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DOUBLING FOR GENERAL SETS

STEPHEN M. BUCKLEY, BRUCE HANSON, and PAUL MACMANUS∗

Abstract
We investigate doubling conditions defined in terms of measurable bounded sets and find a simple
characterization of quasisymmetrically thick Cantor sets on the line.

0. Introduction

In this paper we look at two seemingly unrelated questions, which broadly put
are the following:

1. If we use an arbitrary set E in place of a cube when defining the doubling
condition for a measure, what effect does this have on the class of measures
which satisfy the doubling condition?

2. Given a subset E of R such that |E| > 0, when is it possible to find a
quasisymmetric function f which “kills” E (i.e. such that |f (E)| = 0)?

Surprisingly enough, we will show that there is a close connection between
these two questions. In the remainder of this introduction we describe these
questions more precisely and end the section by stating a theorem which gives
a clear description of this connection. We begin with the first question.

Doubling conditions for measures in Euclidean space are usually defined
using nice open sets such as cubes or balls; we are interested in studying what
happens when the doubling condition is defined using much more irregular
bounded sets E. There are two basic problems that we shall tackle. Firstly, we
shall investigate whether doubling with respect to E is implied by, or implies,
doubling with respect to cubes. Secondly, we shall investigate whether “nearly
optimal” doubling with respect to E is implied by, or implies, “nearly optimal”
doubling with respect to cubes.

Thoughout this paper, Q0 is the centered unit cube (−1/2, 1/2)n ⊂ Rn, and
E ⊂ Rn is a non-empty bounded Borel measurable set. Since we are really
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interested in the family of all translated dilates of E, rather than just E itself,
we normalize E so that it contains the origin, lies in Q0, and has diameter
between 2−1 and

√
n. Whenever we have a set X with a distinguished “center”

point x ∈ X, and λ > 0, we denote by λX the concentric dilate of X by
the factor λ (with respect to the center x). For any of our sets E that we are
considering, we take 0 to be its “center”, so that λE has its usual vector space
meaning. However, when considering E′ = fE, where f is some specified
bilipschitz mapping (usually an affine map), f 0 is taken to be the center of E′;
in particular, we always consider cubes and balls as having their usual centers.
In any case, it should always be clear from the context which point is the center
of a given set. We use C in proofs of theorems to refer to a generic constant
that depends only on the allowed parameters; we shall also write A <∼ B (or
B >∼ A) if A ≤ CB for some such C, and we write A ≈ B if A <∼ B <∼ A.

We define doubling measures for E as follows: first, we say that two sets
E1 and E2 are neighboring copies of E (or simply that E2 is a neighbor of E1)
if there exist λ > 0 and xi ∈ Rn such that Ei = λE + xi and |x1 − x2| ≤ λ.
More generally, if N > 0, we say that E1 and E2 are N -neighboring copies of
E (or that E2 is an N -neighbor of E1), if there exist λ > 0 and xi ∈ Rn such
that Ei = λE + xi and |x1 − x2| ≤ Nλ. For any ε ≥ 0, D(E, ε) is the set of
all Borel measures µ such that µ(E) > 0 and

(0.1) (1 + ε)−1 ≤ µ(E1)

µ(E2)
≤ 1 + ε,

whenever E1, E2 are neighboring copies of E. When E = Q0, the unit cube,
we will abbreviate this set as D(ε). Note that by iteration, we get that if N

is a positive integer and µ ∈ D(E, ε), then the ratio µ(E1)/µ(E2) is at most
(1+ ε)N for any N -neighboring copies of E. We call the smallest ε for which
(0.1) is valid, the E-doubling constant of µ (or simply the doubling constant
of µ if E = Q0). As we shall see in the next section, D(E, ε) is empty unless
|E| > 0 (in which case Lebesgue measure always lies in D(E, ε)), so we
restrict our attention to sets E of positive Lebesgue measure.

Doubling with respect to a general set E is always stronger than doubling
with respect to cubes, as revealed by the following theorem (which we prove
in the next section).

Theorem 0.1. For all ε > 0 there exists δ = δ(ε, E) > 0 such that
D(E, ε) ⊆ D(δ). Furthermore, we can choose δ to tend to zero as ε tends to
zero.

Corollary 0.2. D(E, 0) consists solely of multiples of Lebesgue measure.

Proof. By Theorem 0.1, D(E, 0) ⊆ D(0). It is clear that each measure in
D(0) is a multiple of Lebesgue measure.
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If we reverse the roles of E and Q0 in Theorem 0.1, both statements in
the above theorem may become false. Let us therefore introduce the following
properties of sets E:

P1: ∀ε > 0 ∃ δ = δ(ε, E) > 0 : D(ε) ⊆ D(E, δ).

P2: ∀δ > 0 ∃ ε = ε(δ, E) > 0 : D(ε) ⊆ D(E, δ).

We write E ∈ Pi if E satisfies property Pi , i = 1, 2. A set E satisfies P1 if all
measures which are doubling with respect to cubes are doubling with respect to
E, while E satisfies P2 if all measures with a sufficiently small cube-doubling
constant also have a small E-doubling constant. We shall see that there are sets
that satisfy both, neither, or just one of these properties (in fact all four logical
possibilities are realized).

We now turn our attention to the second question mentioned above. Suppose
that f : R → R is quasisymmetric, i.e. f is an increasing homeomorphism
and there is a real number λ ≥ 1 such that

1

λ
≤ f (x + t)− f (x)

f (x)− f (x − t)
≤ λ,

for all x ∈ R and t > 0. If we wish to be more specific, we will refer to such a
function as being λ-quasisymmetric and we let QS(λ) denote the class of all
λ-quasisymmetric functions defined on [0, 1].

There is a nice 1–1 correspondence between quasisymmetric functions and
doubling measures on R. Namely, if µ ∈ D(ε), then the function f defined
by f (x) − f (0) = ∫ x

0 dµ is (1 + ε)-quasisymmetric. Conversely, if f is λ-
quasisymmetric and the measure µ is defined by µ([a, b]) = f (b) − f (a)

for intervals [a, b], then µ ∈ D(λ − 1). Throughout this paper we will make
use of this correspondence without referring to it explicitly. The basic question
that we consider is the following: Given a set E ⊂ [0, 1] with |E| > 0 when
is it possible to find a λ-quasisymmetric function f such that f (E) = 0?
Furthermore, for which sets E is it possible to find such f with λ arbitrarily
close to 1? We restrict our attention to Cantor sets. Since only sets with empty
interior have a chance to be killed by a quasisymmetric mapping, this restriction
is not as severe as it might seem at first glance.

By a Cantor set, we shall mean a compact set K ⊂ [0, 1] which is the
intersection of the nested compact sets Ki , where K0 = [0, 1] and Ki is defined
by deleting an open interval of length ci |I | from the middle of every component
I of Ki−1, and 0 < ci ≤ 1/2 for all i > 0. Thus there is a bijection between our
class of Cantor sets and the set of sequences with values in (0, 1/2], and the
usual Cantor set corresponds to the case ci = 1/3; we write (ci) = SEQ(K).
Note that 0 ∈ K for each such Cantor set K but K �⊂ Q0 = [−1/2, 1/2], so
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by our formalism we should really replace K by K ′ = {x : 2x ∈ K} when
discussing doubling with respect to a Cantor set. However, the normalization
of Cantor sets employed here is so standard, that we shall stick with it.

We subdivide Cantor sets into two main classes, TC and FC (thin and fat
Cantor sets): K ∈ TC if |K| = 0 and otherwise K ∈ FC. We further partition
FC into the subclasses MFC, FFC, VFC (minimally fat, fairly fat, and very
fat), defined as follows:

• K ∈ MFC if |K| > 0 but, for every λ > 1, there exists f ∈ QS(λ) such
that |f (K)| = 0.

• K ∈ FFC if there exists 1 < λ1 < λ2 such that K is non-null for all
f ∈ QS(λ1), but |f (K)| = 0 for some f ∈ QS(λ2).

• K ∈ VFC if it is non-null for all quasisymmetric functions f .

Thus, K is minimally fat ifK can be killed byλ-quasisymmetricf withλ ar-
bitrarily close to 1, K is fairly fat if K can only be killed by a λ-quasisymmetric
function with sufficiently large λ and K is very fat if K cannot be killed by
any quasisymmetric function.

We are now ready to state the main result advertised at the beginning of this
section.

Theorem 0.3. Suppose that K is a fat Cantor set (i.e. |K| > 0) and that
(ci) = SEQ(K).

(a) K ∈ MFC ⇔ (ci) /∈⋃0<r<1 lr ⇔ K ∈ P c
1 ∩ P c

2 .

(b) K ∈ FFC ⇔ ∃ 0 < r < s < 1 : (ci) ∈ ls \ lr ⇔ K ∈ P c
1 ∩ P2.

(c) K ∈ VFC ⇔ (ci) ∈⋂0<r l
r ⇔ K ∈ P1 ∩ P2.

Thus, Theorem 0.3 says that our subclasses of fat Cantor sets can be charac-
terized very neatly, either by simple summability criteria on (ci) or in terms of
membership status with respect to P1 and P2. The characterization in terms of
(ci) makes it easy to produce examples of each type of Cantor set. For instance,

ci = 1/(2i log2(i + 2)) ⇒ K ∈ MFC,

ci = 1/2i2 ⇒ K ∈ FFC,

ci = 1/2i! ⇒ K ∈ VFC.

Note that the 2’s above are simply designed to ensure that ci ≤ 1/2 in each
instance.

Theorem 0.3 bears some similarity to the work of Wu [6] who character-
ised the “very thin” Cantor sets, i.e. those Cantor sets which are null sets
for every doubling measure. More closely related is the work of Staples and
Ward [5], who considered the problem of characterizing very fat Cantor sets in
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terms of summability criteria on (ci). They considered a slightly larger class
of Cantor-like sets which also have the property that they cannot be killed by
quasisymmetric mappings and referred to such sets as being quasisymmetric-
ally thick. In particular, they showed that the middle condition in (c) implies
that K ∈ VFC and also that the reverse implication holds for a restricted class
of quasisymmetrically thick sets which does not include any of the sets in VFC.
In fact, they asked whether the Cantor set K with ci = 1/(i+1)2 is quasisym-
metrically thick. Theorem 0.3 gives a negative answer to their question.

Section 1 contains some basic results, including a proof of Theorem 0.1.
In Section 2, we reformulate properties P1 and P2. Section 3 contains a proof
of Theorem 0.3. In Section 4 we look at some examples. Finally, we consider
various extensions and related results in Section 5.

1. Basic results

In order to prove Theorem 0.1, we fix µ ∈ D(E, ε) and define the function
Fδ(x) = µ(δE + x) for any δ > 0. This function has the following nice
properties (note that (ii) implies that D(E, ε) is empty if |E| = 0).

Lemma 1.1. Suppose that s > 0 and that Q is a cube of sidelength l > 0.

(i) (1 + ε)−1Fs(x) ≤ Fs(y) ≤ (1 + ε)Fs(x) whenever |x − y| ≤ s.

(ii) If 0 < s < 1, then
∫
(1−s)Q

Fls ≤ µ(Q)|lsE| ≤ ∫
(1+s)Q

Fls .

Proof. Part (i) follows from the doubling property; a short computation
using Fubini’s Theorem suffices to prove (ii).

Proof of Theorem 0.1. Fix δ > 0. Choose 0 < s < 1 so that

(1 + s)n

(1 − s)n
= 1 + δ

2
.

Suppose that Q1 and Q2 are neighboring copies of Q0. From Lemma 1.1 (ii)
we see that µ(Q1)|sE| ≤

∫
(1+s)Q1

Fs and that
∫
(1−s)Q2

Fs ≤ µ(Q2)|sE|. Thus,

µ(Q1) ≤
(∫

(1+s)Q1
Fs∫

(1−s)Q2
Fs

)
µ(Q2) ≤ |(1 + s)Q1|

|(1 − s)Q2|

( −∫
(1+s)Q1

Fs

−∫
(1−s)Q2

Fs

)
µ(Q2)

≤ (1 + δ/2)

( −∫
(1+s)Q1

Fs

−∫
(1−s)Q2

Fs

)
µ(Q2).

It follows easily from Lemma 1.1 (i) that the ratio of integrals in this last term
is bounded by (1 + ε)M , where M depends only on n and s. By symmetry,
we also get the inequality µ(Q2) ≤ (1 + δ/2)(1 + ε)Mµ(Q1). Consequently,
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µ ∈ D(δ), provided that ε > 0 is small enough. This proves the second claim
of the theorem and a slight modification of the proof gives the first claim as
well.

We have now proven the easy part, that doubling for general sets is stronger
than doubling for cubes. The remainder of the paper is devoted to the converse
problem: when do P1 and P2 hold? The next proposition is well-known, so we
omit the simple proof (which essentially reduces to the fact that every open set
contains a little cube).

Proposition 1.2. If E ⊂ Q0 contains an open subset then E ∈ P1.

Thus, P1 is of interest only whenE has empty interior. However, the obvious
proof provides rather crude estimates that are insufficient to prove that any open
set (other than a cube) satisfies P2. Korey [3] showed that balls satisfy P2. We
shall further investigate which open sets satisfy P2 in Sections 2 and 4.

Finally in this section, we state a version of the well-known Whitney de-
composition, as given in [4]. By the Whitney cubes of a domain &, denoted
by W (&), we shall always mean the collection of such cubes with A = 10.

Lemma 1.3. Given A ≥ 1, there is C = C(A, n) such that if & is a proper
subdomain of Rn, then & =⋃

j Qj , where the Qj are disjoint cubes satisfying

(i) 5A ≤ dist(Qj , ∂&)/ diam Qj ≤ 15A.

(ii)
∑

j χAQj
≤ Cχ& (where χS denotes the characteristic function of a

set S).

2. P1 and P2: Generalities

In this section, we shall find conditions that are necessary and sufficient forE to
have properties P1 or P2; these conditions, although not explicitly geometric,
reformulate our problems in a way that greatly facilitates our later investigation
and in particular, the proof of Theorem 0.3. We begin with a localization result.

Lemma 2.1. There is a constant C, depending only on n, such that if
µ ∈ D(ε) with µ(Q0) = |Q0|, then there exists ν ∈ D(Cε) which equals µ

on Q0, and equals Lebesgue measure on (2Q0)
c.

Proof. We denote by WI the Whitney decomposition of the interior of Q0

and by WO the Whitney decomposition of the exterior of Q0. We define a
“partner” function from WO to WI by the rule p(Q) = Q′ if Q′ is the nearest
cube in WI to Q whose sidelength equals, or is as close as possible to, that
of Q; there might be several such cubes Q′ in which case any one of them
suffices as the definition of p(Q).
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Now let ν coincide with µ on Q0 and be given elsewhere by dν(x) =
w(x) dx, where the weight w is defined on Qc

0 by

w(x) =
{

w0(x), x ∈ 2Q0 \Q0,

1, x ∈ (2Q0)
c.

where w0(x) = µ(p(Q))/|p(Q)| for all x ∈ Q ∈ WO . We leave to the
reader the routine verification that ν has the required properties – the only
non-trivial part is to check that the doubling constant of ν is controlled in the
desired manner, and this ultimately follows from the fact that if Q1 and Q2

are adjoining cubes in WO , then their partners are comparable in size and each
partner is contained in a fixed dilate of the other.

Let us define

.(E, ε) = sup
µ1,µ2∈D(ε)

µ2(E)

µ2(Q0)

(
µ1(E)

µ1(Q0)

)−1

With this notation in hand, we are ready to characterize the classes P1, P2.

Theorem 2.2.
(i) E ∈ P1 if and only if .(E, t) < ∞ for all t > 0.

(ii) E ∈ P2 if and only if .(E, t) → 1 as t → 0+.

Proof. We first prove (ii). Assuming .(E, t) → 1 as t → 0+, we wish
to show that E ∈ P2. We fix δ > 0, choose r, t > 0 so small that .(E, t) <

(1 + r) <
√

1 + δ, and let ε ≡ min{t,√1 + δ − 1}. Given any µ ∈ D(ε), we
shall show that µ ∈ D(E, δ).

Let E1 and E2 be neighboring copies of E. There are affine maps τi that take
E to Ei , i = 1, 2, and Ei ⊆ Qi where the cubes Qi = τi(Q0) are neighboring
copies of Q0. Since µ ∈ D(ε), we know that

(2.3) (1 + ε)−1 ≤ µ(Q1)

µ(Q2)
≤ 1 + ε.

We define µi ∈ D(ε) to be the pullbacks of µ with respect to the maps τi , so
that

µi(E)

µi(Q0)
= µ(Ei)

µ(Qi)

Now, applying the estimate .(E, t) < 1+ r to µi , and using (2.3), we deduce
that

(1 + r)−1(1 + ε)−1 ≤ µ(E2)

µ(E1)
≤ (1 + r)(1 + ε)

It follows that µ ∈ D(E, δ) as required.
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For the converse direction, assume that E ∈ P2. Then given δ > 0, we
choose t so that µ ∈ D(t) ⇒ µ ∈ D(E, δ). By rescaling, we can assume
that µ(Q0) = |Q0| and, appealing to Lemma 2.1, we can also assume that µ
equals Lebesgue measure on (2Q0)

c.
Clearly, there exists a 3-neighbor E1 of E, such that E1 ⊆ (2Q0)

c. Since µ

is an element of D(E, δ), we can then apply the doubling property iteratively
to obtain

µ(E)

|E| ∈ [(1 + δ)−3, (1 + δ)3
]
,

which gives that .(E, t) → 1 as t → 0+, as desired.
We omit the proof of (i), as it is similar to that of (ii).

As a first application of Theorem 2.2, we show that open sets automatically
satisfy P2 unless their boundary has positive measure (as already mentioned,
all open sets satisfy P1).

Theorem 2.3. If U ⊂ Q0 is open, and |∂U | = 0 then U ∈ P2.

Proof. It suffices to show that .(U, t) → 1 as t → 0+. Let us fix 0 <

δ < 1, and let Dk denote the class of all dyadic (closed) cubes of sidelength
2−k . For every k > 0, let Uk be the union of all Q ∈ Dk , Q ⊂ U , and let
U ′

k be the union of all Q ∈ Dk which intersect U but are not contained in U .
Clearly (Uk) is a nested increasing sequence of sets whose union is U , and
(U ′

k) is a nested decreasing sequence of sets whose intersection is ∂U . Since
|∂U | = 0, we must have |U ′

k| → 0 as k → ∞. Let us therefore fix k so large
that |U ′

k| < δ|U |/8, and choose ε > 0 so small that (1 + ε)k < 1 + δ/2 and
(1 − ε)k > 1 − δ/2.

If µ has a very small doubling constant for cubes, then the µ-measure of
the double-dilate of a cube must be almost exactly 2n times the µ-measure of
the cube itself (since we can tile the larger cube using 2n smaller cubes). Thus
there exists 0 < t < 1 such that 2nµ(Q1)/µ(Q2) ∈ [1 − ε, 1 + ε] whenever
µ ∈ D(t), Q1 ⊂ Q2 are cubes, and the sidelength of Q2 is double that of Q1.

Let µ ∈ D(t) be normalized so that µ(Q0) = 1. Iterating our last estimate,
we see that

µ(Q)/|Q| ∈ [(1 − ε)k, (1 + ε)k], for every Q ∈ Dk.

Since Uk and U ′
k are unions of dyadic cubes of size 2−k , we see that

1 − δ/2 < (1 − ε)k < µ(Uk)/|Uk| < (1 + ε)k < 1 + δ/2

and that

µ(U ′
k) < (1 + δ/2)|U ′

k| < δ(1 + δ/2)|U |/8 < δ|U |/4.
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Since Uk ⊂ U ⊂ Uk ∪ U ′
k , it readily follows that µ(U)/|U | ∈ (1 − δ, 1 + δ),

as required.

3. Proof of Theorem 0.3

Throughout this section, Dk is the 4-adic subintervals of [0, 1] of length 4−k .
We start by recalling a well-known method of constructing doubling measures.
This type of construction originated with Kahane, see [2], although this partic-
ular lemma is not mentioned there. The proof of the lemma is straightforward
and follows by much the same method used in Section 3 of [2].

Lemma 3.1. Fix ε > 0 and let {fk}∞k=0 be a sequence of positive functions
on [0, 1] with the following properties:

(1) Each fj is constant on each element of Dj .

(2) If I and J are two adjacent elements of Dj having the same parent (i.e.,
contained in the same element of Dj−1), then

1

1 + ε
≤ fj |I

fj |J ≤ 1 + ε.

(3) If I and J are two adjacent elements of Dj with different parents, then

fj |I
fj |J = fj−1|I

fj−1|J .

(4) f0 is identically 1.

(5) If I ∈ Dj−1, then
∫
I
fj =

∫
I
fj−1.

Then the measures µj on [0, 1] defined by dµj = fj dx are probability meas-
ures with doubling constant Cε, where C is a universal constant. Furthermore,
these measures converge, in the weak-∗ sense, to a probability measureµwhich
is doubling with constant Cε.

Proof of Theorem 0.3. Recall that we are assuming that |K| > 0, which
is well-known to be equivalent to (ci) ∈ l1. We first show that the left-hand
conditions in (a), (b), and (c) are equivalent to the center conditions. As MFC,
FFC, and VFC partition the fat Cantor sets, it is enough to prove the following
implications:

1. (ci) ∈ ls for some 0 < s < 1 ⇒ K ∈ FFC ∪ VFC

2. (ci) ∈ ls for all 0 < s < 1 ⇒ K ∈ VFC.

3. (ci) �∈ ls for all 0 < s < 1 ⇒ K ∈ MFC.

4. (ci) �∈ ls for some 0 < s < 1 ⇒ K ∈ MFC ∪ FFC.
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To begin with we assume that (ci) ∈ ls for some 0 < s < 1. We will
show that there exists an ε = ε(s) > 0 such that µ(K) > 0 for all µ ∈ D(ε).
Moreover, we show that we can take ε →∞ as s tends to 0. To this end assume
that µ ∈ D(ε), where ε = ε(s) is a positive number to be specified later.
Suppose also that I is an interval and that J is the concentric open subinterval
of I whose length is λ|I |. Since translate-doubling for cubes gives us control
over dilate-doubling for cubes, we see that µ(J )/µ(I) ≤ (1 + ε′)|J |/|I | if
λ = 1/2, where 1 > ε′ > 0 and ε′ tends to 0 as ε → 0. Iterating this
inequality for λ = 1/2, we get that µ(J ) ≤ (1 + ε′)kµ(I)/2k if λ = 2−k .
Straightforward estimation now gives us that, for arbitrary 0 < λ ≤ 1/2,
µ(J )/µ(I) ≤ (1+ε′)(|J |/|I |)α , where 0 < α < 1 and α tends to 1 as ε → 0.
In the case where I is a component of Ki−1, and J is the concentric open
subinterval of I of length ci |I |, we therefore deduce that µ(Ki)/µ(Ki−1) ≥
1−Ccα

i ≡ di . For large enough i, di < 1
2 and so µ(K) > 0 if

∑∞
k=1 cα

i < ∞.
Hence, we need only choose ε > 0 small enough so that α > s and we are
done. Moreover, if (ci) ∈ ls for all 0 < s < 1, then we get µ(K) > 0
regardless of the size of ε. Thus we have proven parts 1 and 2 above.

Now suppose that (ci) /∈ ls for all 0 < s < 1. Fix 0 < ε < 1/10. We will
show that there is a universal constant C and measure µ ∈ D(Cε) for which
µ(K) = 0, i.e. K ∈ MFC.

Denote by G the collection of components of [0, 1] \ K . These are the
“gaps” in the Cantor set K . For each A ∈ G there exists n such that A is
contained in Kn but not in Kn+1. In other words, the gap A first appears at
level n+ 1. We set Ã to be the component of Kn that contains A. We will refer
to this interval as the parent of A. Define Gk to be those elements A of G for
which |Ã| ≥ 10(4−k). The constraint ci ≤ 1/2 guarantees that the elements of
Gk are at least a distance 5(4−k)/2 apart. Consequently, the union of any two
adjacent elements of Dk can intersect at most one of the gaps A in Gk . Now
consider the subset Ak of Gk consisting of those A for which |A| ≤ (1/5)4−k .
We will refer to these as the active gaps. The active gaps have relatively small
length compared to the elements of Dk and have parents that are relatively long
compared to the elements of Dk . Next, we divide up the elements of Dk . Set

Zk = {I ∈ Dk : I intersects no element of Ak}
Wk = {I ∈ Dk : I intersects some element of Ak}

As mentioned above, the union of any two adjacent elements of Dk can
intersect at most one of the gaps Gk . Consequently,

(i) Every interval in Wk actually only intersects one element of Ak

(ii) If two elements of Wk are adjacent, then their common endpoint lies in
an element of Ak .
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We are now ready to build the measure. Set f0 to be 1 on [0, 1]. Let us assume
that {fj }kj=0 satisfies the hypotheses of Lemma 3.1 with ε replaced by 3ε. In
our definition of fk+1 we need to be careful to ensure that condition (3) in the
lemma is satisfied. Suppose that I ∈ Wk . We let fk+1 have value (1 + ε)fk

on any child that intersects an element of Ak . The condition |A| ≤ (1/5)4−k

guarantees that there are at most two such children. We then assign the values
fk or (1− ε)fk to the remaining children so as to ensure that

∫
I
fk+1 =

∫
I
fk .

Now suppose that I ∈ Zk . For M ∈ Dk+1, take σ(M) to be 1, 0, or − 1
depending on whether fk+1 differs from fk by a factor of 1 + ε, 1, or 1 − ε

on M . Let L be the leftmost child of I , J be the lefthand neighbour of I , and
M be the lefthand neighbour of L. If J ∈ Zk , we define fk+1 on L to be fk .
Otherwise we set fk+1 = (1 + σ(M)ε)fk on L. We define fk+1 analogously
on the rightmost child of I . As above, we assign the values fk or (1 − ε)fk to
the remaining children so as to ensure that

∫
I
fk+1 =

∫
I
fk .

It is clear that {fj }k+1
j=0 satisfies all of the hypotheses of Lemma 3.1 with ε

replaced by 3ε (since (1+ ε)/(1− ε) < 1+ 3ε), except perhaps for (3) being
valid when j = k + 1. To this end, let L and M be adjacent elements of Dk+1

with different parents, I, J respectively. There are three cases to consider. If
I, J ∈ Zk , then fk+1 = fk on L and on M , by definition. If I ∈ Zk and
J ∈ Wk , then fk+1 = (1 + σ(M)ε)fk on M , by definition of σ , and so
fk+1 = (1 + σ(M)ε)fk on L. If I ∈ Wk and J ∈ Wk , then L and M both
intersect an element of Ak , by (ii) above. Thus fk+1 = (1 + ε)fk on L and
on M . These are all the possible cases, and (3) holds for each. Hence, by
induction, we obtain {fj }∞j=0 satisfying the hypotheses of Lemma 3.1 with ε

replaced by 3ε. The measures dµj = fj dx converge in the weak-∗ sense to a
probability measure µ which is doubling with constant 1+Cε. We will show
that µ(K) = 0. In fact, we will prove that there exists a positive constant α

such that

(3.2) µ(Kn+1) ≤
(
1 − α(cn)

1−ε/2
)
µ(Kn)

for every n ≥ 1. This clearly yields µ(K) = 0.
Let A ∈ G whose parent is a component of Kn. Then |A| = cn|Ã|. If we

can show that

µ(A) ≥ α

( |A|
|Ã|

)1−ε/2

µ(Ã),

then we immediately obtain (3.2). The preceding inequality follows easily from
the doubling of µ whenever cn ≥ 1/100. Thus we only need to consider the
case cn ≤ 1/100. The gap A is active for all k satisfying 5|A| ≤ 4−k ≤ |Ã|/10.
Set s to be the minimum such k and t to be the maximum such k. Now choose
an interval J in Dt which intersects A and take I to be the element of Ds
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that contains J . The lengths of J and A and I and Ã are comparable. As µ is
doubling, we see that it is enough to prove that

µ(J ) ≥
( |J |
|I |
)1−ε/2

µ(I).

Note that µ(I) = µs(I ) and that µ(J ) = µt(J ). As the gap A is active for
s ≤ k ≤ t and as J intersects A we must have

µk+1(J ) = (1 + ε)µk(J ) for s ≤ k ≤ t − 1.

So,
µ(J ) = µt(J ) = (1 + ε)t−sµs(J ) = (1 + ε)t−s |J |

|I | µs(I )

= (1 + ε)t−s |J |
|I | µ(I) =

(
1 + ε

4

)t−s

µ(I )

≥
((

1

4

)t−s)1−ε/2

µ(I) =
( |J |
|I |
)1−ε/2

µ(I).

This completes the proof that K ∈ MFC when (ci) /∈ ls for all 0 < s < 1.
To conclude the first half of the proof we must show that if (ci) /∈ lr for

some 0 < r < 1, then K ∈ MFC ∪ FFC. The estimates are now somewhat
different (in particular, ε is now close to, but less than, 1, and the doubling
constant is some function of ε), but the proof is nevertheless obtained easily
by modifying the above argument, so we leave the details to the reader.

For the second half of the proof we need to show that the left-hand conditions
in (a), (b), and (c) are equivalent to the right-hand conditions.

We note first of all that if µ(K) = 0, then µ is automatically disqualified
from being doubling with respect to K . It follows easily that K ∈ MFC ⇒
K ∈ P c

1 ∩ P c
2 and K ∈ FFC ⇒ K ∈ P c

1 . Once again appealing to the fact
that MFC, FFC, and VFC partition the fat Cantor sets, we see that the second
half of the proof will be complete if we show that K ∈ VFC ⇒ K ∈ P1 and
K ∈ VFC ∪ FFC ⇒ K ∈ P2. Actually, we give a careful proof of the second
statement and leave the similar, but simpler proof of the first statement to the
reader.

So, assume that K ∈ VFC ∪ FFC. By Theorem 2.2 it suffices to show
that .(K, t) → 1 as t → 0+. Let ε > 0 and µ ∈ D(t), normalized so that
µ([0, 1]) = 1. We need to show that

(3.3) (1 + ε)−1 <
µ(K)

|K| < 1 + ε if t is small enough.
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Since K ∈ VFC ∪FFC, we know by the first half of the proof that there exists
an α < 1 such that

∑∞
i=1 cα

i < ∞. A simple induction argument shows that
by choosing t small enough we may guarantee that

(3.4)
µ(I)

µ(J )
≤ C1

( |I |
|J |
)α

,

where C1 ≥ 1 and I , J are any intervals with I ⊂ J . Now choose N so large
that

(3.5)
∞∏

i=N+1

(1 − C1c
α
i ) >

1√
1 + ε

,

and hence

(3.6)
∞∏

i=N+1

(1 − ci) >
1√

1 + ε
.

Since KN is the union of intervals whose lengths are bounded below, we may
also choose t so small that

(3.7)
1√

1 + ε
<

µ(KN)

|KN | <
√

1 + ε.

Now note that (3.4) implies that

µ(Ki+1)

µ(Ki)
≥ 1 − C1c

α
i

for all i and hence by (3.5), 1 >
µ(K)

µ(KN)
>

1√
1 + ε

and similarly, by (3.6),

1 >
|K|
|KN | >

1√
1 + ε

. Finally, using (3.7) we get (3.3), as desired.

4. Examples

We can now show that all four logical possibilities involving P1 and P2 can
occur. Theorem 0.3 shows that there are compact sets satisfying P1 ∩ P2,
P c

1 ∩ P2, and P c
1 ∩ P c

2 . Finally, the (0, 1)-complement of a minimally fat
Cantor set lies in P1 ∩ P c

2 as follows from Theorem 2.2 and the following
paragraph.

The above characterization of Cantor sets K also allows us to completely
solve the associated question of whether or not U ≡ (0, 1) \ K ∈ P2 (since
U is open, we automatically know that U ∈ P1). Specifically, U /∈ P2 if and
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only if K ∈ MFC. To see this, note that if K is a fat Cantor set, then it is clear
from Theorem 2.2 and the fact that K and U partition [0, 1] that K ∈ P2 if
and only if U ∈ P2. On the other hand, if K is thin then Theorem 2.4 shows
that U ∈ P2.

The following table summarizes when various types of Cantor sets K and
their (0, 1)-complements U satisfy P1 or P2 (“Y” and “N” indicate respectively
that the property is or is not satisfied; “–” indicates that the set has Lebesgue
measure zero and so is not of interest).

TC MFC FFC VFC

K U K U K U K U

P1 – Y N Y N Y Y Y

P2 – Y N N Y Y Y Y

Having seen the examples above, it might seem reasonable to hope that the
question of whether or not a given set satisfies P1 or P2 could be decided using a
criterion depending only on the boundary. For example, one might guess from
the above table and Theorem 0.3 that an open set E lies in P c

2 if and only if ∂E
is a set of positive Lebesgue measure that is a null set for a doubling measure
of arbitrary small cube-doubling constant. This guess is however wrong, and
the following class of examples show that knowing ∂E alone cannot determine
whether or not E ∈ P2.

Given a Cantor set K as above, we partition its (0, 1)-complement U into
three pieces, N ∪ L ∪ H , where N is an countable set (and so null for all
doubling measures on the line), and L and H are open sets (the Laurel and
Hardy sets). The components of L and H are intermingled in such a way that
∂L = ∂H (when considered as subsets of the topological space (0, 1)), but if
K is minimally fat then L ∈ P2 and H /∈ P2. To define L and H , let us write U

as a union of components Ui,k = (ai,k, bi,k), i ∈ N, k = 1, . . . , 2i−1, where Ui,k

is one of the new components of U added at the ith stage of the construction
of U . We then define H = ⋃

Hi,k and L = ⋃
Li,k , where Li,k = (ai,k, ci,k),

Hi,k = (ci,k, bi,k), and ci,k = ai,k + 3−i (bi,k − ai,k) (N is, of course, the set of
all points ci,k). The later-stage components of the Laurel set are much thinner
than those of the Hardy set. We leave it as an exercise to the reader to verify
that, because

∑
k |Li,k| decreases so quickly as i increases the set L always

satisfies P2 (hint: look at the proof of Theorem 2.4, and use as approximating
intervals the component intervals of L which are added prior to the i0th stage of
the construction, for some arbitrary i0). If H also satisfies P2, it follows from
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Theorem 2.2 that U satisfies P2. Thus H does not satisfy P2 if K is minimally
fat.

5. Further results

First in this section, we discuss variants of the classes D(E, ε) of doubling
measures. We define BL to be the class of all mappings from Rn to itself that fix
the origin and satisfy the bilipschitz condition |x − y|/2 ≤ |f (x)− f (y)| ≤
2|x − y|, for all x, y ∈ Q0. If S is a subset of BL, we denote by DS(E, ε)

the class of all Borel measures in D(E, ε) satisfying the following additional
conditions:

(1 + ε)−1 ≤ µ(gE′)
|gE′|

(
µ(E′)
|E′|

)−1

≤ 1 + ε,

whenever E′ = λE + x, g(z) = AfA−1z, Az = λz + x, λ > 0, x ∈ Rn,
f ∈ S. When E = Q0 we will abreviate this set set as DS(ε). We also define
LBL to be the class of linear maps x �→ Bx that lie in BL. Notice that the
functions g above are recentered and rescaled versions of f that satisfy the
same bilipschitz condition. To better understand this condition, the reader may
wish to consider S = {x �→ 2x}.

Our somewhat abstract setup includes some rather interesting special cases
– for example, we could choose S to consist of all rotations around the origin,
or all dilations by factors between 1 and 2. The choice of 2 as the bound on
the bilipschitz constant for functions in BL is not significant; any bilipschitz
bound is sufficient to get the same results (of course the constants involved
would then also depend on this bound).

Proposition 5.1. If U is an open set and S ⊂ BL, the following statements
are equivalent:

(i) µ ∈ D(U, ε1) for some ε1 > 0;

(ii) µ ∈ D(ε2) for some ε2 > 0;

(iii) µ ∈ DS(U, ε3) for some ε3 > 0;

(iv) µ ∈ DS(ε4) for some ε4 > 0.

Furthermore, the constants εi depend only on each other, and the set U .

Proof. We first note that the implications (iii)⇒(i) and (iv)⇒(ii) hold
trivially. Furthermore, (i) and (ii) are equivalent by Theorem 0.1 and Proposi-
tion 1.2. It therefore suffices to show that (ii) implies (iii) and (iv).

Fixing U , we note that plain cube doubling gives quantitative control over
dilates of cubes by factors between one and two, because we can tile 2Q with
2n copies of a cube Q. Iterating this inequality, we get that µ(2kQ) ≤ Ckµ(Q).
Two neighboring copies of U contain cubes of the same size which have the
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same µ-measure up to a fixed factor C (since they are N -neighboring copies of
Q0 for some N = N(U)), and are contained in neighboring cubes of the same
size that are larger than the interior cubes by some bounded factor (the bound
depends only onU ). It therefore follows that theµ-measures of the neighboring
copies of U are comparable. Bilipschitz images of U are controlled in exactly
the same fashion. This shows that (ii) implies (iii) and taking U = Q0, we get
(ii) implies (iv) as well.

Obviously, Theorem 0.1 tells us that any of these new doubling conditions
with respect to E ⊂ Rn and S ⊂ BL implies translate-doubling for cubes (with
the cube constant tending to zero as the E-constant tends to zero). As before,
we can therefore ask what pairs (E, S) are such that the opposite implications
hold true. To be more precise, we generalize P1, P2 in the obvious way:

PS
1 : ∀ε > 0 ∃ δ = δ(ε, E) > 0 : D(ε) ⊆ DS(E, δ).

PS
2 : ∀δ > 0 ∃ ε = ε(δ, E) > 0 : D(ε) ⊆ DS(E, δ).

A set E satisfies PS
1 if all measures which are doubling with respect to cubes

are (E, S)-doubling, while E satisfies PS
2 if all measures with a sufficiently

small cube-doubling constant also have a small (E, S)-doubling constant. As
before, we also treat PS

i as the set of all sets E satisfying the condition PS
i ,

allowing us to write such things as “E ∈ PS
i .”

We now show that P1 = P BL
1 and that P2 = P LBL

2 . We do not know if it is
true that P2 = P BL

2 (although we suspect that this is false).

Proposition 5.2. P1 = PS
1 for every S ⊂ BL. P2 = PS

2 for every S ⊂ LBL.

Proof. Let us fix E ∈ P1, ε > 0, and µε ∈ D(ε). Also let f ∈ BL and
g(z) = AfA−1z, where Az = λz + x, λ > 0, and x ∈ Rn. Defining the
pullback measure µ′(U) = µ(gU), it is easy to see that µ′ ∈ D(ε′) for some
ε′ dependent on ε. Thus µ′ ∈ D(E, δ) for some δ > 0 (independent of f and
A). Since A is an arbitrary affine map and f ∈ BL is arbitrary, it follows from
Theorem 2.2 that E ∈ PBL

1 , which implies the first statement of our result.
The above argument does not work for PS

2 , S = BL, but it does if S ⊂
LBL, since any f ∈ LBL gives rise to a function g which sends congruent
cubes to congruent parallelpipeds. Applying the method of Theorem 2.4 to a
decomposition of cube into parallelpipeds, we see that the measure µ ∈ D(ε)

gives rise to µ′ ∈ D(ε′) where ε′ → 0+(ε → 0+). The rest of the proof is
easy.

Even though the propertiesPS
i are independent ofS ⊂ LBL, it is not difficult

to construct an individual measure µ which is doubling with respect to a pair
(E, S) when S = S1, but not when S = S2 (of course E cannot satisfy P1).
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For a very simple example exhibiting rather extreme behaviour of this type, let
E = E1 × (0, 1), where E1 is a minimally fat Cantor set, and let µ = m×µ2,
where m is Lebesgue measure on the line and µ2 is a doubling measure on the
line which has E1 as a null set. Then µ is (E, S)-doubling for S = ∅ (with
zero doubling constant), but is not (E, S)-doubling if S includes a right-angle
rotation about the origin.

Finally, let us briefly comment on “asymptotic doubling.” Some papers,
notably [3], concern themselves with asymptotic doubling, which means that
the doubling constant ε in (0.1) can be taken to be very small at very small
scales (i.e. when the associated scaling factor λ is very small). The proof of
Theorem 0.1 can readily be modified to prove that asymptotic doubling with
respect to any bounded set E implies asymptotic doubling with respect to
cubes. Furthermore if P3 is the set of all E such that asymptotic doubling with
respect to cubes implies asymptotic doubling with respect to E, it is easy to
see that P2 ⊂ P3. Thus, for example, Theorem 2.4 implies that if U ⊂ Q0 is
open, |∂U | = 0, then U ∈ P3.
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