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UNIVERSAL SPECTRA, UNIVERSAL TILING SETS
AND THE SPECTRAL SET CONJECTURE

STEEN PEDERSEN and YANG WANG

Abstract

A subset Q of R? with finite positive Lebesgue measure is called a spectral set if there exists a
subset A C R such that &3 := {e">**¥) : & € A} form an orthogonal basis of L?(£2). The set A
is called a spectrum of the set 2. The Spectral Set Conjecture states that 2 is a spectral set if and
only if € tiles R? by translation. In this paper we prove the Spectral Set Conjecture for a class
of sets 2 C R. Specifically we show that a spectral set possessing a spectrum that is a strongly
periodic set must tile R by translates of a strongly periodic set depending only on the spectrum,
and vice versa.

1. Introduction

Let ©2 be a (Lebesgue) measurable subset of R with finite positive measure.
Fort e Rlet Q + ¢ := {x + ¢ : x € Q} denote the translate of Q by .
We say that Q2 tiles R by translation if there exists a subset .7 C R so that
R\ U,cr (+1) is a set of measure zero and (2 + ) N (Q + t’) is a set
of measure zero whenever ¢, t' € .7 are distinct. In the affirmative case .7 is
called atiling set for 2, and (2, .7) is called a tiling pair. Similarly, we say that
Q tiles the non-negative half line R* = [0, 0o) if there exists a subset 7 C R
such that R* \ U,cs (€ + 1) is a set of measure zero and (2 + 1) N (Q + t’)
is a set of measure zero whenever ¢, ¢’ € .7 are distinct. Sets that tile the real
line by translation have been studied recently, e.g., [9], [8], [7].
For A € R we introduce the functions

e (x) 1= ™ x €R.

We say that Q is a spectral set if there exists a subset A C R so that the functions
&p = {ey : & € A} form an orthogonal basis for L? (), the Hilbert space of
complex valued square integrable functions on 2 with the inner product

(o) = /Q Toe) dx.
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If the functions in &, form an orthogonal basis for L? (£2), then we call (2, A)
aspectral pair and A a spectrum for Q. Spectral sets have recently been studied
in various contexts, e.g., [3], [4], [5], [10], [8], [6].

One of the main open questions concerning spectral sets is the following
conjecture, first proposed by Fuglede [3]:

SPECTRAL SET CONJECTURE. Let Q2 be a measurable subset of RY with
finite positive Lebesgue measure. Then 2 is a spectral set if and only if 2 tiles
R? by translation.

In this paper we study the one dimensional case of the Spectral Set Conjec-
ture. A special class of sets we study consists of tiles that tile the non-negative
half line R* by translation. We prove:

THEOREM 1.1. Let Q2 be a subset of R with finite positive Lebesgue measure.
Suppose that Q tiles R* by translation. Then S tiles R by translation and is a
spectral set.

LetN := {1, 2, 3, ...} be the set of natural numbers and Z+ := {0, 1, 2, .. .}
be the set of non-negative integers. Forany n € NletZ' := {0, 1,...,n — 1}.
For any A, B C Z we write

A+B:={a+b:ac A be B}

for the Minkowski sum of A and B. We will write A @ B if each element in
A + B has a unique decomposition of the form a + b witha € A and b € B.

DEFINITION 1.2. We call A C Z* a direct summand of Z if there exists a
B C Z" such that A @ B = Z}. We call a subset .7 of R a strongly periodic
set if there exist an n € N and a direct summand A C Z* of Z} such that
7 = a(A & nZ) for some non-zero o € R.

In [8] it was shown that certain tiles that tile R by translation are spectral sets
that possess the so-called universal spectra, in the sense that the spectra depend
only on the tiling sets, not the tiles. Our main theorem below strengthens this
notion by providing a large new class of tiles that possess universal spectra. It
shows that a tile that tiles R by the translates of a strongly periodic set must
have a universal spectrum that is also a strongly periodic set. More importantly,
the theorem also gives rise to the notion of universal tiling set, which can be
viewed as the dual of universal spectrum. We show that a spectral set that
possesses a spectrum that is a strongly periodic set must have a universal tiling
set depending only on the spectrum.

THEOREM 1.3. Let Q be a subset of R with finite positive measure. Suppose
that there exists a strongly periodic set A C R such that (2, A) is a spectral
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pair. Then there exists a strongly periodic set 7 C R depending only on A
such that 2 tiles R by translates of 7. Conversely, suppose that there exists a
strongly periodic set 7 C R such that Q tiles R by translates of 7. Then there
exists a strongly periodic set A C R depending only on 7 such that (2, A) is
a spectral pair.

The strongly periodic sets A and .7 in Theorem 1.3 are duals of each other,
and for each given one the other is constructed explicitly in §4. In fact we
prove a stronger version of Theorem 1.3 there. For the rest of the paper, in §2
we state a result on the structure of strongly periodic sets, first shown in [2].
In §3 we classify tiles that tile R* by translation. The classification is used to
prove Theorem 1.1.

2. Structure of Strongly Periodic Sets

In this section we classify subsets A, B of Z* satisfying A @ B = Z} for some
n € N. The classification is based on a theorem of de Bruijn [2] establishing
the structure of subsets of Z* that tile Z* by translation. To formulate the result
we first introduce some notation regarding divisibility. Forr, s € Zweuser | s
to mean that r divides s; forr € Zand A € Z we use r | A to mean that r
divides every a € A.

PROPOSITION 2.1 (de Bruijn). Let A, B C Z* such that A® B = Z* and
A # 7%, B # I". Then there exists an integer r > 1 such thatr | A orr | B.
Furthermore, if r | B and B = r B then there exists an A C 7 such that

A=Z"®rA, and A®B=1".

PrROOF. A proof can be found in de Bruijn [2]. For the sake of self-contain-
ment we give a short proof here.

Without loss of generality we assume 1 € A. Let r be the smallest non-zero
member of B. Foreachm € Nlet A,, C A and B,, C B be the minimal subsets

so that
Z" C A+ By

It follows immediately from the minimality and the uniqueness in A @ B that

A,=ANZ" B,=BNZ .

mr’

Observe that Z

ey \ Ly =ZF +mr.So

Apst \ A S Z7 4+ mr, Byi1\ By CZ + mr.
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We show by induction on m that there are subsets C,, and D,, of Z* such that
An =75 +rCy, B, =rD,,.

Let C; := {0} and D, := {0}. Then A, = Z' + rC, and B; = rD; as
required. Suppose that C,,, D,, € Z" have been constructed so that A,, =
ZF 4+ rC, and B, = rD,. If Z(+m+1)r C A, + B,,then A,,.; = A,, and
Bn+1 = B, and so it suffices to set C,4y := Cp and D4 := Dy, to
complete the proof.

Now suppose thatZ$, ., A+ By. Letj € ZF. If j+mr € A+ B, =
ZF +r(Cy + Dy) thenm € C,, + D,, and therefore Z* + mr C A, + B,

contradicting Zz;n +1yr & Am + By Hence,

(Z:— +mr)N (A, + By) = @.

It follows that mr € A,,+1 or mr € By,41.

If mr € Byy41, then A, = A, and B, = B, U {rm}. Hence we may
set Cyyy1 := Cy, and D,y := D, U {m}.

Assume that mr € A,41. Let j € Z'. We have shown above that j +
mr ¢ Ay, + By, s0 j+mr =a+bfora € Ay \ A, b € By or
a € Ay, b € By \ By. Ifb € By \ By then (im + 1)r — b € Z}'. Thus
mr +r = ((m 4+ 1)r — b) + b constitute two different decompositions of
the same element in A @ B, a contradiction. This yields a € A,11 \ Ap. If
b # 0 then B,, = rD,, and By, 11 \ B,y C Z + mr implies that b > r. So
j+mr =a+b>mr—+r > j+ mr, again a contradiction. So » = 0 and
therefore j + mr = a € A,,41. It follows that

A1 = Ap U +mr).

The inductions steps are now complete by setting C,,41 := C, U {m} and
Dm+1 = Dm - -
Finally, the proposition follows by letting A:=J>_C,yand B=J,_, D,

Proposition 2.1 immediately leads to the following classification of strongly
periodic sets.

COROLLARY 2.2. Let A, B C Z%" such that A® B = Z and A # Z},
B # ZF. Then there exists an r >~1 such that r | n and fither r|Aorr | B.
Furthermore, if r | B and B = r B then there exists an A C L so that

A:ZfEBrZ, and A®B=1f.

PROOF. Suppose that 1 € A. Applying Proposition2.1to A& (B ® niZt) =
Z" yieldsanr > l andaset Asothat A =7 @rAandr | (B@®nZ'). Since



250 STEEN PEDERSEN AND YANG WANG

0 € Band 0 € Z* it follows that 7 | n and r | B. Finally, Z} & r(A+B) =
A® B =1Z implies A ® B = Z}.

COROLLARY 2.3. Let A, B C Z" suchthat A®B = Z;. Assume that 1 € A.
Then there exists a unique finite sequence dy = 1,d,,...,dy_1,dy = ninN
withrj :=d;/d;_y € Nandr; > 1 for 1 < j < k such that

(2.1) A=di} @l &,
2.2 B=d\7} & d:l] &

ProoOF. Since 1 € A, the proof of Proposition 2.1 yields A= ZJ: @®riAand
B = r B where r| = min{b : b € B, b # 0}, and A® B = ZJ,C The proof is

completed by applying Corollary 2.2 iteratively to A®B = Z+ Note that the

unlqueness follows from the fact that ry = d;/dy = min{b : b € B,b # 0},
=dy/dy={a:ac€ A, a # 0}, etc.

COROLLARY 2.4. Suppose that A, B C Z* such that A® B = Z, and that
B is finite. Then B is a direct summand of Z;| for some n € N.

ProOF. By the same argument for Corollary 2.3 B must have the form (2.1)
or (2.2), depending on whether 1 € B. So B must be a direct summand of Z;
for some n € N.

Call a polynomial a 0 — 1 polynomial if each of its coefficients is either O
or 1. We associate each finite A C Z* with the following 0 — 1 polynomial

A(x) := Zx“,

acA

called the characteristic polynomial of A. Clearly every 0 — 1 polynomial
is the characteristic polynomial of the set of exponents corresponding to its
non-zero coefficients. If A, B, C C Z* are finite, then A @ B = C if and only
if A(x)B(x) = C(x). We call a 0 — 1 polynomial c-irreducible if A(x) #
Aj(x)A;z(x) for any O — 1 polynomials A (x) # 1, A»(x) # 1. The following
result was first stated in [1] (simple examples, however, show that Lemma 1
in [1] is false).

THEOREM 2.5. Letn > 1. Then every factorization of );”:1

Linto c-irreducible
0 — 1 polynomials has the form

x" —

| — FP1 (X)sz(xpl)Fpg (xpll?z) . Fpk(x[’llhmpk—l),
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x"—1

where Fy(x) = <=

pip2... Pk

, all p; are primes (not necessarily distinct) and n =

Proor. This is a direct consequence of Corollary 2.3, by observing that

Zh e =L ® 1LY @ i prily,.

Note that each term in the factorization is c-irreducible, because it contains a
prime number of terms.

3. Tiling the Non-Negative Real Line

Let Q C R be a tile with finite and positive Lebesgue measure that tiles Rt by
translates of .7. In this case we will write Q @ .7 = R™. In this section we
derive the structure of tiles €2 C R that tile R* by translation.

THEOREM 3.1. Let Q C R with finite positive Lebesgue measure. Suppose
that 2 tiles R by translation. Then there exists an affine map ¢(x) = ax + b

such that
p()=[0,11+B

for some finite subset B C Z* withO € B. Furthermore, B is a direct summand
of Z} for some n € N. Hence 2 tiles R by translation.

PrOOF. In this proof, all set relations involving the tile €2 will be interpreted
as up to measure zero sets.

Let 7 C R such that Q @& .7 = R™. We first examine the special case
7 =1{0,1,1,1,...} where t; > 1 forall j > 2. In this special case we prove
that @ = [0, 1]+ B forsome B C Ztand0 € B.Let 9, = I N[0,n — 1]
and , = QN [0, n]. We claim that .7, C Z+ and ©,, = [0, 1] + B, for some
B, C Z*, by induction on 7.

Since#; > 1, wemusthave [0, 1] € Q. Sothe claimis clearly true forn = 1.
Assume that the claim is true for all n < k. We show that the claim is also true
for n = k. We divide the proof into two cases: Q2;_; C Q2 and 2;_; = .
Suppose that Q;_; C Q. Then @ N (k — 1, k] # @. If @ # [0, 1] 4 By for
any B, C Z*, then QN (k — 1, k] € (k — 1, k]. Hence there exists at € J
such that (2 +1¢) N (k — 1, k] # @. Note that r € F;_1, sot € ZT. It follows

that
pcenNtk—1—tk—t]Ck—1—1k—1t],

contradicting the inductive hypothesis. So €; = [0, 1]+ By for some B, C Z*.
The assumption that 2;_; C € now implies that By = By_; U {k — 1}, so
i = Jx—1. This proves the claim for n = k in the first case. Suppose that
Qi1 = . Then Q; = [0, 1] + B with By = Byj_;. Therefore .7, =
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k-1 U {k — 1}. This completes the induction steps and proves the claim. So
we have shown that B, 7 C Z*, and clearly 0 € B.

It remains to show that B is a direct summand of Z; for somen € N. Observe
that B @ 7 = Z*. Therefore B is a direct summand of Z} for some n € N by

Corollary 2.4.
In general, suppose that €2 tiles R™ by translates of .7 where the elements
inJaretg <t <tp <---.Letp(x) = :(x — 1p) and t]f = ¢(t;). Then

() ®1{0,1,1,1,...} =R".
Hence ¢(€2) = [0, 1]+ B for some B C Zt with 0 € B.

4. Proofs of Main Theorems

To prove our main theorems we first introduce some notation. For any finite
set A C Z we denote f,(§) := A (e"Z”s ) where A(z) is the characteristic
(Laurent) polynomial of A. We will use %, to denote the set of zeros of f4.
For a subset 2 C R with positive and finite measure we will use %, to denote
the set of zeros of g (&).

Observe that for any finite A C Z, £ € 2, implies £ + m € Z, for all
m e Z So %y = 7Z& X for some finite X C R. If in addition A is a direct
summand of Z! for some n € N, then n.2%; C Z.

LEMMA 4.1. Let A C Z* be a direct summand of Z for some n € N. Then
there exists a direct summand A* of Z with the same cardinality such that

@.1) A—ACnZyU{0), A*—A*CnZ, U0}

ProOOF. We procced by induction on n. For n = 1, 2 it is easy to check that
the lemma holds. Assume that the lemma holds for all n < k, where k > 3.
We show that it holds for n = k.

Casel.1 ¢ A. Then A =rA, forsomer > 1, r | k and direct summand
A; of Z}. By the hypothesis there exists a direct summand A’ of ZJr such that

4. l)holds for A, ATandn = k/r.Now fa(§) = fa, (r§) yields ,%"’A = 1,%‘1.
Set A* = AJ. Clearly A* is a direct summand of Z because it is a direct
summand of ZZ, and we have

k
A—A=r(Al—A) Cr-=Zyu U0} = kZy U {0},
r

and k
A" — A=A - A7 C ;QPA, U {0} = kZ, U {0}.
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Case 2.1 € A. Then A = Z & rA, for some r > 1, r | k and direct
summand A; of Z} . By the hypothesis there exists a direct summand A} of Z}

such that (4.1) holds for A;, A7 and n = k/r. Set A* = AT @ ';‘Z:r A*isa
direct summand of Z;" because A* @ B} = Z;” where A} @ B} = Zi. We have

Fa®) = frr &) fa, 8, far®) = far ) fr (%6).

It follows from 27+ = }Z \ Z that
1

4.2) Fy=-QU L)\, L= Zi: U % (12\2).
r

Letm =a+ ’fj andm = a’ + ];‘j’ be two distinct elements in A*, where
a,a’ € At and j, j' € ZF. If a = a’ then

k
m—m'==(j—j)ek(1Z\Z) CkZ,.
r

Ifa #ad' thena—ad € 'fffAl. Hencea — a’ + ';‘l € l;ch] for all [ € Z. Since
m —m’ & kZ, we have

m—m' e 2 \kICkZ,.

Hence A* — A* C k%, U {0}.

Now let m = j 4+ ra, m’ = j' 4 ra’ be two distinct elements in A, where
a,a’ € Ay and j,j € ZF. If j = j then a # d/, and by the hypothesis
a—a € ];CQ”AT. Som—m'=r(a—a') e kZy: 1f j # j'then j— j" €rZ so

m—m'=j—j+r@@a-a)el\rl=—(12\2) c 2.

s

Hence A — A C Z-.
We have now completed the induction steps and proven the lemma.

We will call two direct summand A and A* satisfying (4.1) a conjugate
pair, and A* a conjugate of A. The proof of Lemma 4.1 leads to an explicit
construction of conjugate pairs. Let A C Z* be a direct summand of Z. Then
by Corollary 2.3 there exists a unique sequence rg, 71, ..., 2k+1 in N with
]_[sz(;l ri=mn,r; > 1for0 < j <2k+1andry, ryqr > 1, such that

m

k
(4.3) A=Payz) .  where dy:=]]r.
j=0

J=0
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Define the map @, on the set of direct summand of Z, by

k

4.4) 9,(4) = D - "z

=0 %2j+1

Then 9, (A) is exactly the conjugate set A* constructed inductively in the proof
of Lemma 4.1.

LEMMA 4.2. Suppose that A C Z* is a direct summand of Z,}. Then A and
9, (A) form a conjugate pair, and 9,,(9,(A)) = A. Furthermore, if A, B C Z*
such that A ® B = Z, then 9,,(A) & 9,(B) = Z

ProOF. The proof of Lemma 4.1 already implies that A, %,(A) form an
conjugate pair. It is easy to see that ¥, (9,(A)) = A by directly applying
(4.3) and (4.4). Now, suppose that A is given by (4.3) and B C Z7 satisfies
A @ B = Z. Then there are several cases: ro = 1 orrg > 1, and ry4; = 1 or
Fokw1 > 1. If rg = 1, rypo; > 1 then

k+1
(45) B = @dgjflz:;_, where Fog42 = 1.
j=1
So
k+1 n
(4.6) 9.(B) =P 27, .

It is now straightforward to check from (4.4) and (4.6) that 9,,(A) ® 9,(B) =
Z'. Other cases can be checked similarly.

DEerINITION 4.3. Let A, .7 C R be strongly periodic sets. We say that .7
is a dual of A if there exist anon-zeroo € Rand A, B C Z* with A®@ B =7}
for some n € N such that

A = a(A ®nl), T = L(z?,,(B)EBnZ).
na

By Lemma 4.2 if .7 is a dual of A then A is a dual of .7.

LeEmmaA 4.4. Let Q C R satisfy n(2) = n € N. Suppose that A = L & Z
where L is a finite subset of R such that A — A C Zq U {0}. Then (2, A) isa
spectral pair if and only if |L| = n.

Proor. See [10], Theorem 1, or [8], Theorem 2.1.
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We shall establish the following result, which is a stronger version of our
main theorem.

THEOREM 4.5. Suppose that Q2 C R has positive and finite Lebesgue meas-
ure. Let A,  C R be strongly periodic sets such that  is a dual of A. Then
(2, A) is a spectral pair if and only if Q2 tiles R by translates of 7.

Proor. Without loss of generality we may assume that A = %(A @ n’l)
and 7 = ¥,(B) @ nZfor somen € Nand A, B C Zt withA® B =Z.
(<) Theset Q' = Q@ 9,(B) tiles R by translates of nZ, so it is a fundamental
domain of the lattice nZ. Hence

1
2o =ZoU 2y, 2 ;Z \ {0}.
Since 9, (A) ® ¥, (B) = Z;} we have
1
Ly, YU 2y, = 27+ = ;Z \ Z.

Furthermore, Qpﬁn (A) N gﬂn(B) = () because fz?,,(A) (S)flyn(g) (%') has no multiple

roots. Hence
Za 2 gﬁn(A) Uz \ {0}

Now, for any distinct A, A’ € A we have A — A/ = %k + j forsomek € A — A,
j €Z.Ifk #0then £ € %, (4 by (4.1), which implies that A — ' = £ 4 j €
Z5,4) S Zq. Otherwise A — AN =jelZ\{0} C Z,. ByLemma4.4 (22, A)
is a spectral pair.

(=) Suppose that (2, A) is a spectral pair. For any x € [0, 1) let D, :=
QN (Z+ x). It follows from [10], Theorem 2, that

4.7) |Dx| = |A], D, — D, S nZ; U{0}

for almost all x € [0, 1). We show that (D, — x) 4 9,,(B) is a complete residue
system (mod n) for every D, satisfying (4.7). Note that ¥,(B) — ©,(B) C
nZp U {0}, and observe that k % m mod n for any k € nZ4 and m € nZ3p.
Thus for any &, k, € Dy — x and m, m, € ¥, (B) we must have k| — k, #
m, —mj mod n unless k; = k; and m; = m,. Hence ki +m % k,+m, mod n.
Since |D, — x| - |9,(B)| = n it follows that (D, — x) +,(B) = (D, —x) &
¥, (B) contains n distinct residue classesmod 7, and hence is a complete residue
systemmod n. Therefore

D+ =D, ®T =x+17

for almost all x € [0, 1). This implies that €2 tiles R by translates of .7.
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Theorem 1.1 is a simple consequence of Theorem 3.1 and Theorem 4.5.
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