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EMBEDDING PROBLEMS AND EQUIVALENCE OF
QUADRATIC FORMS

ARNE LEDET∗

Abstract

If the obstruction to a Galois theoretical embedding problem with kernel of order 2 is the product
of two quaternion classes, the criterion for solvability can be reformulated as an equivalence of
quadratic forms. In some cases the solutions to the embedding problem can be constructed directly
from a matrix expressing this equivalence.

0. Introduction

Let M/K be a finite Galois extension with Galois group G = Gal(M/K), and
let

(∗) 1 → N → E −→π G → 1

be a short exact sequence of finite groups. We then have a Galois theoretical
embedding problem given byM/K and (∗): Does there exist a Galois extension
N/K containing M/K , together with an isomorphism ϕ: Gal(N/K) � E,
such that π ◦ ϕ: Gal(N/K) → G is the restriction map? If so, the problem
is said to be solvable, and the extension N/K is called a solution. If the
embedding problem is solvable, the next problem is of course to determine all
the solutions.

We will consider only a very special type of embedding problems, namely
non-split embedding problem with cyclic kernel of order 2, i.e., N is cyclic of
order 2 and the extension (∗) is not split-exact. If the fields have characteristic
2, such embedding problems are always solvable, cf. [16]. Hence, we will
make the additional assumption that all fields have characteristic �= 2, and we
will identify the kernel N of the embedding problem with the group µ2 =
{±1} ⊆ K∗ = K \ {0}.

These somewhat special embedding problems are particularly nice because
of
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Theorem 0.1. Let M/K be a finite Galois extension with Galois group
G = Gal(M/K), and let

(∗∗) 1 → µ2 → E → G → 1

be a non-split group extension with characteristic class γ ∈ H 2(G,µ2).
Also, let i:H 2(G,µ2) → H 2(G,M∗) be the homomorphism induced by
the inclusion µ2 ⊆ M∗. Then the embedding problem given by M/K and
(∗∗) is solvable, if and only if i(γ ) = 1 ∈ H 2(G,M∗). Furthermore, if
N/K = M(

√
ω )/K , ω ∈ M∗, is a solution to the embedding problem, all the

solutions are M(
√
rω )/K , where r runs through K∗.

Theorem 0.1 is proved in [13] and (for an arbitrary prime instead of just 2)
in [8].

For later use we will need the ‘if’ part of the proof of Theorem 0.1. It
goes as follows: Let c ∈ Z2(G,µ2) represent γ . Then i(γ ) = 1 means that
c ∈ B2(G,M∗), i.e., that there exists a map a:G → M∗, such that

∀σ, τ ∈ G: cσ,τ = aσ σaτ a
−1
στ .

Since cσ,τ ∈ µ2, it follows that σ �→ a2
σ is a crossed homomorphismG → M∗,

and so, by Hilbert 90, there exists an ω ∈ M∗ with

∀σ ∈ G:
σω

ω
= a2

σ .

Then M(
√
ω )/K is a solution.

By [11, §30 Satz 2] or [6, Thm. 8.11], H 2(G,M∗) is isomorphic to the
relative Brauer group Br(M/K) of M/K by [c] �→ [M,G, c], where [c] ∈
H 2(G,M∗) is the cohomology class containing c ∈ Z2(G,M∗), and [M,G, c]
∈ Br(M/K) is the equivalence class of the crossed product algebra (M,G, c),
i.e., (M,G, c) is the K-algebra generated by M and elements uσ , σ ∈ G,
with relations u1 = c1,1, uσuτ = cσ,τ uστ and uσx = σx uσ for σ, τ ∈ G and
x ∈ M .

In particular, c is split, i.e., in B2(G,M∗), if and only if (M,G, c) �
(M,G, 1). If c ∈ Z2(G,µ2) represents the extension (∗∗), the elements ±uσ ,
σ ∈ G, constitute a subgroup of GL(M,G, c) isomorphic to E, such that
the elements of E operate on M as their images in G. This makes the al-
gebra (M,G, c) easy to describe, and it also makes it easy to recognise split-
ting factors: If ϕ: (M,G, c) � (M,G, 1) is an isomorphism, we may assume
ϕ(x) = x for x ∈ M by Skolem-Noether, cf. [11, §29 Satz 20] or [6, Thm. 4.9].
Then ϕ(uσ ) = aσ uσ for some aσ ∈ M∗. The aσ ’s are splitting factors for c. On
the other hand, if we have splitting factors aσ , the map given by uσ �→ aσ uσ
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is an isomorphism (M,G, c) � (M,G, 1). Hence, the elements ±aσ uσ in
(M,G, 1) constitute a subgroup as above. It follows that we only need to
verify that these elements satisfy the relations defining E, and that we only
need to do this for aσ uσ in a generating set for E, i.e., for σ in a generating
set for G. Also, since we only need aσ ’s for σ in a generating set for G in
order to find ω, we really only have to consider generating sets. This makes
life somewhat easier.

The element in Br(M/K) corresponding to i(γ ) ∈ H 2(G,M∗) is called
the obstruction to the embedding problem.

0.2. The cyclic group C4. Let M/K = K(
√
a )/K , a ∈ K∗, be a quad-

ratic extension. Then the embedding problem given by M/K and

1 → µ2 → C4 → C2 → 1

is solvable, if and only if a is a norm in M/K , i.e., if and only if

∃α, β ∈ K:α2 − aβ2 = a.

In that case, all the solutions to the embedding problem are

K
(√

r(α + β
√
a )
)/

K, r ∈ K∗.

Proof. Let σ be the generator of C2 = Gal(M/K). The crossed product al-
gebra representing the obstruction isM[uσ ], whereu2

σ = −1 anduσx = σx uσ

for x ∈ M . Thus, the condition on aσ is aσ σaσ = −1, i.e., the embedding
problem is solvable, if and only if −1 is a norm in M/K . Since −a is a norm,
this is equivalent to a being a norm.

Now, if α2 − aβ2 = a, the element aσ = √
a/(α + β

√
a ) has norm −1,

and we get σ(α + β
√
a )/(α + β

√
a ) = a2

σ . Hence, K
(√

α + β
√
a
)/

K is a
solution.

That a is a norm in K(
√
a )/K is equivalent to a being a sum of two

squares in K . This is the criterion generally given, and the C4-extensions are
then constructed accordingly. See for instance [7, Prop. (III.1.2)] or [1, IX. §6
Ex. 1]. Our reason for preferring the norm criterion is the similarity between
the C4-extensions in 0.2 and the D4-extensions in 0.4 below.

For a, b ∈ K∗, the quaternion algebra (a, b/K) is the K-algebra generated
by elements i and j with relations i2 = a, j 2 = b and ji = −ij . It is a four-
dimensional central simple algebra, and so defines an element in the Brauer
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group Br(K) of K , which we denote (a, b) and call a quaternion class.1 The
map (−,−):K∗ × K∗ → Br(K) is then a symmetric bilinear map defined
on the square classes of K , i.e., (ax2, by2) = (a, b). In particular, (a, b) has
order ≤ 2 in Br(K).

To the quaternion algebra (a, b/K) we associate the quadratic form 〈a, b,
−ab〉, i.e., the map K3 → K given by (x, y, z) �→ ax2 + by2 − abz2, cf. [11,
§30]. It is then easy to see that (a, b/K) is split, if and only if 〈a, b − ab〉
is isotropic, if and only if b is a norm in K(

√
a)/K , and that two quaternion

algebras (a, b/K) and (c, d/K) are isomorphic, if and only if the quadratic
forms 〈a, b − ab〉 and 〈c, d,−cd〉 are equivalent. Thus, the equivalence class
of 〈a, b,−ab〉 is an invariant of (a, b) ∈ Br(K).

A little more notation: That quadratic forms 〈a1, . . . , an〉 and 〈b1, . . . , bn〉
are equivalent (over K) means that

Pt


 a1

. . .

an


P =


 b1

. . .

bn




for some non-singular n × n matrix P over K . Of course, if a1, . . . , an, b1,

. . . , bn are non-zero, P is necessarily non-singular. We say that P expresses
the equivalence of 〈a1, . . . , an〉 and 〈b1, . . . , bn〉. For convenience, we will let

〈a1, . . ., an〉 =

 a1

. . .

an


 ,

allowing us to write

Pt 〈a1, . . ., an〉P = 〈b1, . . ., bn〉.
Now back to embedding problems: In order to treat more complicated cases

than 0.22 we need

Theorem 0.3. [6, Thm. 4.7], [9, Cor. 1.7] Let � be a finite-dimensional
central simple K-algebra, and let � be a central simple subalgebra. Then the
centraliser

C�(�) = {x ∈ � | ∀y ∈ �: yx = xy}
is a central simple subalgebra of �, and

� � � ⊗K C�(�).

1 The notation (a, b) is a little unfortunate, since many things in mathematics are denoted (a, b),
but it is traditional.

2 I.e., other cases.
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Hence, [�] = [�][C�(�)] in Br(K).

Using Theorem 0.3, we can hope to ‘decompose’the obstruction as a product
of quaternion algebras in the following way: We find a quaternion subalgebra
Q of ' = (M,G, c), and get ' � Q⊗K '′, where '′ = C'(Q). The process
can then be repeated on '′. Of course, finding Q involves some guesswork,
and for large obstructions this method may not be practicable, but for a number
of embedding problems, including the ones we consider in this paper, it works
fine.

The simplest example is the dihedral group of order 8, the group D4 gener-
ated by elements σ and τ with relations σ 4 = τ 2 = 1 and τσ = σ 3τ . We let
V4 be the Klein Vierergruppe C2 × C2.

0.4. The dihedral group D4. Let M/K = K(
√
a,

√
b)/K , a, b ∈ K∗,

be a V4-extension, and let σ, τ ∈ V4 = Gal(M/K) be given by

σ :
√
a �→ −√

a,
√
b �→ √

b,

τ :
√
a �→ √

a,
√
b �→ −√

b.

Then the embedding problem given by M/K and

1 → µ2 → D4 −−−−→σ �→σ
τ �→τ

V4 → 1

is solvable, if and only if ab is a norm in K(
√
a )/K , i.e., if and only if

∃α, β ∈ K:α2 − aβ2 = ab.

In that case, all the solutions to the embedding problem are

K
(√

r(α + β
√
a) ,

√
b
)/

K, r ∈ K∗.

Proof. The algebra representing the obstruction is M[uσ , uτ ], where u2
σ =

−1, u2
τ = 1, uτuσ = −uσuτ , uσx = σx uσ and uτx = τx uτ for x ∈ M .

Obviously, Q = K[
√
a,

√
b uσ ] is a subalgebra isomorphic to (a,−b/K), and

it is easily seen that the centraliser is R = K[
√
b, uτ ] � (b, 1/K). Hence, the

obstruction is

(a,−b)(b, 1) = (a,−b) = (a, ab) ∈ Br(K).

This gives the criterion. Now, letting ω = α+β
√
a, aσ = √

a
√
b/(α+β

√
a )

and aτ = 1, it is straightforward to check that K(
√
ω,

√
b )/K is a solution.
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D4-extensions are well covered in the literature, and the result of 0.4 is
virtually folklore. See for instance [7], [8], [12] or [5].

A more general application of Theorem 0.3 is to central products: Let

1 → µ2 → E −→π G → 1

and
1 → µ2 → F −→ρ H → 1

be group extensions. The central product is then the extension

1 → µ2 → EF −−→πρ G × H → 1,

where EF = E × F/{(1, 1), (−1,−1)} and πρ is given by πρ(e, f ) =
(π(e), ρ(f )).

In referring to central products, we will follow the notation indicated above,
with the letters C and D denoting the groups C4 and D4. Q will refer to the
quaternion group of order 8, i.e., the group Q8 with generators i and j and
relations i2 = j 2 and ji = i3j . Also, for lack of a better term, x will denote a
generator of C4. The central product EF is generated by copies of the groups
E and F . If the groups E and F happen to be the same, we will add a prime
(a ′) to the elements from the second copy to distinguish them.

The connection between Theorem 0.3 and central products is

Proposition 0.5. Let L/K and M/K be linearly disjoint Galois extensions
with Galois groupsG = Gal(L/K) andH = Gal(M/K). LetN/K = LM/K

be the composite, and identify Gal(N/K) with G×H in the obvious way. Also,
let γL ∈ Br(K) be the obstruction to the embedding problem given by L/K

and the non-split group extension

1 → µ2 → E −→π G → 1,

and let γM ∈ Br(K) be the obstruction to the embedding problem given by
M/K and the group extension

1 → µ2 → F −→ρ H → 1.

Then the obstruction to the embedding problem given by N/K and

1 → µ2 → EF −−→πρ G × H → 1

is
γN = γLγM ∈ Br(K).
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Proof. Let 'L, 'M and 'N be the crossed product algebras representing
γL, γM and γN . Then 'L, 'M ⊆ 'N and 'L centralises 'M . For dimensional
reasons, 'M is the centraliser of 'L, and so 'N = 'L ⊗K 'M .

Proposition 0.5 is a special case of [10, Prop. 2.3].
In this paper, we will consider various embedding problems where the

obstruction is a product of two quaternion classes, and where the criterion for
equivalence is an equivalence of quadratic forms. More specifically, we will
construct solutions to these embedding problems from matrices expressing
the equivalence. In section 1 below, we look at some cases where the group E

has exponent 4, and where the embedding problem is essentially reduced to
embedding a quadratic extension in a C4-extension. In section 2 we cite Witt’s
criterion for embedding a V4-extension in a Q8-extension, where Q8 is the
quaternion group of order 8, and solve three related embedding problems. In
section 3 we look at cases where the group E has exponent 8, first solving the
problem of embedding a C4-extension in a C8-extension, and then reducing
the others to this case.

In the case, where the group extension (∗∗) is obtained from the double
cover of a symmetric group Sn by embedding G transitively into Sn, Crespo
([2], elaborated in [3]) has produced methods for getting from equivalences of
quadratic forms to solutions. This approach is much more powerful than the one
used in this paper, but also much less straightforward, relying on isomorphisms
between Clifford algebras. Among other things, it covers the case of Q8, and
gives a very elegant derivation of Witt’s description of Q8-extensions.

1. Groups of exponent 4

1.1. The quaternion group Q8. Let M/K = K(
√
a,

√
b )/K , a, b ∈ K∗,

be a V4-extension. Then the embedding problem given by M/K and

1 → µ2 → Q8 → V4 → 1

is solvable, if and only if the quadratic forms 〈a,−b, ab〉 and 〈b,−1, b〉 are
equivalent over K . If P is a 3 × 3 matrix over K expressing this equivalence,
i.e., if

Pt 〈a,−b, ab〉P = 〈b,−1, b〉,
the solutions are

M(
√
rω )/K = K(

√
rω )/K, r ∈ K∗,

where
ω = p22 + p32

√
a + p23

1√
b

+ p33

√
a√
b
.
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Proof. Let σ, τ ∈ V4 = Gal(M/K) be given by σ
√
a = −√

a, σ
√
b =√

b, τ
√
a = √

a and τ
√
b = −√

b. Then the obstruction to the embedding
problem is represented by the algebra M[uσ , uτ ], where u2

σ = −1, u2
τ = −1,

uτuσ = −uσuτ , uσx = σx uσ and uτx = τx uτ for x ∈ M . Clearly, Q =
K[

√
a,

√
b uσ ] is a quaternion subalgebra � (a,−b/K), and the centraliser

is R = K[
√
b, uτ ] � (b,−1/K). Hence, the obstruction to the embedding

problem is
(a,−b)(b,−1) ∈ Br(K),

cf. also [4, (7.6)], [10, Cor. 2.6] or [12, Thm. 1.2]. This gives us the criterion.
To prove that M(

√
ω )/K is a solution, we let

aσ = σω
√
b

(p12 + p13/
√
b )

√
a
,

aτ = τω
√
b

p21 + p31
√
a
.

With (x, y, z)t = P
(
0, 1, 1/

√
b
)t

, we have x, z �= 0 and ax2−by2+abz2 = 0
and get

σω

ω
= σω2

ω σω
= σω2

y2 − az2
= σω2b

ax2
= a2

σ .

Similarly, we get τω/ω = a2
τ . Also, aσ σaσ = aτ τaτ = −1, and by using the

equalities ap2
11 − bp2

21 + abp2
31 = ab and p2

11/b −p2
12 −p2

13/b = 1/a, we get
τaσ /aσ = −σaτ /aτ . Hence, M(

√
ω )/K is in fact a Q8-extension.

The quaternion group Q8 as Galois group is considered in [8] and [12]. The
classical description is Witt’s from [16], cf. section 2 below.

In essentially the same way we prove

1.2. The central productDC. Let M/K = K(
√
a,

√
b,

√
c )/K , a, b,

c ∈ K∗, be a V4 × C2-extension, and let σ, τ, υ ∈ Gal(M/K) be given by

σ :
√
a �→ −√

a,
√
b �→ √

b,
√
c �→ √

c,

τ :
√
a �→ √

a,
√
b �→ −√

b,
√
c �→ √

c,

υ:
√
a �→ √

a,
√
b �→ √

b,
√
c �→ −√

c.

Then the embedding problem given by M/K and

1 → µ2 → DC −−−−→
σ �→σ
τ �→τ
x �→υ

V4 × C2 → 1
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is solvable, if and only if the quadratic forms 〈a,−b, ab〉 and 〈c,−1, c〉 are
equivalent over K . If P is a 3 × 3 matrix over K expressing this equivalence,
i.e., if

Pt 〈a,−b, ab〉P = 〈c,−1, c〉,
the solutions are

M(
√
rω )/K = K

(√
rω,

√
b
)/

K, r ∈ K∗,

where

ω = p22 + p32
√
a + p23

1√
c

+ p33

√
a√
c
.

DC-extensions are considered in [12, Cor. 1.3.(iv) + Thm. A.2] and in [15,
Prop. p. 1050]. Both papers provide a description of the solutions. The one
given in [15] is similar to 2.3 below.

Inside M(
√
rω )/K , the fixed field of τ is K(

√
ω ). It follows that

M(
√
rω )/K is the Galois closure of K(

√
rω )/K .

1.3. The central product DD. Let M/K = K(
√
a,

√
b,

√
c,

√
d)/K ,

a, b, c, d ∈ K∗, be a V4 × V4-extension, and let ρ, σ, τ, υ ∈ Gal(M/K) be
given by

ρ:
√
a �→ −√

a,
√
b �→ √

b,
√
c �→ √

c,
√
d �→ √

d,

σ :
√
a �→ √

a,
√
b �→ −√

b,
√
c �→ √

c,
√
d �→ √

d,

τ :
√
a �→ √

a,
√
b �→ √

b,
√
c �→ −√

c,
√
d �→ √

d,

υ:
√
a �→ √

a,
√
b �→ √

b,
√
c �→ √

c,
√
d �→ −√

d.

Then the embedding problem given by M/K and

1 → µ2 → DD −−−−−→
σ �→ρ
τ �→σ
σ ′ �→τ
τ ′ �→υ

V4 × V4 → 1

is solvable, if and only if the quadratic forms 〈a,−b, ab〉 and 〈c,−d, cd〉 are
equivalent over K . If P is a 3 × 3 matrix over K expressing this equivalence,
i.e., if

Pt 〈a,−b, ab〉P = 〈c,−d, cd〉,
the solutions are

M(
√
rω )/K = K

(√
rω,

√
b,

√
d
)/

K, r ∈ K∗,
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where
ω = p22 + p32

√
a + p23

1√
c

+ p33

√
a√
c
.

DD-extensions are considered in [14, Thm. 3.1], and a description of the
solutions is given.

The fixed field of τ and τ ′ inM(
√
rω)/K isK(

√
rω)/K . Thus,M(

√
rω)/K

is the Galois closure of K(
√
rω)/K .

Remark. The description of DD-extensions given in [14] is similar to the
description of DC-extensions given in [12], in the same way 1.2 and 1.3 are
similar. Also, it is possible to apply the approach of [12] and [14] to Q8.

2. Witt’s criterion

In [16], we find

Theorem 2.1. (Witt, 1936) Let M/K = K(
√
a,

√
b )/K , a, b ∈ K∗, be a

biquadratic extension. Then M/K can be embedded in a Q8-extension, if and
only if the quadratic forms 〈a, b, ab〉 and 〈1, 1, 1〉 are equivalent over K . If P
is a 3 × 3 matrix over K expressing this equivalence, i.e., if

Pt 〈a, b, ab〉P = 〈1, 1, 1〉,
we may assume det P = 1/ab and get the solutions

K
(√

r
(
1 + p11

√
a + p22

√
b + p33

√
a
√
b
) )/

K, r ∈ K∗.

Witt’s criterion is easily obtained from the obstruction given in 1.1, since

(a,−b)(b,−1)=(−a,−b)(−1,−b)(b,−1)=(−a,−b)(−1,−1) ∈ Br(K).

That the extensions given are actually the solutions is proven in [16], as well
as in [7, Thm. (I.1.1)]. Also, the proof of 2.2 below is easily modified to prove
Theorem 2.1. In fact, the proof of 2.2 is inspired by the proof of Theorem 2.1
given in [7].

It is not hard to see that Witt’s result can also be formulated as follows: If S
is a 3 × 3 matrix over K expressing the equivalence of 〈1, 1, 1〉 and 〈a, b, ab〉,
i.e., if

StS = 〈a, b, ab〉,
we can assume det S = ab, and the extension

K

(√
1 + q11√

a
+ q22√

b
+ q33√

a
√
b

)/
K
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will be a Q8-extension containing K(
√
a,

√
b )/K . In fact, we only have to

notice that we can let P = S−1 = 〈1/a, 1/b, 1/ab〉St .
These two versions of the result inspire the following:
Let M = K(

√
a,

√
b,

√
c,

√
d ) be a V4 ×V4-extension, and let ρ, σ , τ and

υ in Gal(M/K) = V4 × V4 be given by

ρ:
√
a �→ −√

a,
√
b �→ √

b,
√
c �→ √

c,
√
d �→ √

d,

σ :
√
a �→ √

a,
√
b �→ −√

b,
√
c �→ √

c,
√
d �→ √

d,

τ :
√
a �→ √

a,
√
b �→ √

b,
√
c �→ −√

c,
√
d �→ √

d,

υ:
√
a �→ √

a,
√
b �→ √

b,
√
c �→ √

c,
√
d �→ −√

d.

Then the obstruction to the embedding problem given by M/K and

1 → µ2 → QQ −−−−→
i �→ρ
j �→σ
i ′ �→τ
j ′ �→υ

V4 × V4 → 1

is

(−1,−1)(−a,−b)(−1,−1)(−c,−d) = (−a,−b)(−c,−d) ∈ Br(K),

i.e., the embedding problem is solvable, if and only if the quadratic forms
〈a, b, ab〉 and 〈c, d, cd〉 are equivalent.

2.2. The central product QQ. Let M/K be a V4 × V4-extension as
above, and consider the embedding problem given by M/K and

1 → µ2 → QQ → V4 × V4 → 1.

This embedding problem is solvable, if and only if the quadratic forms 〈a, b, ab〉
and 〈c, d, cd〉 are equivalent over K . Furthermore, if P is a 3 × 3 matrix over
K with determinant cd/ab expressing this equivalence, i.e.,

Pt 〈a, b, ab〉P = 〈c, d, cd〉,
the solutions are

M

(√
r

(
1 + p11

√
a√
c

+ p22

√
b√
d

+ p33

√
a
√
b√

c
√
d

))/
K, r ∈ K∗.

Proof. Assume 〈a, b, ab〉 ∼ 〈c, d, cd〉. This means that

Pt 〈a, b, ab〉P = 〈c, d, cd〉
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for some 3×3 matrix P with determinant cd/ab. From this we get the additional
equations 〈1/c, 1/d, 1/cd〉Pt 〈a, b, ab〉 = P−1 and P〈1/c, 1/d, 1/cd〉Pt =
〈1/a, 1/b, 1/ab〉, and thus (calculating the diagonal elements)

ap2
11 + bp2

21 + abp2
31 = c,

ap2
12 + bp2

22 + abp2
32 = d,

ap2
13 + bp2

23 + abp2
33 = cd,

p11 = b/d (p22p33 − p23p32),

p22 = a/c (p11p33 − p13p31),

p33 = p11p22 − p12p21,

p2
11/c + p2

12/d + p2
13/cd = 1/a,

p2
21/c + p2

22/d + p2
23/cd = 1/b,

and p2
31/c + p2

32/d + p2
33/cd = 1/ab.

Now, let

ω = 1 + p11

√
a√
c

+ p22

√
b√
d

+ p33

√
a
√
b√

c
√
d
.

Then

ω ρω = ω τω

= (
1 + p22

√
b/

√
d
)2−a/c

(
p11 + p33

√
b/

√
d
)2

= (
1+b/d p2

22 −a/c p2
11 −ab/cd p2

33

)+ 2
(
p22 −a/c p11p33

)√
b/

√
d

= (
b/c p2

21 +ab/c p2
31 +b/d p2

22 −ab/cd p2
33

)− 2a/c p13p31

√
b/

√
d

= (
1 − b/cd p2

23 + ab/c p2
31 − ab/cd p2

33

)− 2a/c p13p31

√
b/

√
d

= (
a/cd p2

13 + ab/c p2
31

)− 2a/c p13p31

√
b/

√
d

= a/c
(
p13/

√
d − p31

√
b
)2
.

Hence, with

aρ = aτ =
√
a

ω
√
c

(
p13√
d

− p31

√
b

)
,

we get
ρω

ω
= τω

ω
= a2

ρ = a2
τ .

Clearly,
aρ ρaρ = aρ ρaτ = aτ τaρ = aτ τaτ = −1.
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Similarly,
ω σω = ω υω = b/d

(
p23/

√
c − p32

√
a
)2
,

and we get σω

ω
= υω

ω
= a2

σ = a2
υ

by letting

aσ = aυ =
√
b

ω
√
d

(
p23√

c
− p32

√
a

)
.

We then have

aσ σaσ = aσ σaυ = aυ υaσ = aυ υaυ = −1.

Also,

aσ σaρ

aρ ρaσ

=
√
b
√
c ω
(
p23/

√
c − p32

√
a
)√

a
√
d ρω

(
p13/

√
d + p31

√
b
)

√
a
√
d ω

(
p13/

√
d − p31

√
b
)√

b
√
c σω

(
p23/

√
c + p32

√
a
)

= a/c
(
p13/

√
d − p31

√
b
)2(

p23/
√
c − p32

√
a
)(
p13/

√
c + p31

√
b
)

b/d
(
p23/

√
c −p32

√
a
)2(

p13/
√
d −p31

√
b
)(
p23/

√
c −p32

√
a
)

= ad

bc

p2
13/d − p2

31b

p2
23/d − p2

32b
= ap2

13 − abdp2
31

bp2
23 − abcp2

32

=
(
cd − bp2

23 − abp2
33

)− (
cd − abcp2

32 − abp2
33

)
bp2

23 − abcp2
32

= −1,

from which it easily follows that

aρ ρaυ

aυ υaρ

= −aρ ρaσ

aσ σaρ

= 1,

aσ σaτ

aτ τaσ

= −aσ σaρ

aρ ρaσ

= 1,

and
aτ τaυ

aυ υaτ

= − aτ τaσ

aσ σaτ

= −1.

Consequently,

M(
√
ω )/K = M

(√
1 + p11

√
a√
c

+ p22

√
b√
d

+ p33

√
a
√
b√

c
√
d

)/
K

is a solution to the embedding problem.
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It should be noted that the groups QQ and DD are in fact isomorphic, and
that 2.2 and 1.3 are therefore simply different ways of expressing and solving
the same embedding problem.

We also note that K(ω) = K(
√
a/

√
c,

√
b/

√
d ), from which it easily

follows that M(
√
ω )/K is the Galois closure of K(

√
ω )/K .

The proof of 2.2 is easily changed to give

2.3. The central productQC. Let M/K = K(
√
a,

√
b,

√
c )/K , a, b,

c ∈ K∗, be a V4 × C2-extension, and let σ, τ, υ ∈ Gal(M/K) be given by

σ :
√
a �→ −√

a,
√
b �→ √

b,
√
c �→ √

c,

τ :
√
a �→ √

a,
√
b �→ −√

b,
√
c �→ √

c,

υ:
√
a �→ √

a,
√
b �→ √

b,
√
c �→ −√

c.

Then the embedding problem given by M/K and

1 → µ2 → QC −−−−→
σ �→σ
τ �→τ
x �→υ

V4 × C2 → 1

is solvable, if and only if the quadratic forms 〈a, b, ab〉 and 〈1, c, c〉 are equi-
valent over K . If P is a 3 × 3 matrix over K expressing this equivalence, i.e.,
if

Pt 〈a, b, ab〉P = 〈1, c, c〉,
we can assume det P = c/ab, and the solutions are then

M

(√
r

(
1 + p11

√
a + p22

√
b√
c

+ p33

√
a
√
b√

c

))
, r ∈ K∗.

The groups QC and DC are isomorphic, and so 2.3 and 1.2 really deal with
the same embedding problem.

It is fairly obvious that M(
√
rω )/K is the Galois closure of K(

√
rω )/K .

A more direct use of Witt’s result is the following: LetM/K=K
(√

θ,
√
b
)
/K ,

θ = r(α+β
√
a ) be aD4-extension as in 0.4, and letQD8 be the quasi-dihedral

group of order 16, i.e., QD8 is generated by elements u and v with relations
u4 = v2 and vu = u3v. We then have an embedding problem given by M/K

and
1 → µ2 → QD8 −−−−→

u�→σ
v �→τ

D4 → 1.

By [10, Prop. 4.2], the obstruction to this embedding problem is

(−b,−2rα)(−a,−2) ∈ Br(K).
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Assuming α �= 0, the embedding problem is thus solvable, if and only if the
quadratic forms 〈b, 2rα, 2brα〉 and 〈a, 2, 2a〉 are equivalent over K , i.e., if
and only if there exists a matrix P over K , such that

Pt 〈b, 2rα, 2brα〉P = 〈a, 2, 2a〉.

We may assume det P = a/brα.
Now, the subgroup of QD8 generated by u2 and v is isomorphic to Q8, and

so we get the restricted embedding problem given by M/K(
√
a ) and

1 → µ2 → Q8 → V4 → 1.

We have M = K(
√
a )
(√

θ, σ
√
θ
)

and θ σθ = r2ab. Hence, to solve the
restricted embedding problem by Witt’s Theorem, we must find a matrix S with
determinant 1/r2ab expressing the equivalence of

〈
r2ab, θ, σθ

〉
and 〈1, 1, 1〉

over K(
√
a ).3 This is done by letting

S =

 1/r

√
a 0 0

0 1 σθ/r
√
a

0 1 −θ/r
√
a


P


 1/

√
a 0 0

0 1/2 1/2

0 1/2
√
a −1/2

√
a


.

Hence, a solution to the restricted embedding problem is obtained by adjoining√
ω, where

ω = 1 + s11r
√
a
√
b + s22

√
θ + s33 σ

√
θ

= 1 + p11

√
b/

√
a + 1

2

[(
p22 + p23/

√
a
)+(p32 + p33/

√
a
)
σθ/r

√
a
]√

θ

+ 1
2

[(
p22 − p23/

√
a
)− (

p32 − p33/
√
a
)
θ/r

√
a
]
σ
√
θ

= 1 + p11

√
b/

√
a + 1

2

[
p22 + p23/

√
a − p32

√
b + p33

√
b/

√
a
]√

θ

+ 1
2

[
p22 − p23/

√
a + p32

√
b + p33

√
b/

√
a
]
σ
√
θ.

As στ(σ
√
θ) = √

θ , στω = ω, and so M(
√
ω)/K is Galois. Furthermore, the

pre-images of στ in Gal(M(
√
ω)/K) have order 2, and so the Galois group

is the quasi-dihedral group. Hence, M(
√
ω)/K is a solution to the embedding

problem.
We summarise:

3 By Theorem 2.1, it should of course be
〈
θ, σθ, r2ab

〉
and 〈1, 1, 1〉. However, this makes no

difference: Permuting the rows and columns of S cyclically will not change the determinant.
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2.4. The quasi-dihedral group QD8, general case. Let M/K =
K(

√
θ,

√
b)/K be a D4-extension as above, and assume α �= 0. Then the

embedding problem given by M/K and

1 → µ2 → QD8 −−−−→
u�→σ
v �→τ

D4 → 1

is solvable, if and only if the quadratic forms 〈b, 2rα, 2brα〉 and 〈a, 2, 2a〉 are
equivalent over K . If this equivalence is expressed by the matrix P, i.e., if

Pt 〈b, 2rα, 2brα〉P = 〈a, 2, 2a〉,
we may assume det P = a/brα and get the solutions

M(
√
sω )/K = K(

√
sω,

√
a )/K, s ∈ K∗,

where

ω = 1 + p11

√
b/

√
a + 1

2

[
p22 + p23/

√
a − p32

√
b + p33

√
b/

√
a
]√

θ

+ 1
2

[
p22 − p23/

√
a + p32

√
b + p33

√
b/

√
a
] α − β

√
a√

a
√
b

√
θ.

√
sω is not a primitive element of M(

√
sω )/K , since ω has degree 4 over

K . However, it is clear that M/K is the Galois closure of K(ω)/K , and hence
that M(

√
sω )/K is the Galois closure of K(

√
sω )/K .

QD8 as Galois group is considered in [8] and [5].

Example. Let K = Q, a = 3, b = 2, α = 3, β = 1 and r = 1. The
D4-extension is then Q

(√
3 + √

3,
√

2
)
/Q, and the quadratic forms 〈3, 2, 6〉

are 〈2, 6, 12〉 are obviously equivalent. We can let

P =
( 0 1 0

0 0 1
1
2 0 0

)

and get

ω = 1 +
(

1

2
√

3
+ 1

2
√

6
− 1

2
√

2

)√
3 + √

3 .

Thus, the QD8-extensions containing Q
(√

3 + √
3,

√
2
)
/Q are

Q

(√
r

(
1 +

(
1

2
√

3
+ 1

2
√

6
− 1

2
√

2

)√
3 + √

3

)
,
√

3

)/
Q, r ∈ Q∗.
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Now, if α = 0, we may assume b = −1 and β = 1, replace a by r2a and
get M = K( 4

√
a, i) for i = √−1. We can then let σ, τ ∈ D4 = Gal(M/K) be

given by σ( 4
√
a ) = i 4

√
a, σ i = i, τ 4

√
a = 4

√
a and τ i = −i. The obstruction

is as above, except that (−b,−2rα) = 1, and so the embedding problem is
solvable, if and only if

∃p, q ∈ K:p2 + aq2 = −2.

Let ω = (1 + i)(p + qi
√
a ) 4

√
a, aσ = (1 − i)/(p + qi

√
a ) and aτ =

(1 + i)/(p + qi
√
a ). Then σω/ω = a2

σ and τω/ω = a2
τ , i.e., M(

√
ω )/K is

Galois. And since

aσ σaσ σ 2aσ σ 3aσ = −1, aτ τaτ = −1, aσ σaσ σ 2aσ σ 3aτ = aτ τaσ ,

M(
√
ω )/K is a solution to the embedding problem.

Hence, we have

2.5. The quasi-dihedral groupQD8, special case. Let M/K =
K( 4

√
a, i)/K be a D4-extension. Then the embedding problem given by M/K

and
1 → µ2 → QD8 −−−−→

u�→σ
v �→τ

D4 → 1

is solvable, if and only if

∃p, q ∈ K:p2 + aq2 = −2.

The solutions are then

M
(√

r(1 + i)
(
p + qi

√
a
)

4
√
a
)/

K

= K
(√

r(1 + i)
(
p + qi

√
a
)

4
√
a, i

)/
K, r ∈ K∗.

3. Groups of exponent 8

In 2.4, the D4-extension M of K is a C4-extension of K(
√
b). Also, the QD8-

extension is C8 over K(
√
b). Thus, we have in particular embedded a C4-

extension in a C8-extension. We remember from section 0 that a C4-extension
is, loosely speaking, just a D4-extension with b = 1. It is therefore plausible
that we might solve the problem of embedding aC4-extension in aC8-extension
by ‘letting b = 1’ in 2.4. And in fact we can:

Let M/K = K(
√
θ )/K , θ = r(α + β

√
a ), be a C4-extension as in 0.2.

The obstruction to embedding M/K in a C8-extension is represented by the
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cyclic algebra ' = M[uσ ], where u4
σ = −1 and uσx = σx uσ for x ∈ M .

Letting Q = K[uσ + u3
σ ,

√
a u2

σ ] and R = K[u2
σ ,

√
θ uσ + σ

√
θ u3

σ ] we see
that ' = Q ⊗K R, Q � (−2,−a/K) and R � (−1, 2rα/K). Hence, the
obstruction is

(−2,−a)(−1,−2rα) ∈ Br(K).

3.1. The cyclic group C8, general case. Let M/K = K
(√

θ
)
/K be

a C4-extension as above, and assume α �= 0. Then the embedding problem
given by M/K and

1 → µ2 → C8 → C4 → 1

is solvable, if and only if the quadratic forms 〈1, 2rα, 2rα〉 and 〈a, 2, 2a〉 are
equivalent over K . If the equivalence is expressed by the matrix P, i.e., if

Pt 〈1, 2rα, 2rα〉P = 〈a, 2, 2a〉,
we may assume det P = a/rα and get the solutions

M(
√
sω )/K = K(

√
sω )/K, s ∈ K∗,

where

ω = 1 + p11/
√
a + 1

2

[
(p22 − p32) + (p23 + p33)/

√
a
]√

θ

+ 1
2

[
(p22 + p32) − (p23 − p33)/

√
a
] α − β

√
a√

a

√
θ.

Proof. We derive S from P as in the proof of 2.4 to get

St 〈r2a, θ, σθ〉S = E

and det S = 1/r2a. Also,

ω = 1 + s11r
√
a + s22

√
θ + s33 σ

√
θ.

Noting that s33 = σs22, we get

σω = 1 − s11r
√
a − s22

√
θ + s33 σ

√
θ,

and by using various equalities (as in the proof of 2.2), we get

ω σω = r2a
(
s12 − s21/σ

√
θ
)2
.

Hence, M(
√
ω )/K is Galois. Also,

ω σ 2ω = (
s23

√
θ − s32 σ

√
θ
)2
,
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and letting

x = s23

√
θ − s32 σ

√
θ

ω

we get σ 2ω/ω = x2 and x σ 2x = −1. Hence, M(
√
ω )/K(

√
a ) is C4, and it

follows that M(
√
ω )/K is C8.

Cyclic extensions of degree 8 are considered in [8].
If α = 0, we must have i ∈ K∗, and can assume M/K = K( 4

√
a )/K

and σ( 4
√
a ) = i 4

√
a. The quaternion factor (−1,−2rα) disappears, and so

the obstruction is (−2,−a) = (2, a) ∈ Br(K), and the embedding problem is
solvable, if and only if

∃p, q ∈ K:p2 − aq2 = 2.

We let
ω = (

p + q
√
a
)

4
√
a

and
aσ = 1 + i

p + q
√
a

and get σω/ω = a2
σ and aσ σaσ σ 2aσ σ 2aσ = −1. Thus, M(

√
ω)/K is a

solution, and we have

3.2. The cyclic groupC8, special case. Assume i ∈ K∗, and letM/K =
K( 4

√
a )/K be a C4-extension. Then the embedding problem given by M/K

and
1 → µ2 → C8 → C4 → 1

is solvable, if and only if

∃p, q ∈ K:p2 − aq2 = 2,

and the solutions are then

M
(√

r
(
p + q

√
a
)

4
√
a
)/

K = K
(√

r
(
p + q

√
a
)

4
√
a
)/

K, r ∈ K∗.

We can now use reduction to 3.2 on other embedding problem in the same
way we reduced QD8 to Q8 in 2.4:

Let D8 be the dihedral group of order 16, i.e., D8 is generated by elements
σ and τ with relations σ 8 = τ 2 = 1 and τσ = σ 7τ .
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3.3. ThedihedralgroupD8, generalcase. LetM/K=K
(√

θ,
√
b
)
/K

be a D4-extension as in 0.4 and 2.4, and assume α �= 0. Then the embedding
problem given by M/K and

1 → µ2 → D8 → D4 → 1

is solvable, if and only if the quadratic forms 〈b, rα, brα〉 and 〈ab, 2b, 2a〉
are equivalent over K . If this equivalence is expressed by the matrix P, i.e., if

Pt 〈b, rα, brα〉P = 〈ab, 2a, 2b〉,
we may assume det P = 2a/rα and get the solutions

M(
√
sω )/K = K

(√
sω,

√
b
)/

K, s ∈ K∗,

where

ω = 1−p11/
√
a+ 1

2

(
p32 +p23/

√
a
)√

θ+ 1
2

(
p22/b−p33/

√
a
)α − β

√
a√

a

√
θ.

D8 as Galois group is considered in [8] and [5].

Proof. By [10, Prop. 4.2], the obstruction to the embedding problem is

(−ab,−2a)(−b,−rα) ∈ Br(K).

This gives the criterion.
We now restrict ourselves to the embedding problem given by M/K(

√
b )

and
1 → µ2 → C8 → C4 → 1.

M/K(
√
b ) has the form required in 3.1, if we replace r , α and β by r ′ = r

√
b,

α′ = α/
√
b and β ′ = β/

√
b. Also, letting

P′ =
(−1 0 0

0 1/2 1/2
0 1/2 −1/2

) 〈√
b, 1,

√
b
〉
P
〈
1/

√
b, 1/

√
b, 1

〉

we get
P′t 〈1, 2rα, 2rα〉P′ = 〈a, 2, 2a〉

and det P′ = a/rα. The ω given above is then exactly the one from 3.1, and
so M(

√
ω )/K(

√
b ) is C8. Furthermore, M(

√
ω )/K is Galois, since τω = ω,

and it is not hard to see that the Galois group is in fact D8.
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√
sω is not a primitive element ofM(

√
sω )/K , but it is clear thatM(

√
sω )/K

is the Galois closure of K(
√
sω )/K .

3.4. The dihedral group D8, special case. Let M/K = K
(

4
√
a, i

)
/K

be a D4-extension as in 2.5. Then the embedding problem given by M/K and

1 → µ2 → D8 → D4 → 1

is solvable, if and only if

∃p, q ∈ K:p2 − aq2 = 2.

In that case, the solutions are

M
(√

r
(
p + q

√
a
)

4
√
a
)/

K = K
(√

r
(
p + q

√
a
)

4
√
a, i

)/
K, r ∈ K∗.

Now, let M/K = K
(√

θ,
√
b
)
/K be a C4 ×C2-extension, i.e., K

(√
θ
)
/K

is a C4-extension as above, K(
√
b )/K is a C2-extension, and

√
b /∈ K

(√
θ
)
.

As generators for C4 × C2 = Gal(M/K) we choose σ and τ , given by

σ :
√
θ �→ α−β

√
a√

a

√
θ,

√
b �→ √

b,

τ :
√
θ �→ √

θ,
√
b �→ −√

b.

We then have an embedding problem given by M/K and

1 → µ2 → M16 −−−−→
v �→σ
v �→τ

C4 × C2 → 1,

where M16 is the modular group of order 16, i.e., M16 is generated by elements
u and v with relations u8 = v2 = 1 and vu = u5v.

By [10, Prop. 3.2], the obstruction to this embedding problem is

(−2,−a)(−1,−2rα)(a, b) = (−2b,−a)(−1,−2brα) ∈ Br(K).

3.5. ThemodulargroupM16, generalcase. LetM/K=K
(√

θ,
√
b
)
/K

be a C4 × C2-extension as above, and assume α �= 0. Then the embedding
problem given by M/K and

1 → µ2 → M16 −−−−→
u�→σ
v �→τ

C4 × C2 → 1
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is solvable if and only if the quadratic forms 〈1, 2brα, 2brα〉 and 〈a, 2b, 2ab〉
are equivalent over K . If this equivalence is expressed by the matrix P, i.e., if

Pt 〈1, 2brα, 2brα〉P = 〈a, 2b, 2ab〉,
we may assume det P = a/rα and get the solutions

M(
√
rω )/K = K

(√
sω,

√
b
)/

K, ∈ K∗,

where

ω = 1 + p11/
√
a + 1

2

[
p22 + p23/

√
a − p32 + p33/

√
a
]√

θ

+ 1
2

[
p22 − p23/

√
a + p32 + p33/

√
a
] α − β

√
a√

a

√
θ.

Proof. The criterion comes directly from the obstruction. Now, letting

P′ = 〈1,√b,
√
b〉P〈1, 1/

√
b, 1/

√
b〉,

we have
P′t 〈1, 2rα, 2rα〉P′ = 〈a, 2, 2a〉

and det P′ = a/rα. Thus, by 3.1, M(
√
ω)/K(

√
b) is a C8-extension, and

σω/ω = a2
σ , where

aσ = r
√
a
(
s12 − s21/σ

√
θ
)

ω
,

s12 = p12 + p13/
√
a

2r
√
a
√
b

,

and s21 =
√
b√
a

(
p21 + p31

σθ

r
√
a

)
.

With aτ = 1 we get τω/ω = a2
τ . Also, aσ σaσ σ 2aσ σ 3aσ = −1, aτ τaτ = 1

and aσ σaτ = −aτ τaσ . Hence, M(
√
ω )/K is a solution.

M16 as Galois group is also considered in [5].
If α = 0, we must have i ∈ K∗, and can thus assume M = K

(
4
√
a,

√
b
)
.

The elements σ and τ in C4 × C2 are then given by

σ : 4
√
a �→ i 4

√
a,

√
b �→ √

b,

τ : 4
√
a �→ 4

√
a,

√
b �→ −√

b,
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and the obstruction to the embedding problem is (−2a,−a) = (a, 2b) ∈
Br(K).

3.6. The modular group M16, special case. Assume i ∈ K∗, and let
M/K = K

(
4
√
a,

√
b
)
/K be a C4 × C2-extension as above. Then the embed-

ding problem given by M/K and

1 → µ2 → M16 −−−−→
v �→σ
v �→τ

C4 × C2 → 1

is solvable, if and only if

∃p, q ∈ K:p2 − aq2 = 2b.

In this case the solutions are

M
(√

r
(
p + q

√
a
)

4
√
a
)/

K = K
(√

r
(
p + q

√
a
)

4
√
a,

√
b
)/

K, r ∈ K∗.

Proof. We let aσ = (1 + i) 4
√
a/(p + q

√
a) and aτ = 1.
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