact object X is in Ĉ b iff for any triangle A

f−→ B
g−→ C h−→ 0(A)

in C , any morphism α : X→ B such that α ◦g = 0 factors through f . Hence
if 0 is fully faithful, in particular if C is triangulated, then Ĉ b = C b.

Lemma 3.11. If the suspension functor 0 preserves countable coproducts,
then any full subcategory P of Ĉ b is minimal. Hence if C contains aWhitehead
subcategory P ⊆ Ĉ b, then C is compactly generated.

Proof. Let A1 → A2 → · · · be a tower of objects of C , and consider
the induced triangle ⊕i≥1Ai → ⊕i≥1Ai → w.lim→ Ai → 0(⊕i≥1Ai). If X ∈
P , then applying the half-exact functor C (X,−) to the above triangle and
using that X is compact and 0 preserves countable coproducts, we conclude
directly that the canonical morphism lim→ C (X,Ai) → C (X,w.lim→ Ai) is an

isomorphism, so P is minimal. It follows that if moreover P is Whitehead,
then C is compactly generated by P .

Corollary 3.12. Let C be a right triangulated category with coproducts
and suspension functor 0. If C contains a compact minimal Whitehead sub-
category, then:
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(i) C is compactly generated with products.

(ii) F : C op → A b is representable ⇔ F is cohomological and sends
coproducts to products.

(iii) The suspension functor 0 has a right adjoint / ⇔ 0 preserves cop-
roducts. If/ exists then/ preserves coproducts⇔0 preserves compact
objects.

If L is a thick subcategory of the right triangulated category C , then we
can define the quotient category C /L , in a possibly larger universe, as in the
triangulated case by formally inverting [17] all morphisms A→ B in C , such
that in the triangle A→ B → L→ 0(A) the object L ∈ L . Then C /L is
a right triangulated category and the quotient functor q : C → C /L is exact.
If C has coproducts and L is localizing, then C /L has coproducts and the
functor q preserves them. The next result which follows from Theorem 3.8
and Lemma 3.11, is a version of Bousfield’s localization in right triangulated
categories.

Proposition 3.13. Let C be a right triangulated category with coproducts
and let L be a localizing subcategory of C .

(i) If C is compactly generated and the quotient category C /L has small
hom-sets, then the quotient functor q : C → C /L has a right adjoint.

(ii) If L is generated by a Whitehead subcategory P of C contained in Ĉ b,
then L is compactly generated and the inclusion functor i : L ↪→ C
has a right adjoint.

3.4. t-Structures

We recall that if U is a full subcategory of C then U ⊥ denotes the full sub-
category {A ∈ C | C (U,A) = 0,∀U ∈ U }. For the concept of a t-structure
in a triangulated category we refer to [4].

Proposition 3.14. Let C be a triangulated category with coproducts and
suspension functor 0. Let U be a full additive subcategory of C closed under
extensions, coproducts and the suspension functor 0.

(1) If there exists a Whitehead subcategory P of U contained in U b, then
the pair (U , 0U ⊥) is a t-structure in C .

(2) If C is compactly generated and the quotient C /U has small hom-sets,
then (U , 0U ⊥) is a t-structure in C .

Proof. The hypothesis implies that U is a right triangulated subcategory
of C . If (1) holds, then by Theorem 3.8 and Lemma 3.11 it follows that the
inclusion U ↪→ C has a right adjoint. Then the result follows from [28].
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Suppose that condition (2) holds. Since C /U has small hom-sets and C
is compactly generated, by Theorem 3.8 the quotient functor q : C → C /U
has a right adjoint r . Let δ : IdC → rq be the unit of the adjoint pair (q, r).
Then for any object A in C we have a triangle A′ → A

δA−→ rq(A)→ 0(A′)
in C . Since obviously q(A′) = 0, it follows that A′ ∈ U . For any U ∈ U we
have the long exact sequence

· · · → C (U,0−1rq(A))→ C (U,A′)→ C (U,A)→ C (U, rq(A))→ · · ·
Then C (U,0−1rq(A)) ∼= C (0(U), rq(A)) ∼= C /U (q0(U), q(A)) = 0. In
the same way C (U, rq(A)) = 0. Hence C (U,A′) ∼= C (U,A). This shows
that A′ is the coreflection of A in U . Hence the inclusion U ↪→ C has a right
adjoint and then by [28], the pair (U , 0U ⊥) is a t-structure in C .

Let C be a compactly generated triangulated category and let T be the class
of t-structures in C . Also let U be the class of right triangulated subcategories
of C which are closed under coproducts and such that the quotient C /U has
small hom-sets, for any U ∈ U. By the above result we have the following.

Corollary 3.15. The assignement U �−→ (U , 0U ⊥) gives a bijective
correspondence between the classes U and T.

Example 3.16. Let D(�) be the unbounded derived category of right
modules over a ring �. It is well known that D(�) is a compactly generated
triangulated category. Let U be the right triangulated subcategory of D(�)

generated by �, i.e. the smallest right triangulated subcategory of D(�) which
contains � and is closed under coproducts. Then the t-structure of the above
proposition is the natural t-structure in D(�), see [4].

3.5. Triangulated Categories

Corollary 3.17. If C is triangulated, then the following are equivalent:

(i) C is compactly generated.

(ii) C has coproducts and there exists a set of compact objects S , such that
0(S ) = S and C (S , A) = 0⇒ A = 0.

(iii) C has coproducts and contains a full compact Whitehead subcategory.

(iv) C has coproducts, C b is skeletally small and C (C b, A) = 0⇒ A = 0.

Proof. (i) ⇒ (ii) If S is a generating set, then
⋃

n∈Z 0
n(S ) is also a

generating set which is closed under suspension, hence we can assume that
0(S ) = S . Let C (S , A) = 0 and consider the full subcategory UA := {X ∈
C ; ∀n ∈ Z : C (X,0n(A)) = 0}. Then UA is a triangulated subcategory of C ,
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closed under coproducts, isomorphisms, and contains S . Hence UA = C and
then obviously A = 0.

(ii) ⇒ (iii) Let f : A → B be a morphism in C with C (S , f ) an
isomorphism. If A f−→ B → C → 0(A) is a triangle in C , then since 0(S ) =
S , it follows that C (S , C) = 0, hence by hypothesis C = 0. Then trivially
f is an isomorphism.

(iii) ⇒ (i) It is easy to see that any compact subcategory of C which is
closed under suspension, is minimal. Then the assertion follows from Corollary
3.12.

(iv)⇔ (ii) Obviously (iv) implies (ii). Suppose that (ii) is true. It suffices
to show that C b is skeletally small. Let Ŝ be the thick subcategory generated
by S . Then obviously Ŝ is skeletally small and Ŝ ⊆ C b. By [26], we have
that any compact object of C is a direct summand of an extension of objects
of S . This trivially implies that Ŝ = C b, hence C b is skeletally small.

If C is triangulated and L is a thick subcategory of C , then by [37] we
have that the inclusion L ↪→ C has a right adjoint iff the quotient functor
C → C /L has a right adjoint, provided that C /L has small hom-sets. In
this case C /L = L ⊥. Hence by the above results, we have the following
Corollary which is the fundamental result in the theory of compactly generated
triangulated categories.

Corollary 3.18 ([32], [33], [26]). Let C be a compactly generated trian-
gulated category.

(1) An additive functor H : C op → A b is representable iff H is cohomo-
logical and sends coproducts to products. In particular C has products.

(2) An exact functor F : C → D to the triangulated category D , has a right
adjoint iff F preserves coproducts. In case the right adjoint G of F exists, then
G has a right adjoint iff F preserves compact objects.

(3) If L is a localizing subcategory of C , then: the inclusion functor L ↪→
C has a right adjoint iff the quotient functor C → C /L has a right adjoint
iff C /L has small hom-sets iff the canonical functor L ⊥ → C /L is an
equivalence.

3.6. Locally Finitely Presented Additive Categories

Brown Representability has also interesting applications to locally finiteley
presented categories. We have the following consequences of Theorems 3.6,
3.8.

Theorem 3.19. Let C be a locally finitely presented additive category. Then
the following are equivalent:

(i) C has products.
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(ii) C is covariantly finite in Mod(f.p.(C )).

(iii) C has weak cokernels.

(iv) An additive functor H : C op → A b is representable iff H is half-exact
and sends coproducts to products.

Proof. By [13], C is equivalent to the category Flat(Mod(f.p.(C ))) of
flat contravariant additive functors from its subcategory f.p.(C ) of finitely
presented objects to A b. If C has products, then by [13] the subcategory
f.p.(C ) has weak cokernels. Then by [5], Flat(Mod(f.p.(C ))) is covariantly
finite in Mod(f.p.(C )). If C is covariantly finite in Mod(f.p.(C )), then by
Proposition 3.1, C has weak cokernels. If C has weak cokernels then since
C has coproducts and f.p.(C ) is a compact minimal Whitehead subcategory
of C , the assertion (iv) follows from Brown’s Theorem. If Brown’s Theorem
holds in C then as in Corollary 3.7, C has products.

Theorem 3.20 ([30]). Let C ,D be locally finitely presented additive cat-
egories with products and letF : C → D be an additive functor. The following
are equivalent:

(i) F has a right adjoint G : D → C (and G preserves coproducts, resp.
direct limits).

(ii) F preserves coproducts, weak cokernels (and compact, resp. finitely
presented objects).

Proof. If C is a locally finitely presented category with products, then by
the above Theorem, f.p.(C ) is a compact Whitehead subcategory of C and the
assertions are consequences of Brown’s Theorem. We include a proof of the
parenthetical cases. By theAdjoint Theorem, the right adjointG ofF preserves
coproducts iff F preserves compact objects. Assume that G preserves direct
limits and let X ∈ f.p.(C ). Then D(F (X), lim→ Di) ∼= C (X,G(lim→ Di)) ∼=
C (X, lim→ G(Di)) ∼= lim→ C (X,G(Di)) ∼= lim→ D(F (X),Di). Hence F(X) is

finitely presented. Conversely if F preserves coproducts, weak cokernels and
finitely presented objects, then ∀X ∈ f.p.(C ) we have:

C (X,G(lim→ Di)) ∼= D(F (X), lim→ Di) ∼= lim→ D(F (X),Di)

∼= lim→ C (X,G(Di)) ∼= C (X, lim→ G(Di)).

Since f.p.(C ) is Whitehead, it follows that lim→ G(Di) ∼= G(lim→ Di), hence G

preserves direct limits.
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3.7. Cohomology Theories and Costabilization

Let C be a right triangulated category with (right) triangulation ∇ and suspen-
sion functor 0. A cohomology theory on C is a sequence {Hn;hn}n∈Z, where
Hn : C op → A b is a cohomological functor and hn : Hn ∼=−→ Hn+10

are natural isomorphisms. A morphism between the cohomology theories
{Hn;hn}n∈Z, {Fn; f n}n∈Z is a sequence of morphisms {αn : Hn → Fn}n∈Z,
such that ∀n ∈ Z : αn ◦ f n = hn ◦ αn+10. We denote by CohTh(C ) the cat-
egory of cohomology theories on C . If C has coproducts, then we denote by
ĈohTh(C , 0,∇) the full subcategory consisting of all cohomology theories
{Hn;hn}n∈Z such that Hn sends coproducts to products, ∀n ∈ Z. Our aim in
this subsection is to describe in some cases the category ĈohTh(C , 0,∇). To
this end we need some definitions.

Suppose that C , D are additive categories equipped with endofuctors /,0

respectively. A functor F : C → D is called stable if F/ = 0F . If
/ : C → C is an endofunctor of an additive category C , then by [8], there
exists a couniversal category in which / becomes invertible in the following
sense. There exists a pair (R(C , /),R) consisting of a category R(C , /)

equipped with an equivalence /̂ : R(C , /) ≈−→ R(C , /) and a stable functor
R : R(C , /) → C , such that for any stable functor F : D → C from a
category D equipped with an autoequivalence, there exists a unique (up to
isomorphism) stable functor F ∗ : D → R(C , /) such that RF ∗ = F . The
category R(C , /) is called the costabilization of C (with respect to /) and the
stable functor R is called the costabilization functor. If the pair (C , /) admits
a left or right triangulation 1, then the costabilization of C is triangulated, and
is denoted by R(C , /,1). In this case the costabilization functor R is exact
and the pair is couniversal for exact functors from triangulated categories to
C . We recall the description of R(C , /) from [8]. The objects of R(C , /)

are sequences {An, αn}n∈Z, where αn : An
∼=−→ /(An+1) are isomorphisms in

C . A morphism between the objects {An, αn}n∈Z, {Bn, βn}n∈Z is a sequence of
morphisms χn : An → Bn, such that αn ◦ /(χn+1) = χn ◦ βn, ∀n ∈ Z. The
costabilization functor is defined by setting R({An, αn}n∈Z) = A0.

The following generalizes a result of Jørgensen [25].

Theorem 3.21. Let (C , 0,∇) be a right triangulated category with cop-
roducts containing a minimal Whitehead subcategory and let / be a right
adjoint of 0.

Then there exists a full embedding T : R(C , /) ↪→ CohTh(C , 0,∇)which
induces an equivalence T : R(C , /) ≈ ĈohTh(C , 0,∇). If (C , /) admits
a left triangulation 1, then ̂CohTh(C , 0,∇) ≈ R(C , /,1) is triangulated
with coproducts.
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Proof. Let φ−,? : C (0(−), ?) ∼= C (−, /(?)) be the natural isomorph-
ism associated to the adjoint pair (0,/). Define a functor T : R(C , /) ↪→
CohTh(C , 0,∇) as follows: T({An;αn}n∈Z) = {Hn;hn}n∈Z, where Hn :=
C (−, An) and hn := C (−, αn) ◦ φ−,An+1 : C (−, An) → C (0(−), An+1).
If (χn)n∈Z : {An;αn}n∈Z → {An;αn}n∈Z is a morphism in R(C , /), then
T((χn)n∈Z) := {C (−, χn)}n∈Z. Trivially T is a full embedding. If {Hn;hn}n∈Z

is a cohomology theory, where each Hn sends coproducts to products, then by
Brown Representability we have natural isomorphisms τn : Hn ∼= C (−, An)

, ∀n ∈ Z. Define isomorphisms αn : An → /(An+1) by the composition of
isomorphisms αn := τn ◦hn ◦τn+10 ◦φ−,An+1 . Then {An;αn}n∈Z is in R(C , /)

and R({An;αn}n∈Z) = {Hn;hn}n∈Z.

Corollary 3.22. Let C be a compactly generated triangulated category.
Then there exists a triangle equivalence C ≈ ĈohTh(C ).

4. Homotopy Pairs and Closed Model Categories

4.1. Closed Model Categories and Functorially Finite Subcategories

Let C be an additive category. We recall the concept of a (closed) model
structure on C in the sense of Quillen [35], [14], [22].

Definition 4.1. A (closed) model structure on C consists of three classes
of morphisms of C :

(1) Cof (C ), the class of cofibrations,

(2) Fib(C ), the class of fibrations,

(3) Weq(C ), the class of weak equivalences,

satisfying the following properties.

(i) If f, g are morphisms in C such that the composition f ◦ g is defined
and two of f, g, f ◦ g are weak equivalences, then so is the third.

(ii) If f is a retract of g in the category C 2 of morphisms of C and g is a
cofribation, fibration or weak equivalence, then so is f .

(iii) Define a morphism f to be a trivial fibration if f is both a fibration and
a weak equivalence. Define a morphism f to be a trivial cofibration if f
is both a cofibration and a weak equivalence. Then for any commutative
diagram

A
f−−−→ C�i

�p

B
g−−−→ D

(†)
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where i is a trivial cofibration and p is a fibration or i is a cofibration
and p is a trivial fibration, there exists h : B → C such that i ◦ h = f

and h ◦ p = g.

(iv) For any morphism f in C there are factorizations: f = f1 ◦ f2 and
f = f3 ◦ f4 in C such that: f1 is a cofibration, f2 is a trivial fibration,
f3 is a trivial cofibration and f4 is a fibration.

If C admits a closed model structure, then an object A ∈ C is called
fibrant, resp. cofibrant, if the morphism A→ 0 is a fibration, resp. 0→ A is
a cofibration. An object A is called bifibrant if A it is fibrant and cofibrant.

Definition 4.2. The homotopy category Ho(C ) of C with respect to a
closed model structure (Cof (C ),Fib(C ),Weq(C )), is defined to be the cat-
egory Ho(C ) := C [Weq(C )−1] obtained by formally inverting the class of
weak equivalences, see [17].

Quillen [35] defines (in the additive case) a closed model category as an
additive category C with kernels and cokernels, together with a closed model
structure on C . For our purposes, we need a weaker notion.

Definition 4.3. A weak closed model category is an additive category C
together with a closed model structure (Cof (C ),Fib(C ),Weq(C )) on C , such
that any cofibration has a cokernel and any fibration has a kernel.

We fix in this section an additive category C with split idempotents. Let
X ⊆ C be a full additive subcategory of C , closed under direct summands
and isomorphisms. Define classes of morphisms in C as follows:

(i) Cof X (C ) is the class of X -monics.

(ii) FibX (C ) is the class of X -epics.

(iii) WeqX (C ) is the class of stable equivalences, i.e. f ∈ Weq(C ) iff f is
an isomorphism in C/X .

Let f, g : A → B be two morphisms in C . We say that f, g are X -
homotopic, if f − g factors through an object of X , i.e. if f = g in the stable
category C/X .

Lemma 4.4. Let f : A→ B be a morphism in C .

(i) f is a trivial cofibration iff f is split monic and Coker(f ) ∈ X .

(ii) f is a trivial fibration iff f is split epic and Ker(f ) ∈ X .

Proof. If f is a trivial cofibration then f is an isomorphism in C/X , so
there is a morphism g : B → A such that 1A = f ◦ g. Then the morphism
1A − f ◦ g factors through an object of X ; hence there are morphisms χ :
A → X, κ : X → A, where X ∈ X , such that: 1A − f ◦ g = χ ◦ κ . Since
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f is X -monic, there exists a morphism λ : B → X such that χ = f ◦ λ.
Then 1A − f ◦ g = f ◦ λ ◦ κ ⇒ 1A = f ◦ (g + λ ◦ κ), so f is split monic.
Since idempotents split in C , f has a cokernel and then Coker(f ) ∈ X .
Conversely if f is split monic then trivially f is a cofibration. Since f induces
an isomorphism B = A⊕Coker(f ) in C , if in addition Coker(f ) ∈ X , then
f is an isomorphism in C/X . The proof of (2) is dual.

Our main result of this section is the following.

Theorem 4.5. The following are equivalent:

(i) X is a functorially finite subcategory of C .

(ii) The triple (Cof X (C ),FibX (C ),WeqX (C )) is a closed model structure
on C .

In this case all objects of C are bifibrant and the associated homotopy category
C [WeqX (C )−1] is equivalent to the stable category C/X . Finally the left or
right homotopy relation (see [35]) induced from the closed model structure of
C coincides with the X -homotopy relation.

Proof. (i) ⇒ (ii) Since f is a weak equivalence iff f is an isomorphism
in C/X , property (i) follows directly. Property (ii) is easy to check and is left
to the reader. Let f : A → B be a morphism in C . Consider the morphisms
f1 := (χA, f ) : A→ XA⊕B, f2 := t (0, 1B) : XA⊕B → B, f3 := (1A, 0) :
A → A ⊕ XB , f4 := t (f, χB) : A ⊕ XB → B, where χA : A → XA is a
left X -approximation of A and χB : XB → B is a right X -approximation of
B. Then f = f1 ◦ f2 = f3 ◦ f4. Moreover by construction f1 is a cofibration,
f4 is a fibration, f2 is a trivial fibration and f3 is a trivial cofibration. Hence
property (iv) holds. It remains to prove that property (iii) is true. Consider
the commutative diagram (†) as in definition 4.1 and assume first that i is a
trivial cofibration and p is a fibration. By Lemma 4.4, the morphism i induces
a direct sum decomposition B ∼= A⊕X, with X ∈ X . Hence without loss of
generality we can assume thatB = A⊕X and i = (1A, 0) : A→ A⊕X. Then
g is of the form g = t (g1, g2) : A⊕X→ D. By the commutativity of (†) we
have g1 = f ◦ p. Since p is a fibration (= X -epic), the morphism g2 factors
through p. Hence there exists α : X→ C such that α ◦ p = g2. Consider the
morphism h := t (f, α) : A ⊕ X → C. Then i ◦ h = (1A, 0) ◦ t (f, α) = f

and h ◦ p = t (f, α) ◦ p = t (f ◦ p, α ◦ p) = t (g1, g2) = g. A similar
argument shows that the morphism h exists, if i is a cofibration and p is a
trivial fibration. Hence the triple (CofX (C ), F ibX (C ),WeqX (C )) defines
on C a closed model structure.

(ii) ⇒ (i) Let A be in C . If C (A,X) = 0,∀X ∈ X , then A → 0 is
a left X -approximation of A. Assume that there exists X′ ∈ X and a non-
zero morphism f : A → X′. By Definition 4.1, there exists a factorization
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f = f1 ◦ f2 : A f1−→ B
f2−→ X′ such that f1 is a cofibration and f2 is a trivial

fibration. By the above Lemma, f2 is a split epic with kernel in X , hence
B ∈ X . Since by definition f1 is a cofibration = X -monic, it follows that
f1 is a left X -appoximation of A. Hence X is covariantly finite. A similar
argument shows that X is contravariantly finite.

By construction the projection functor π : C → C/X sends weak equival-
ences to isomorphisms. If F : C → D is an additive functor such that F(f )

is an isomorphism, ∀f ∈ WeqX (C ), then since the morphism X → 0 is a
weak equivalence for any X ∈ X , we have that F(X ) = 0. Hence there
exists a unique (up to equivalence) functor F̃ : C/X → D such that F̃ π = F .
This shows that C/X is equivalent to the homotopy category C [WeqX (C )−1].
Trivially all objects of C are fibrant and cofibrant. The assertion about homo-
topies is easy and is left to the reader.

If X is a functorially finite subcategory of an additive category C , then
we consider always C with the closed model structure described in the above
Theorem.

If there exists a closed model structure on C with all objects bifibrant, then
for an object A ∈ C , A → 0 is a weak equivalence iff 0 → A is a weak
equivalence. We call such objects acyclic and the induced full subcategory
is denoted by Ac(C ). One direction of the following result, first proved by
Pirashvili [34] in case C is abelian, is a consequence of Theorem 4.5. The
proof of the other direction, is similar to the proof of Theorem 4.5, using
standard arguments from the theory of model categories. Since we shall not
use it, its proof is left to the reader.

Theorem 4.6. There is a bijective correspondence between closed model
structures on C with all objects bifibrant and functorially finite subcategories
of C . The correspondence is given as follows:

(Cof (C ),Fib(C ),Weq(C )) �−→ Ac(C ),

X �−→ (Cof X (C ),FibX (C ),WeqX (C )).

4.2. Homotopy pairs and Triangulations

The following concept is fundamental in the study of stable categories.

Definition 4.7. [9] A pair (C ,X ) of additive categories is called right
(left) homotopy pair if the following conditions are true:

(1) X is a covariantly (contravariantly) finite full subcategory of C .
(2) Any X -monic (X -epic) has a cokernel (kernel) in C .
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The pair (C ,X ) is called a homotopy pair if it is a left and right homotopy
pair.

Example 4.8. (1) Idempotent morphisms split in C iff (C ,C ) is a homo-
topy pair. The pair (C , 0) is a left (right) homotopy pair iff C has (co)kernels.

(2) For any abelian category C and any contravariantly (covariantly) finite
subcategory X ⊆ C , the pair (C ,X ) is a left (right) homotopy pair. Here we
can choose X to be the full subcategory of projectives (injectives), if C has
enough of them.

(3) If C is a locally finitely presented additive category, then for any full sub-
category X ⊆ f.p.(C ), the pair (C ,Add(X )) is a left homotopy pair. If C has
products, then (C ,PInj(C )) is a right homotopy pair, where PInj(C ) is the full
subcategory of pure-injective objects. In particular if D is a skeletally small ad-
ditive category with split idempotents, then (Flat(Mod(D)),Proj(Mod(D))) is a
left homotopy pair and if moreoverD has weak cokernels, then (Flat(Mod(D)),

FlPInj(Mod(D))) is a right homotopy pair, where FlPInj(Mod(D)) is the full
subcategory of flat and pure-injective objects.

Usually a category carries a left and right triangulated structure in a compat-
ible way. We formalize this situation in the following definition, see also [22].

Definition 4.9. Let C be an additive category. A pre-triangulation of C
consists of the following data:

(i) An adjoint pair (0,/) of additive endofunctors 0,/ : C → C . Let
ε : 0/ → IdC be the counit and let δ : IdC → /0 be the unit of the
adjoint pair.

(ii) A collection of diagrams 1 in C of the form /(C) → A → B → C,
such that the triple (C , /,1) is a left triangulated category.

(iii) A collection of diagrams ∇ in C of the form A → B → C → 0(A),
such that the triple (C , 0,∇) is a right triangulated category.

(iv) For any diagram in C with commutative left square:

A
f−−−−→ B

g−−−→ C h−−−→ 0A�α
�β

�∃γ
�0(α)◦εC′

/(C ′) f ′−−→ A′ g′−−−→ B ′ h′−−−→ C ′

where the upper row is in ∇ and the lower row is in 1, there exists a
morphism γ : C → B ′ making the diagram commutative.
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(v) For any diagram in C with commutative right square:

A
f−−−−→ B

g−−−→ C h−−−→ 0A�δA◦/(α)

�∃γ
�β

�α
/(C ′) f ′−−→ A′ g′−−−→ B ′ h′−−−→ C ′

where the upper row is in ∇ and the lower row is in 1, there exists a
morphism γ : B → A′ making the diagram commutative.

A pre-triangulated category is defined to be an additive category together with
a pre-triangulation.

Any right homotopy pair (C ,X ) induces on the stable category C/X a
right triangulated structure (0X ,∇X ), where 0X : C/X → C/X is the
suspension functor and ∇X is the triangulation. Dually any left homotopy
pair (C ,X ) induces on the stable category C/X a left triangulated structure
(/X ,1X ), where /X : C/X → C/X is the loop functor and 1X is the tri-
angulation, we refer to [9] for details. If (C ,X ) is a left (right) homotopy pair,
then we consider always the stable category C/X as a left (right) triangulated
category as above and we note that in case (C ,X ) is a homotopy pair, then
we have an adjoint pair (0X , /X ) in C/X [8]. In this case it is not difficult
to see that the compatability conditions (iv), (v) are true. We collect the above
information in the following.

Corollary 4.10. There exists a bijective correspondence between ho-
motopy pairs (C ,X ) and weak closed model structures on C with all objects
bifibrant. The induced homotopy category C/X is a pre-triangulated category.

In general there is no relation between the left triangulation1X and the right
triangulation ∇X on C/X . There is a particular case in which 1X , ∇X are
essentially the same. We recall that an additive category C is called Frobenius,
if C is an exact category in the sense of Quillen, with enough projectives,
enough injectives and the projectives coincide with the injectives. For instance
if � is an associative ring, then the category Mod(�) of right �-modules is
Frobenius iff � is a Quasi-Frobenius ring. If P is the full subcategory of
projectives and C is Frobenius, then clearly (C ,P) is a homotopy pair. We
recall that a weak closed model category C is called stable, if the associated
homotopy category Ho(C ) of C is triangulated with the triangulation induced
from the cofibrations, see [22].

Corollary 4.11. If C is a Frobenius category with split idempotents,
then C is a stable weak closed model category with cofibrations the proper
monomorphisms, fibrations the proper epimorphisms and weak equivalences
the stable equivalences.
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We note that many (left or right) triangulated categories arise from stable
weak closed model Frobenius categories, as homotopy (a stable) categories in
the above sense.This covers the stable module category of a QF-ring and the
derived categroy of a ring (see [25]).

Remark 4.12. If (C ,X ) is a right homotopy pair, then defining cofibrations
and weak equivalences as before, it follows easily that C has the structure of a
saturated Waldhausen category [38]. Hence by [38] the Waldhausen K-groups
Kn(C ) of C are defined, ∀n ≥ 0. It is easy to see that K0(C ) is isomorphic
to the Grothendieck group of the right triangulated category C/X in the sense
of [10]. This suggests that the groups Kn(C ) can be regarded as the higher
K-groups of the stable right triangulated category C/X .

4.3. Brown’s Abstract Homotopy Categories

E. H. Brown in [12] formalizing the homotopy theory of CW complexes defined
abstract homotopy categories. In the additive setting his definition can be for-
mulated as follows:

Definition 4.13. An Abstract Homotopy Category is a pair (C ,X ) con-
sisting of an additive category C and a full additive subcategory X ⊆ C , such
that:

(i) C has coproducts and weak cokernels.

(ii) X is a minimal Whitehead subcategory of C closed under weak coker-
nels.

The above definition is different from that of [12] in that Brown does not
require that X is Whitehead. In the next section we shall see many algebraic
examples of abstract homotopy categories and our definition is more suitable
for our purposes.

5. Stable Module Categories

Throughout this section � will denote an associative ring. We denote by P�,
resp. P�, the categories of finitely generated projective, resp. all projective,
right modules, and by Mod(�), resp. mod(�), the category of all, resp. finitely
presented, right �-modules. Let mod(�) := mod(�)

/
P� and Mod(�) :=

Mod(�)
/

P� be the induced stable categories. Then (Mod(�),P�) is a left
homotopy pair, so Mod(�) is a left triangulated category with coproducts
and split idempotents. Dually we denote by I�, resp. I�, the categories of
finitely generated injective, resp. all injective, right modules. Let mod(�) :=
mod(�)

/
I� and Mod(�) := Mod(�)

/
I� be the induced stable categories.

Then (Mod(�), I�) is a right homotopy pair, so Mod(�) is a right triangulated
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category with products and split idempotents. Trivially Mod(�) is triangulated
⇔Mod(�) is triangulated⇔ � is a QF-ring.

Our aim in this section is to characterize when a ring � has the property
that the stable category mod(�), resp. mod(�), is a compact Whitehead left,
resp. right, triangulated subcategory of Mod(�), resp. Mod(�). We begin
with two easy results. First we recall that a module A is called FP-injective if
E xt1

�(X,A) = 0, for any finitely presented module X. A short exact sequence
0 → A → B → C → 0 in Mod(�) is called pure if 0 → (X,A) →
(X,B) → (X,C) → 0 is exact for any finitely presented right module X;
equivalently if 0 → A ⊗� L → B ⊗� L → C ⊗� L → 0 is exact for any
(finitely presented) left module L. It is well known that a module C, resp. A,
is flat, resp. FP-injective, if any short exact sequence 0→ A→ B → C → 0
is pure.

Lemma 5.1. (1) A ∈ Mod(�) is flat⇔ ∀X ∈ mod(�) : (X,A) = 0.
(2) A ∈ Mod(�) is FP-injective⇔ ∀X ∈ mod(�) : (X,0(A)) = 0.

Proof. (1) Let A be flat and let (∗) : 0 → K → P → A → 0 be
exact with P projective. If X is finitely presented, then since (∗) is pure, any
morphism f : X→ A factors through P . Hence (X,A) = 0,∀X ∈ mod(�).
Conversely if the last condition is true, then the sequence (∗) is pure. Trivially
then any short exact sequence ending at A is pure, so A is flat. The proof of
(2) is similar.

Lemma 5.2. Let C be an abelian category and X be a full subcategory of C .

(i) If X is contravariantly finite and any X -epic is an epimorphism, then:
X is covariantly finite (reflective) in C ⇔X has weak cokernels (coker-
nels).

(ii) If X is covariantly finite and any X -monic is a monomorphism, then: X
is contravariantly finite (coreflective)⇔X has weak kernels (kernels).

Proof. (i) Assume that X has weak cokernels and let C ∈ C . Let X1
f−→

X0
χ−→ C → 0 be an exact sequence in C , where X0 → C is a right X -

approximation of C and X1 is a right X -approximation of Ker(χ). Let g :
X0 → X2 be a weak cokernel of f in X . Then there exists a unique morphism
ξ : C → X2 such that χ ◦ ξ = g. If h : C → X′ is a morphism with X′ ∈ X ,
then f ◦ χ ◦ h = 0, hence there exists a morphism t : X2 → X′ such that
χ ◦ h = g ◦ t = χ ◦ ξ ◦ t . Since χ is epic, ξ ◦ t = h. Hence ξ is a left X -
approximation of C. Conversely if X is covariantly finite then by Proposition
3.1, X has weak cokernels. The proof of the parenthetical case and of part (ii)
is similar and is left to the reader.
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Theorem 5.3. For any ring � the following are equivalent.

(i) � is right Noetherian.

(ii) (Mod(�), I�) is a homotopy pair.

(iii) I� is contravariantly finite.

(iv) I� has weak kernels.

(v) I� is closed under coproducts.

(vi) The functor π : Mod(�)→ Mod(�) preserves coproducts.

(vii) (X,A) = 0,∀X ∈ mod(�) implies that A = 0, i.e. A is injective.

If � is right Noetherian, then Mod(�) is a pre-triangulated category with
products, coproducts, weak kernels, weak cokernels (hence weak limits and
weak colimits) and the suspension functor 0 : Mod(�) → Mod(�) has a
right adjoint /I.

Proof. It is well known that � is right Noetherian iff any coproduct of
injectives is injective, and by [8] we have that � is right Noetherian iff I�
is contravariantly finite. Hence (i) is equivalent to (ii), (iii) and (v) and by
Proposition 2.1, (i) is equivalent to (vi). By Lemma 5.2, (iii) is equivalent to
(iv). It remains to prove that (i) is equivalent to (vii). Suppose that � is right
Noetherian and suppose that (X,A) = 0, for any finitely presented X. Let
I be a right ideal of � and let f : I → A be a morphism. Since � is right
Noetherian, f factors through the injective envelope µ : I → E(I) of I as
f = µ ◦g. Since E(I) is injective, µ factors through the inclusion i : I ↪→ �

as µ = i ◦h. Then f factors through the inclusion i as f = i ◦h◦g. By Baer’s
criterion, A is injective. Conversely assume that (X,A) = 0,∀X ∈ mod(�)

implies that A = 0. Let {Ei; i ∈ I } be a set of injective modules, X an arbitrary
finitely presented module and let f : X → ⊕Ei be a morphism. Since X is
finitely presented, the morphism f factors through some finite subcoproduct
⊕j∈JEj , |J | <∞. Since ⊕j∈JEj is injective, we have f = 0. By hypothesis,
⊕Ei = 0 or equivalently ⊕Ei is injective. Hence a coproduct of injectives is
injective and then � is right Noetherian.

If � is right Noetherian, then since (Mod(�), I�) is a homotopy pair, it
follows that the suspension functor 0 has a right adjoint /I and Mod(�) is
pre-triangulated by Corollary 4.10. Hence Mod(�) has weak kernels and weak
cokernels and has products and coproducts since I� is closed under products
and coproducts.

The following consequence is due to Pirashvili [34].

Corollary 5.4. A ring � is right Noetherian iff Mod(�) is a closed model
category with cofibrations the monomorphisms, fibrations the I�-epimorphi-
sms and weak equivalences the morphisms which are isomorphisms in Mod(�).
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We recall that a ring �, resp. D, is called right (resp. left), Morita if there
exists a ring D, resp. �, and a Morita duality mod(�) → mod(Dop). Equi-
valently � is right Artinian and Mod(�) has a finitely generated injective
cogenerator.

Corollary 5.5. For any ring � the following are equivalent

(i) � is right Morita.

(ii) � is right Noetherian and mod(�) is closed under injective envelopes.

(iii) � is right Noetherian and (mod(�),I�) is a right homotopy pair.

(iv) mod(�) is a (compact) Whitehead right triangulated subcategory of
Mod(�).

If � is right Morita, then the right adjoint /I of 0 preserves coproducts and
0 preserves coproducts and compact objects.

Proof. (ii) ⇒ (iv) That mod(�) is a Whitehead subacategory, follows
from [25] (actually in [25] is assumed that � is right Artinian, but the proof
works in our case). By hypothesis, mod(�) is abelian with enough injectives,
so mod(�) is a right triangulated subcategory of Mod(�) which obviously
consists of compact objects.

(iv) ⇒ (ii) Let A be a right module and suppose that (X,A) = 0, for
any finitely presented X. Then (X, 0A) is an isomorphism. Since mod(�) is
a Whitehead subcategory, 0A is an isomorphism, so A = 0. By Theorem 5.3,
� is right Noetherian. Since mod(�) is a right triangulated subcategory of
Mod(�), its follows that for any finitely presented X, its suspension 0(X) is
finitely presented and this implies that the injective envelope ofX is also finitely
presented. Obviously (ii) is equivalent to (iii) and (i) implies (ii). Conversely
if (ii) holds, then the injective envelope of � is finitely generated. This implies
that � is right Artinian and the direct sum of the injective envelopes of the
isoclasses of simple modules is a finitely generated injective cogenerator, so
� is right Morita.

If {Aj ; i ∈ J } is a set of right �-modules, and 0 → Kj → Ij → Aj

are exact sequences where Ij are I�-approximations of Aj , then using the
hypothesis (i), it is not difficult to see that ⊕Ij is a right I�-approximation of
⊕Aj . By the construction of /I in [8], this implies that /I(⊕Aj) = ⊕Kj =
⊕/I(Aj ). Hence /I preserves coproducts. Then 0 preserves compact objects
by Corollary 3.12.

Now we turn our attention to the stable category modulo projectives. First
we need a simple observation.

Remark 5.6. It is easy to see that: � is left coherent ⇔ P� has weak
cokernels⇔ P�op has weak kernels⇔ P� is covariantly finite in mod(�)
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⇔ (mod(�),P�) is a right homotopy pair ⇔ (mod(�op),P�op ) is a left
homotopy pair. In this case by subsection 4.2, the stable category mod(�)

is right triangulated and the stable category mod(�op) is left triangulated.
Hence: � is left and right coherent⇔ (mod(�),P�), (mod(�op),P�op ) are
homotopy pairs. In this case the categories mod(�),mod(�op) are weak closed
model categories and the associated homotopy categories mod(�), mod(�op)

are pre-triangulated.

We have the following characterization of left coherent and right perfect
rings.

Theorem 5.7. For any ring � the following are equivalent.

(i) � is left coherent and right perfect.

(ii) (Mod(�),P�) is a homotopy pair.

(iii) P� is covariantly finite.

(iv) P� has weak cokernels.

(v) P� is closed under products.

(vi) The functor π : Mod(�)→ Mod(�) preserves products.

(vii) The following are true:

(a) (mod(�),P�) is a right homotopy pair.

(b) (X,A) = 0,∀X ∈ mod(�) implies that A = 0, i.e. A is projective.

(viii) The following are true:

(a) (mod(�),P�) is a right homotopy pair.

(b) mod(�) is (compact) Whitehead right triangulated subcategory of
Mod(�).

If � is left coherent and right perfect, then Mod(�) is a pre-triangulated
category with products, coproducts, weak kernels, weak cokernels (hence weak
limits and weak colimits) and the loop functor / : Mod(�) → Mod(�)

preserves coproducts and has a left adjoint 0P which preserves coproducts
and compact objects.

Proof. The equivalence (i) ⇔ (v) is a well-known result of Chase. The
equivalence (iii)⇔ (v) follows from Proposition 2.5. The equivalence (ii)⇔
(iii) is trivial. The equivalence (v)⇔ (vi) follows from Proposition 2.1. The
equivalence (iii)⇔ (iv) follows from Lemma 5.2. The equivalence (i)⇔ (vii)
follows from the above Remark and Lemma 5.1. It remains to show that (i) is
equivalent to (viii).

(i) ⇒ (viii) Assume that � is left coherent and right perfect. From part
(ii), P� is covariantly finite, so the stable category Mod(�) is left and right
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triangulated with loop functor / and suspension functor its adjoint 0P, see
[8]. Let f : A→ B be a morphism such that (X, f ) : (X,A)→ (X,B) is an
isomorphism. If pB : PB → B is the projective cover of B, we have a short

exact sequence (∗) : 0 → C
(g,k)−−→ A ⊕ PB

t (f,pB)−−−−→ B → 0, which induces

a triangle /(B)
h−→ C

g−→ A
f−→ B. Then ∀X ∈ mod(�), we have a long

exact sequence · · · → (X,/(A))
(X,/(f ))−−−−−→ (X,/(B))

(X,h)−−−→ (X,C)
(X,g)−−−→

(X,A)
(X,f )−−−→ (X,B). Using the adjoint pair (0P, /), we have the following

commutative diagram:

(X,/(A))
(X,/(f ))−−−−−−−−→ (X,/(B))�∼=

�∼=
(0P, (X),A)

(0P,(X),f )−−−−−−→ (0P, (X), B)

By the above remark, 0P(X) is finitely presented, hence (0P(X), f ) and
equivalently (X,/(f )) is an isomorphism. We deduce that ∀X ∈ mod(�) :
(X,C) = 0. Then from part (vi), C = 0, so C is projective. We claim that (∗)
is pure. Indeed if α : X → B is a morphism with X finitely presented, then
since (X, f ) is an isomorphism, there exists β : X→ A such that β ◦ f = α.
This means that α−β ◦ f factors through pB . Hence there exists t : X→ PB

with α−β ◦f = t ◦pB . This trivially implies that α factors through t (f, pB).
Hence (∗) is a pure exact sequence. Since � is right perfect, by [24] any
projective is pure injective, hence C is pure injective. We conclude that (∗)
splits. Then obviously f is an isomorphism.

(viii) ⇒ (i) Suppose that (X,A) = 0, ∀X ∈ mod(�). Then (X, 0A)

is an isomorphism ∀X ∈ mod(�). Since mod(�) is Whitehead, 0A is an
isomorphism, so A = 0. By Lemma 5.1, � is right perfect. Since P� is
covariantly finite in mod(�), � is left coherent, by the above remark.

The following consequences are due to Pirashvili [34].

Corollary 5.8. A ring � is left coherent and right perfect iff Mod(�)

is a closed model category with fibrations the epimorphisms, cofibrations the
P�-mono-morphisms and weak equivalences the stable equivalences, i.e. the
morphisms which are isomorphisms in Mod(�).

Corollary 5.9. A ring � is Quasi-Frobenius iff Mod(�) is a stable closed
model category with fibrations the epimorphisms, cofibrations the monomorph-
isms and weak equivalences the stable equivalences, i.e. the morphisms which
are isomorphisms in Mod(�) or in Mod(�).

Since � is right Artinian iff � is right Noetherian and left perfect, we have
the following consequence of Theorems 5.3 and 5.7.
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Corollary 5.10. The following are equivalent:

(i) � is right Artinian.

(ii) (Mod(�), I�) and (Mod(�op),P�op ) are homotopy pairs.

� is Artinian⇔ the following are homotopy pairs:

(Mod(�), I�), (Mod(�),P�), (Mod(�op), I�op ), (Mod(�op),P�op ).

If � is right Noetherian, then Mod(�) as a pre-triangulated category is
left and right triangulated. We use the notation ModR(�) when we consider
Mod(�) as a right triangulated category with suspension functor 0 and the
notation ModL(�) when we consider Mod(�) as a left triangulated category
with loop functor the right adjoint /I of 0. Similarly if � is left coherent
and right perfect, then Mod(�) as a pre-triangulated category is left and right
triangulated. We use the notation ModL(�) when we consider Mod(�) as a
left triangulated category with loop functor / and the notation ModR(�) when
we consider Mod(�) as a right triangulated category with suspension functor
the left adjoint 0P of /.

The next three Corollaries are direct consequences of our previous results.

Corollary 5.11. The following statements are equivalent.

(i) � is a right Morita ring.

(ii) The pair (Mod(�),mod(�)) is an Abstract Homotopy Category.

(iii) The pair (I�,I�) is an Abstract Homotopy Category.

If � is right Morita, then we have the following.

(α) The right triangulated category ModR(�) is compactly generated with
minimal compact Whitehead generating subcategory mod(�).

(β) An additive functor F : ModR(�)op → A b is representable iff F is
cohomological and sends coproducts to products.

Corollary 5.12. The following statements are equivalent.

(i) � is a left coherent and right perfect ring.

(ii) The pair (Mod(�),mod(�)) is an Abstract Homotopy Category.

(iii) The pair (P�,P�) is an Abstract Homotopy Category.

If � is left coherent and right perfect, then we have the following.

(α) The right triangulated category ModR(�) is compactly generated with
minimal compact Whitehead generating subcategory mod(�).

(β) An additive functor F : ModR(�)op → A b is representable iff F is
cohomological and sends coproducts to products.
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Corollary 5.13. If there exists a Morita duality D : mod(�)→mod(Dop),
then:

(i) (Mod(�),mod(�)) and (Mod(�op),mod(�op)) are Abstract Homo-
topy Categories.

(ii) (Mod(Dop),mod(Dop)) and (Mod(D),mod(D)) are Abstract Homotopy
Categories.

Remark 5.14. Let PProj(�), PInj(�) be the full subcategories of Mod(�)

consisting of all pure-projective, resp. pure-injective modules. The following
well known result shows that the pure version of the above theory is trivial.

The following statements are equivalent:

(i) The ring � is right pure semisimple.

(ii) PProj(�) is covariantly finite.

(iii) PInj(�) is contravariantly finite.

(iv) PProj(�) has weak cokernels.

(v) PInj(�) has weak kernels.

(vi) PProj(�) is closed under products.

(vii) PInj(�) is closed under coproducts.

(viii) The stable category Mod(�)/PProj(�) = 0.

(ix) The stable category Mod(�)/PInj(�) = 0.

(x) Any pure-projective is pure-injective.

(xi) Any pure-injective is pure-projective.

(xii) The functor category Mod(mod(�)) is perfect.

(xiii) The functor category Mod(mod(�)op) is locally Noetherian.

We close this section with the following applications of our previous results.

Corollary 5.15. (1) � is right hereditary and right Noetherian ⇔ the
canonical functor π : Mod(�) → Mod(�) has a right adjoint ⇔ I� is a
torsion class.

(2) � is left coherent right perfect and right hereditary⇔ the canonical
functor π : Mod(�) → Mod(�) has a left adjoint ⇔ P� is a torsion-free
class.

Proof. (1) If π has a right adjoint, then π preserves cokernels and cop-
roducts. Hence by Proposition 2.1, I� is closed under coproducts and� is right
Noetherian. Let 0→ A→ I (A)→ 0(A)→ 0 be an exact sequence, where
I (A) is the injective envelope of A. Since π preserves cokernels, it follows
directly that 0(A) = 0 and this implies that � is right hereditary. Conversely
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if � is right hereditary and right Noetherian then it is easy to see that π pre-
serves coproducts and weak cokernels. Then by Theorem 3.8, π has a right
adjoint. Trivially if � is right Noetherian and right hereditary, then I� is a
torsion class with torsion-free class the full subcategory R of modules without
injective summands. If I� is a torsion class, then obviously π : R → Mod(�)

is an equivalence. Hence π has a right adjoint, since R is reflective. Part (2)
is similar and is left to the reader.

Corollary 5.16. (1) � is right Noetherian and r.gl.dim � ≤ 2 iff I� is
a coreflective subcategory of Mod(�).

(2) � is left coherent right perfect and r.gl.dim � ≤ 2 iff P� is a reflective
subcategory of Mod(�).

Proof. See [5] or use Corollaries 5.11, 5.12 and Theorem 3.8.

6. Stable Homotopy Categories

6.1. Stable Homotopy Categories

We recall [8], [19], [27], that given a left or right triangulated category C , there
exists a triangulated category S (C ) and an exact functor S : C → S (C ),
which is universal for exact functors from C to triangulated categories. In
other words the pair (S,S (C )) satisfies the following universal property: if
F : C → D is an exact functor to a triangulated category D , then there exists
a unique exact functor F ! : S (C )→ D , such that F !S = F . The triangulated
category S (C ) is the stabilization of C and the functor S is the stabilization
functor. Obviously C is triangulated iff the stabilization functor S is a triangle
equivalence. The stabilization of C is trivial iff the loop or suspension functor
is locally nilpotent. We refer to [8] for the description and further information
on the stabilization construction.

Definition 6.1. Let C be a left or right triangulated category. We say that
C admits a stable homotopy category if its stabilization S (C ) is compactly
generated.

Definition 6.2. (i) A ring � has a (right) projective stable homotopy
category if the left triangulated category Mod(�) admits a stable homotopy
category.

(ii) A ring � has a (right) injective stable homotopy category if the right
triangulated category Mod(�) admits a stable homotopy category.

Example 6.3. If � is a QF-ring, then � has a left and right project-
ive and injective stable homotopy category. Indeed by Corollaries 5.9, 5.12,
Mod(�) = Mod(�) is a compactly generated triangulated category, and co-
incides with its stabilization.
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Remark 6.4. The projective stable homotopy category is invariant under
derived equivalence. Indeed if �, D are derived equivalent rings, then the
stabilization of Mod(�) is triangle equivalent to the stabilization of Mod(D).
Hence � has a projective stable homotopy category iff D has a projective stable
homotopy category.

Our aim in this section is to study rings which admit a projective or in-
jective stable homotopy category. Before we proceed further we need some
definitions and results from [8]. First we recall that a right �-module A is
called Gorenstein-projective if there exists an exact sequence · · · → P−1 →
P 0 → P 1 → · · · of projective modules with Im(P−1 → P 0) = A and the
sequence remains exact applying Hom�(−,P�). The full subcategory of all
Gorenstein-projective modules is denoted by GP(Mod(�)), and the induced
stable category modulo projectives is denoted by GP(Mod(�)). The full sub-
category GI(Mod(�)) of Gorenstein-injective modules is defined dually and
the induced stable category modulo injectives is denoted by GI(Mod(�)). By
the results of [8], the stable category GP(Mod(�)) is a full triangulated subcat-
egory of ModL(�) and dually the stable category GI(Mod(�)) is a full triangu-
lated subcategory of ModR(�). We denote by GP(mod(�)), resp. GI(mod(�)),
the full subcategory of GP(Mod(�)), resp. GI(Mod(�)), consisting of finitely
presented modules. Note that GP(Mod(�)),GI(Mod(�)) are Frobenius weak
closed model categories. Obviously if � is a QF-ring then GP(Mod(�)) =
Mod(�) = GI(Mod(�)). If any module has finite projective, resp. injective,
dimension, then GP(Mod(�)) = P�, resp. GI(Mod(�)) = I�. If � is No-
etherian (or coherent) ring, the Gorenstein-projective modules GP(mod(�)),
are exactly the modules in mod(�) with zero G-dimension in the sense of
Auslander-Bridger [1].

Definition 6.5. [8] A ring � is called right Gorenstein if any projective
right module has finite injective dimension and any injective right module
has finite projective dimension. If � is right Gorenstein, then sup{p.d.I ; I ∈
I�} = sup{i.d.P ;P ∈ P�} <∞. This number is called the (right) Gorenstein
dimension of � and is denoted by G − dim �.

We note that the Gorenstein property of a ring is a necessary and suffi-
cient condition for the existence of Tate-Vogel (co)homology and complete
projective or injective resolutions [8]. We need the following basic result from
[8].

Lemma 6.6. Let � be a right Gorenstein ring with G − dim � = d.

(1) The stabilization of ModR(�) is the stable category GI(Mod(�)) with
stabilization functor 0−d0d : ModR(�)→ GI(Mod(�)).
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(2) The stabilization of ModL(�) is the stable category GP(Mod(�)) with
stabilization functor /−d/d : ModL(�)→ GP(Mod(�)).

(3) /d(Mod(�)) = GP(Mod(�)), 0d(Mod(�)) = GI(Mod(�)) and there
exists a triangle equivalence GP(Mod(�)) ≈ GI(Mod(�)).

Our first main result in this section is the following.

Theorem 6.7. Any left coherent and right perfect or right Morita right
Gorenstein ring, has a (right) projective and injective stable homotopy cat-
egory.

Proof. By the above Lemma it suffices to show that the triangulated cat-
egory GP(Mod(�)) or equivalently GI(Mod(�)) is compactly generated. Sup-
pose first that � is coherent and right perfect. Obviously GP(Mod(�)) has
coproducts. Let A be a Gorenstein-projective module and suppose that ∀G ∈
GP(mod(�)) we have (G,A) = 0. Then any morphism from a finitely presen-
ted Gorenstein-projective module to A factors through a projective module.
Since � is left coherent and right perfect by [8] we have that GP(Mod(�)) is
covariantly finite in Mod(�) and it is not difficult to see that if X is finitely
presented then the left GP(Mod(�))-approximation of X is finitely presen-
ted. Now let X be an arbitrary finitely presented module and f : X → A

be a morphism. Let gX : X → GX be its left Gorenstein-projective approx-
imation. Since A is Gorenstein-projective, the morphism f factors through
gX. Hence there exists h : GX → A such that gX ◦ h = f . Since GX is
in GP(mod(�)), the morphism h factors through a projective. This implies
that the morphism f factors through a projective module. This shows that
(X,A) = 0,∀X ∈ mod(�). By Theorem 5.7, we have that A is projective,
i.e. A = 0. We conclude that ∀G ∈ GP(mod(�)): (G,A) = 0 ⇒ A = 0.
Since GP(mod(�)) is skeletally small triangulated and consists of compact ob-
jects, by Corollary 3.17 it follows that the triangulated category GP(Mod(�))

is compactly generated. Since by Lemma 6.6, GP(Mod(�)) is triangle equival-
ent to GI(Mod(�)), the latter is also compactly generated. If � is right Morita,
the proof is similar and is left to the reader.

Corollary 6.8. Let � be an Artin algebra of finite selfinjective dimension,
i.e. i.d. �� < ∞ and i.d. �op

�op < ∞. Then � has a left and right projective
and injective stable homotopy category.

Proof. Follows from Theorem 6.7, since a Noetherian ring � is left Goren-
stein iff � is right Gorenstein iff i.d. �� <∞ and i.d. �op

�op <∞, see [8].

Corollary 6.9. Let � be a left coherent and right perfect right Gorenstein
ring and let {Hn;hn}n∈Z be a cohomology theory in ModR(�). Then each Hn
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sends coproducts to products⇔ there exists a Gorenstein-projective module A

such that Hn ∼= Mod(�)(−, /−n(A)). Hence with the notation of section 3:

ĈohTh(ModR(�)) ≈ GP(Mod(�)).

Proof. By Theorem 3.21, ĈohTh(ModR(�)) is equivalent to the costabil-
ization of ModL(�). Since � is right Gorenstein, by [8] this costabilization is
triangle equivalent to the stabilization GP(Mod(�)).

A similar result holds for cohomology theories defined over ModR(�). If
� is left coherent and right perfect, resp. right Morita, then by Corollary 5.12,
resp. Corollary 5.11, we know that cohomological functors sending coproducts
to products defined over ModR(�), resp. ModR(�), are representable. The
following result shows what happens in the Gorenstein case, for the remaining
triangulations. First we need the following description of compacts objects.

Lemma 6.10. Under the assumptions of Theorem 6.7, we have:

GP(Mod(�))b = GP(mod(�)) and GI(Mod(�))b = GI (mod(�)).

In particular if � is Quasi-Frobenius, then: Mod(�)b = mod(�).

Proof. Since any finitely presented module becomes compact in the stable
categories, we have GP(mod(�)) ⊆ GP(Mod(�))b. By the above Theorem,
GP(mod(�)) is a skeletally small generating epaisse subcategory of
GP(Mod(�)). Then the assertion follows from Neeman-Ravenel Theorem (see
Theorem 5.3 in [26]).

Corollary 6.11. (α)Let� be a left coherent right perfect right Gorenstein
ring.

(i) Let H : ModL(�)op → A b be a cohomological functor which sends
coproducts to products. Then there exists a Gorenstein-projective module G

such that H |GP(Mod(�)) = (−,G).
(ii) Let F : ModL(�) → A b be a homological functor which preserves

products and coproducts. Then there exists a finitely presented Gorenstein-
projective module G such that H |GP(Mod(�)) = (G,−).

(β) Let � be a right Morita right Gorenstein ring.
(i) Let H : ModL(�)op → A b be a cohomological functor which sends

coproducts to products. Then there exists a Gorenstein-injective module G

such that H |GI(Mod(�)) = (−,G).
(ii) Let F : ModL(�) → A b be a homological functor which preserves

products and coproducts. Then there exists a finitely presented Gorenstein-
projective module G such that H |GI(Mod(�)) = (G,−).
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Proof. (α)(i) Obviously H restricts to a cohomological functor
GP(Mod(�))op → A b, which sends coproducts to products. Then the asser-
tion follows from Brown representability. (α)(ii) H restricts to a homological
functor GP(Mod(�))→ A b, which preserves products and coproducts. Then
the assertion follows from the above Lemma and [31]. Part (β) is treated sim-
ilarly.

Examples of functors satisfying the condition of (α)(i) in the above Co-
rollary, are the functors E xti(−, A), i ≥ 1, ∀A ∈ Mod(�). Examples of
functors satisfying the condition of (α)(ii) in the above Corollary, are the
functors (F ,−),∀F ∈ mod(�). Examples of functors satisfying the condi-
tion of (β)(i) in the above Corollary, are the functors (−, A),∀A ∈ Mod(�).
Examples of functors satisfying the condition of (β)(ii) in the above Corollary,
are the functors E xti(F,−), i ≥ 1, ∀F ∈ mod(�).

We recall that a full subcategory L of Mod(�) is called resolving, resp.
coresolving, if L is closed under extensions, kernels of epics, resp. cokernels
of monics, and contains the projectives, resp. injectives.

Corollary6.12. Let�be a left coherent and right perfect right Gorenstein
ring of dimension d. Let L be a resolving, subcategory of Mod(�), closed
under coproducts and cokernels of left projective approximations. If L consists
of Gorenstein-projective modules, then L is contravariantly finite.

Proof. Since L is resolving, the hypothesis implies that the stable category
L is a localizing subcategory of the compactly generated triangulated category
GP(Mod(�)). By Corollary 3.18, the inclusion functor L ↪→ GP(Mod(�))

has a right adjoint R. Since by [8] the inclusion functor GP(Mod(�)) ↪→
Mod(�) has a right adjoint /−d/d , it follows that the functor R/−d/d :
Mod(�) → L is a right adjoint of the inclusion L ↪→ Mod(�), hence
L is a coreflective subcategory of Mod(�). This implies trivially that L is
contravariantly finite in Mod(�).

A similar result holds also for coresolving subcategories.

Remark 6.13. If the ring � is left coherent right perfect and right Goren-
stein, then there exists a skeletally small generating compact left triangulated
subcategory in Mod(�)), namely mod(�)), and a compactly generated trian-
gulated category, namely GP(Mod(�)), such that the stabilization of mod(�))

is identified with the full subcategory of compact objects of GP(Mod(�)). This
procedure is similar with the construction of the stable homotopy category of
spectra in Algebraic Topology and explains our motivation. Here the role of
Mod(�)) is played by the homotopy category of spectra, the role of mod(�)) is
played by the homotopy category of finite spectra and the role of GP(Mod(�))
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is played by the stable homotopy category. However in contrast to the homo-
topy theory of modules, the stable homotopy category of spectra is not the
stabilization of all spectra since the latter does not has arbitrary coproducts,
so it is not compactly generated, see [32]. Similar remarks are applied for the
injective stable category, if � is right Morita.

6.2. Phantomless and Brown Stable Homotopy Categories

Let C be a compactly generated triangulated category. A morphism f : A→
B in C is called phantom if C (X, f ) = 0, for any X ∈ C b. The set of
all phantom maps between A,B is denoted by Ph(A,B); setting Ph(C ) =⋃

A,B∈C Ph(A,B) we obtain an ideal in C . We denote by Phn(A,B) the set of
all morphisms A→ B which may be written as a composition of n phantom
maps and by Phn(C ) the induced ideal of C . The category C is called phantom-
less if Ph(C ) = 0.

Since C b is skeletally small, we can consider the Grothendieck category
Mod(C b). Since C b is triangulated, the full subcategory Flat(Mod(C b)) of flat
functors coincides with the category of cohomological functors over C b [6].
Define a functor

T : C → Mod(C b) by T(A) = C (−, A)|C b

where C (−, A)|C b denotes restriction. Then T is a homological functor with
image in Flat(Mod(C b)) and kernel the ideal Ph(C ) of phantom maps. The
category C is called a Brown category if T induces a representation equivalence
between C and Flat(Mod(C b)). We recall that a functor is a representation
equivalence if it is full, surjective on objects and reflects isomorphisms.

Definition 6.14. Let C be a left or right triangulated category with cop-
roducts.

(1) We say that C admits a phantomless stable homotopy category if C
admits a stable homotopy category D which is phantomless.

(2) We say that C admits a Brown stable homotopy category if C admits a
stable homotopy category D which is a Brown category.

A ring � has a right injective phantomless, resp. Brown, stable homotopy
category if this holds for the right triangulated category Mod(�). Similarly for
the projective case. In this subsection we study rings � which have injective
or projective phantomless or Brown stable homotopy categories. We recall
that a ring � is called representation finite if � is right Artinian and the set
of isomorphism classes of indecomposable finitely presented right modules is
finite. It is well known that representation finiteness is a symmetric condition
and that � is representation finite iff � is left and right pure-semisimple. The
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proof of the following result is a consequence of the results of [6], [7]. For part
(3), see also [11].

Proposition 6.15. (1) Let � be a QF-ring.

(i) � has a left or right projective or injective phantomless stable homotopy
category⇔ � is representation finite.

(i) If � is countable or |�| ≤ ℵt for some t ≥ 0 and � is pure hereditary
(i.e. if the right pure global dimension r.pure.gl.dim � ≤ 1), then � has
a right projective or injective Brown stable homotopy category.

(2) If � is a finite dimensional selfinjective local k-algebra over an algeb-
raically closed field, then � has a left and right projective or injective Brown
stable homotopy category⇔ � is representation finite or k is countable.

(3) If G is a finite group and k is a field with char(k) = p/|G|, then kG

has a left or right projective or injective Brown stable homotopy category⇔
k is countable or G has cyclic p-Sylow subgroups.

We note that the stable homotopy category of spectra is a Brown category
[32].

Proposition 6.16. Let � be a ring as in Theorem 6.7. Assume that

sup{r.pure.p.d. G;G ∈ GP(Mod(�))} = n <∞.

Then ∀A,B ∈ Mod(�):

Phn+1(/d(A),/d(B)) = 0 = Phn+1(0d(A),0d(B)).

In particular Phn+1(GP(Mod(�))) = 0 = Phn+1(GI(Mod(�))).

Proof. This follows from the results of [6], since the hypothesis implies
that any object in GP(Mod(�)) has a resolution of length n by proper triangles
in the sense of relative homological algebra developed in [6].

Theorem 6.17. Let � be a right Gorenstein ring. If � is left coherent and
right perfect or right Morita, then the following are equivalent.

(i) � admits a right projective phantomless stable homotopy category.

(ii) Any Gorenstein-projective is pure projective (pure injective).

(iii) GP(Mod(�)) is a pure-semisimple locally finitely presented Frobenius
category.

(iv) GP(Mod(�)) is a pure-semisimple locally finitely presented triangulated
category.

(v) � admits a right injective phantomless stable homotopy category.
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(vi) Any Gorenstein-injective is pure injective (pure projective).

(vii) GI(Mod(�)) is a pure-semisimple locally finitely presented Frobenius
category.

(viii) GI(Mod(�)) is a pure-semisimple locally finitely presented triangulated
category.

Proof. Assume first that � is left coherent and right perfect ring. If con-
dition (i) holds, then GP(Mod(�)) is phantomless. By [6], we have that any
object G ∈ GP(Mod(�)) is a coproduct⊕i∈IGi , where Gi is in GP(mod(�)).
But then in Mod(�) we have G = ⊕i∈IGi ⊕ P , where P is projective. Since
� is right perfect, this implies that G is a coproduct of finitely presented
Gorenstein modules. Hence G is in particular pure-projective. Hence (i) ⇒
(ii). If (ii) holds, then obviously GP(Mod(�)) = Add(GP(mod(�))). Since
GP(mod(�)) is skeletally small and is contained in GP(Mod(�))b, by Pro-
position 2.5 it follows that GP(Mod(�)) is a pure-semisimple locally finitely
presented category. Hence (ii) ⇒ (iii). If (iii) holds, then any Gorenstein-
projective module is a coproduct of finitely presented (Gorenstein-projective)
modules, and trivially the same is true in GP(Mod(�)). By [6], GP(Mod(�))

is a locally finitely presented (phantomless) pure-semisimple triangulated cat-
egory and this shows that (iii) ⇒ (iv). Since by [6] any locally finitely
presented triangulated category is phantomless, we have that (iv)⇒ (i). Now
we prove that any of the above equivalent conditions (i) − (iv) is equival-
ent to the parenthetical condition (ii). We use that an object G in a locally
finitely presented category with products is pure-injective iff for any index
set I , the summation map f : ⊕i∈IG → G factors through the pure mono
µI : ⊕i∈IG → ∏

i∈I G, see [13]. Suppose now that (i) is true and let G

be a Gorenstein-projective module. Let I be any index set and consider the
summation map f : ⊕i∈IG → G. Since GP(Mod(�)) is a pure semisimple
locally finitely presented category, the morphism f : ⊕i∈IG → G factors
through the canonical morphism µ : ⊕i∈IG→∏

i∈I G: there exists a morph-
ism α :

∏
i∈I G → G such that f = µ ◦ α. Then there exist a morphism

β : ⊕i∈IG → P such that f − µ ◦ α = β ◦ p, where p : P → G is
the projective cover of G. Since P is projective and � is right perfect, P is
pure-injective. Since µ : ⊕i∈IG → ∏

i∈I G is a pure mono, there exists a
morphism t :

∏
i∈I G→ P such that µ ◦ t = β. Then f = µ ◦ (α + t ◦ p).

This shows that the summation map f factors through the pure mono µ.
Hence G is pure-injective. Conversely if any Gorenstein-projective module
G is pure-injective, then using the same argument as above, it follows that all
objects of GP(Mod(�)) are pure-injective in the sense of [31]. Hence by [31],
GP(Mod(�)) is phantomless.

Since GP(Mod(�)) is triangle equivalent to GP(Mod(�)), using the same
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arguments as above we have that the remaining conditions are also equivalent
to (i). If � is right Morita, the proof is similar and is left to the reader.

From the (proof of the) above Theorem we deduce the following results.

Corollary 6.18. Let � be a left coherent and right perfect or right
Morita right Gorenstein ring. Then � admits a phantomless projective or in-
jective stable homotopy category iff any Gorenstein-projective or Gorenstein-
injective module is a coproduct of finitely presented Gorenstein-projective or
Gorenstein-injective modules with local endomorphism rings. In this case the
coproduct decomposition is essentially unique.

Corollary 6.19. Let � be a right pure-semisimple right Gorenstein ring.
If � is left coherent or right Morita, then � has a right projective and injective
phantomless stable homotopy category. In particular this happens if � is a
representation-finite Artin algebra of finite selfinjective dimension.

We close this section studying rings with Brown stable homotopy category.

Theorem 6.20. Let � be a right Gorenstein ring of dimension d. Suppose
that |�| ≤ ℵt , for some t ≥ −1 and � is left coherent and right perfect or
right Morita.

If r.pure.p.d A ≤ 1, for any Gorenstein-projective module A or r.pure.i.d B

≤ 1, for any Gorenstein-injective module B, then � has a right projective and
injective Brown stable homotopy category.

Proof. Since the Brown property is invariant under triangle equivalence,
it suffices to prove the projective case. By the results of [7], it suffices to show
that for any object G in GP(Mod(�)), there exists a triangle G1 → G0 →
G

h−→ /−1(G1) in GP(Mod(�)), where h is a phantom map and G1,G0 ∈
Add(GP(mod(�))). Let (∗) : 0→ X1

α−→ X0
β−→ G→ 0 be a pure-projective

resolution of the Gorenstein-projective module G. Then we have a triangle

/(G) → X1
α−→ X0

β−→ G in Mod(�). Applying the stabilization functor

S = /−d/d to this triangle, we obtain a triangle S(X1)
S(α)−−→ S(X0)

S(β)−−→
G

h−→ /−1S(X1) in GP(Mod(�))). Since the stabilization functor preserves
coproducts and X0, X1 are pure projectives it follows that S(X0),S(X1) ∈
Add(GP(mod(�))). We remains to prove that h is phantom. Let H ∈
GP(mod(�)) and g : H → G be a morphism. Since H is finitely presented,
there exists a morphism δ : H → X0 such that δ◦β = g. Then S(δ)◦S(β) = g.
This shows that h is phantom.

Corollary6.21. Let�be a left coherent and right perfect right Gorenstein
ring of dimension d. Then � admits a Brown right projective stable homotopy
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category iff for any filtered directed system of finitely presented right modules
{Ai;φij }, there exists a minimal weak colimit w.lim→ /d(Ai) in GP(Mod(�)),

i.e. lim→ (G,/dAi)
∼= (G,w.lim→ /d(Ai)), ∀G ∈ GP(mod(�)). In this case the

following are true:
(1) ∀A ∈ Mod(�), the object /d(A) is a minimal weak colimit /d(A) =

w.lim→ Gi of a directed system {Gi; i ∈ I } in GP(mod(�)).

(2) If A,B ∈ Mod(�) and /d(A) = w.lim→ Gi , /
d(B) = w.lim→ Hi are

representations as minimal weak colimits as above, then there exists a short
exact sequence

0→ lim←
(1)

I
lim→ J

(Gi,/(Hj ))→ (/d(A),/d(B))→ lim← I
lim→ J

(Gi,Hj )→ 0

and isomorphisms:

Ph(/d(A),/d(B)) ∼= lim←
(1)

I
lim→ J

(Gi,/(Hj ))

∼= lim←
(1)

I
lim→ J

E xt1(Gi,/
2(Hj )).

(3) ∀A,B ∈ Mod(�), we have:

Ph2(/d(A),/d(B)) = 0 = Ph2(0d(A),0d(B)).

Proof. All the assertions are consequences of the results of [7].

A similar result is true for right Morita right Gorenstein rings.

Corollary 6.22. If � is a countable Artin algebra of finite self-injective
dimension, then � has a right projective and injective Brown stable homotopy
category.

We refer to [6], [7] for further consequences of the phantomless or Brown
property of projective or injective stable homotopy categories.
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