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GRADIENT VECTOR FIELDS WHICH CHARACTERIZE
WARPED PRODUCTS

NOBUHIRO INNAMI∗ and BYUNG HAK KIM∗∗

Abstract

We find what condition on gradient vector fields characterizes warped products, Riemannian
products and round spheres. To do this we apply the theory of Jacobi equations without conjugate
points to the differential maps of the local one-parameter groups generated by gradient vector
fields.

1. Introduction

Throughout the paper letM be a completen-dimensional Riemannian manifold
with Riemannian metric g and without boundary and let X = grad f be the
gradient vector field of a function f on M . We assume that X is complete,
namely, the domain of any maximal integral curve is by definition the whole
real line (−∞,∞). The Riemannian curvature tensor R satisfies by definition

(1) ∇X∇X + ∇X ◦ ∇X + (−∇∇XX + R(·, X)X) = 0,

where ∇ is the Levi-Civita connection. It holds true that for a gradient vector
field X

(i) ∇X is a (1,1)-tensor field corresponding to the Hessian of f , i.e.,

g(∇YX,Z) = Hesf (Y, Z) = Y (Zf )− (∇YZ)f.

Hence, ∇X is a symmetric endomorphism of the tangent space TM of
M .

(ii) ∇XX = (1/2) grad ‖X‖2. Hence, ∇∇XX is a symmetric endomorphism
of TM .
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Therefore, (1) implies that the Hessian endomorphism ∇X satisfies the
endomorphism valued Riccati differential equation

(2) ∇XU + U 2 + A = 0,

where A(·) = −∇·∇XX + R(·, X)X. The existence of symmetric solutions
of (2) defined on any maximal integral curve is sometimes controlled by the
property of the symmetric endomorphism A. From this point of view we find
what condition characterizes warped products. Let ψ : (a, b) → R be a pos-
itive function and M0 × (a, b) the product manifold of M0 and (a, b). We
say that (M0 × (a, b), g) is a warped product with warping function ψ if the
Riemannian metric g on M0 × (a, b) is given by g(q,t) = ψ(t)2gq + dt2 for
any (q, t) ∈ M0 × (a, b). The metric of any warped product is represented as
g(q,s) = ψ̄(s)2(gq +ds2) for suitable coordinates. Our studies are based on the
following fundamental theorem due to Y. Tashiro. In the following theorem,
the number of points with X = 0 was shown by T. Maebashi ([5]).

Theorem 1 ([8]). Suppose there is a function h on M such that ∇X = hI

where I is the identity endomorphism. Then, the following are true.

(a) There is a function � on the image of f such that h = � ◦ f .

(b) The number of points with X = 0 is zero, one or two. Moreover, M is
isometric to a warped product except at points with X = 0.

(c) If the derivative �′ is a constant function and there is a point p ∈ M

with X = 0, then M is isometric to a space form which is by definition
a simply connected complete manifold of constant curvature.

(d) If h = 0 on M , then M is isometric to a Riemannian product N × R.

Therefore, our purpose is reduced to a problem of finding what condition
on A characterizes the equation ∇X = hI . Let Ric(X) be the trace of the
Riemannian curvature endomorphism R(·, X)X. In the light of Sakai’s works
([6],[7]) we prove the following Theorems 2 and 3. As contrasted with his
works, the different point is that we do not assume ‖X‖ = const. on M .

Theorem 2. Suppose Ric(X) ≥ �‖X‖2/2 for all points p ∈ M where �
is by definition the trace of the Hessian endomorphism. Then, M is isometric
to a Riemannian product N × R, where N = f −1(0).

Theorem 3. Suppose there is a positive function z along any maximal
integral curve of X such that

(3) −1

2
�‖X‖2 + Ric(X) ≥ −a z

′′

z
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(4) lim
T→±∞

∫ T

0

1

z2
dt = ±∞

for some constant a ≥ n. Then, M is isometric to a warped product except
for points p ∈ M with X = 0 if a = n, and M is isometric to a Riemannian
product N × R if a > n.

Corollary 4. Suppose there exist functions f1, . . . , fn on M such that
Xi = grad fi is linearly independent on an open dense subset V inM and they
satisfy the assumptions of Theorem 3 under a = n. Then M is a space form of
non-negative curvature.

Let p ∈ M and Let dp : M → R be the distance function to the point p
on M induced from the Riemannian metric g on M , namely, dp(q) = d(p, q)

for any q ∈ M . Let Cp be the cut locus of p in M (see e.g. [1]) and V (p) =
M − (

Cp ∪ {p}). Then, V (p) is open dense set in M and dp is differentiable
on V (p).

Theorem 5. Let k be a constant and let f : M → R be a function given
by f (q) = cos kdp(q) for any q ∈ M . Suppose the gradient vector field X of
f in V (p) is complete. If the inequality

−1

2
�‖X‖2 + Ric(X) ≥ nk4

(
sin2 kdp − cos2 kdp

)

holds true in V (p), then M is isometric to a sphere of radius 1/k.

This work began when the first author visited Kyung Hee University in
Summer of 1996 and was completed when the second author visited Niigata
University in Winter of 1997.

2. Riccati equations associated with vector fields

Let X be a complete vector field on M and let ϕt : M → M be the local one-
parameter group of diffeomorphisms of X. Let p ∈ M and cp : (−∞,∞) →
M the maximal integral curve of X with cp(0) = p. Let e1(t), . . . , en(t) be
a parallel orthonormal basis of Tcp(t)M along cp. The tangent vectors, ∇X,
R(·, X)X, etc. will be represented with respect to the basis e1(t), . . . , en(t)

by n-tuples, n × n-matrices, etc. Let Dp(t) be the matrix representation of
dϕt ◦Pt−1 for any t ∈ (−∞,∞), where dϕt is the differential map of ϕt from
TpM to Tcp(t)M andPt is the parallel translation along cp from TpM to Tcp(t)M .
If U(t) is the matrix representation of ∇X at cp(t), then

(LU) Dp
′(t) = U(t)Dp(t)
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for all t ∈ (−∞,∞). The equation (1) in Section 1 is written as

(RA) U ′(t)+ U(t)2 + A(t) = 0

where A(t) is the matrix representation of −∇∇XX+R(·, X)X at cp(t), and,
Dp(t) satisfies the Jacobi equation

(JA) Dp
′′(t)+ A(t)Dp(t) = 0.

Notice that if X is the gradient vector field of a function f , then U(t) is
a symmetric matrix for every t ∈ (−∞,∞). Hence, (JA) is disconjugate on
(−∞,∞) (see Fact 1 in Section 3).

3. Solutions of Riccati equations

Let L(n) and S(n) be the set of all n × n-matrices and symmetric ones, re-
spectively. Let A : (−∞,∞) → S(n) be a differentiable map. Consider the
L(n)-valued Riccati equation

(RA) U ′ + U 2 + A = 0

and the L(n)-valued Jacobi equation

(JA) D′′ + AD = 0.

We say that (JA) is disconjugate on (−∞,∞) if any solution of (JA) with
D(t0) = 0 and detD′(t0) �= 0 for given t0 satisfies that detD(t) �= 0 for any
t �= t0. In the below (Jk) and (Rk) mean the real valued differential equations
of the same types as (JA) and (RA) in which A is replaced by a function k. In
the present note we use the following facts.

Fact 1. The equation (JA) is disconjugate on (−∞,∞) if and only if there
is a symmetric solution of (RA) defined on (−∞,∞).

For the proof see Theorem 10.2 of Chpter XI in [3].

Fact 2. Let k : (−∞,∞) → R be a function such that (Jk) is disconjugate
on (−∞,∞) and trA(t) ≥ nk(t) for all t ∈ (−∞,∞). Suppose (JA) is
disconjugate on (−∞,∞). Then, we have that

nu(t) ≤ trU(t) ≤ trU1(t) ≤ tr Ũ (t) ≤ nũ(t),

where u(t) and ũ(t) are the minimal and maximal solutions of (Rk) defined on
(−∞,∞), respectively, U(t) and Ũ (t) are the minimal and maximal symmet-
ric solutions of (RA) defined on (−∞,∞), respectively,U1(t) is any symmetric
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solution of (RA) defined on (−∞,∞). The equality sign holds true in the first
inequality or fourth one for all t ∈ (−∞,∞) if and only if U(t) = u(t)I or
Ũ (t) = ũ(t)I , and A(t) = k(t)I for all t ∈ (−∞,∞), where I is the identity
matrix. In particular, every equality sign in the above holds true if (Rk) has
a unique solution defined on (−∞,∞). In this case, (RA) has also a unique
symmetric solution defined on (−∞,∞).

Sketch of the proof. Let Ds(t) (and fs(t) ) be solutions of (JA) (and
(Jk) ) with Ds(s) = 0, Ds

′(s) = I (and fs(s) = 0, fs ′(s) = 1, resp. ) on
(−∞,∞) and let Us(t) = Ds

′(t)Ds(t)
−1 and us(t) = fs

′(t)fs(t)−1 for all
t �= s. We can prove in the same way as the Rauch comparison theorem (see
e.g. p.32 of [1]) that trUs(t) ≥ nus(t) for all t > s and trUs(t) ≤ nus(t)

for all t < s. By construction Us(t) and us(t) are maximal (and minimal) for
t < s (and t > s, resp.) in the set of all symmetric solutions of (RA) and
(Rk) defined on those domains. The limit solutions as s −→ ±∞ satisfy the
inequality in Fact 2.

Fact 3. Let a be a constant with a ≥ n and let k(t) = trA(t)/a for any
t ∈ (−∞,∞). If (JA) is disconjugate on (−∞,∞), then (Jk) is disconjugate
on (−∞,∞).

Proof. Let U(t) be a symmetric solution of (RA) on (−∞,∞) and
h(t) = trU(t)/a for any t ∈ (−∞,∞). Set z(t) = exp

∫ t

0 h(s) ds for any
t ∈ (−∞,∞). Differentiating z twice, we have the equation

(5) z′′(t)+
(
k(t)+ trU(t)2

a
−

(
trU(t)

a

)2)
z(t) = 0

for all t ∈ (−∞,∞). Since the differential equation (5) has a positive solu-
tion z(t), it is disconjugate on (−∞,∞). We see that (Jk) is disconjugate on
(−∞,∞), since

trU(t)2

a
−

(
trU(t)

a

)2

≥ 0

for all t ∈ (−∞,∞) and the differential equation (Rk̄), k̄(t) = k(t) +
trU(t)2/a − (trU(t)/a)2, has a solution ū = z′/z defined on (−∞,∞) (see
e.g. Theorem 7.2 of Chapter XI in [3]). This implies Fact 3.

Fact 4. Let k : (−∞,∞) → R be a function such that (Jk) is disconjugate
on (−∞,∞). Then, (Jk) has a positive solution z(t) on (−∞,∞) such that

lim
T→±∞

∫ T

0

1

z(t)2
dt = ±∞.
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if and only if (Rk) has a unique solution defined on (−∞,∞). Therefore, (RA)

has a unique symmetric solution defined on (−∞,∞) if (JA) is disconjugate
on (−∞,∞) and trA(t) ≥ nk(t) for any t ∈ (−∞,∞).

Proof. Theorem 6.4 of Chapter XI in [3] states that (Jk) has a unique
positive solution defined on (−∞,∞) up to a constant factor. This proves the
first part and the second part is due to Fact 2.

We will see that M is isometric to a warped product except for points p in
M withX = 0 if (Rk), k = trA/n, has a unique solution defined on (−∞,∞)

by use of Theorem 3, Facts 3 and 4. Moreover,M is isometric to a Riemannian
product N × R if (Rk), k = trA/a (a > n), has a unique solution defined on
(−∞,∞).

It should be noted that for a negative constant k = −a2, a > 0, there exists
no positive solution z(t) of (Jk) satisfying the integral condition in Fact 4, since
the genaral solution of (Jk) is z(t) = C1e

at + C2e
−at where C1 and C2 are

constants. Therefore we cannot have hyperbolic analogues of Corollary 4 and
Theorem 5 (see Lemma 7).

4. Proofs of Theorems 2, 3 and 5

As was seen in Section 3, the Jacobi equation associated with a complete
gradient vector field X is disconjugate along every maximal integral curve cp
of X.

Proof of Theorem 2. Fact 4 and Fact 2 prove that ∇X = 0 on M since
(R0) has a unique solution u(t) = 0 for all t ∈ (−∞,∞). From this we have
Theorem 2 (see (d) in Theorem 1, [4], [7], [8]).

Proof of Theorem 3. Case a = n: Facts 2 and 4 imply that ∇X = hI

where h(cp(t)) = z′(t)/z(t) which is independent of the choice of cp, and,
hence h is a function on M . Therefore, Theorem 3 follows from Theorem 1.

Case a > n: Let k(t) = trA/a, trA = −�‖X‖2/2 + Ric(X), and h(t) =
trA/a+tr(∇X◦∇X)/a−(tr ∇X/a)2 along any maximal integral curve cp. As
was seen in the proof of Fact 3, we see that (Jh) is disconjugate on (−∞,∞).
Facts 2, 3 and 4 state that (Rk) has a unique solution defined on (−∞,∞).
Since k(t) ≤ h(t) for all t ∈ (−∞,∞), Fact 2 implies that k(t) = h(t) for
any t ∈ (−∞,∞), and, hence, we get ∇X = 0. Theorem 1 proves that M is
isometric to a Riemannian product N × R.

Proof of Theorem 5. Let c : (−∞,∞) → M be the maximal integral
curve of X with c(0) = p. Then, ċ(t) = −(k sin kdp(c(t))) grad dp(c(t))
for all t ∈ (−∞,∞). Set u(t) = −k2 cos kdp(c(t)) for all t ∈ (−∞,∞).
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Differentiating u at t , we get

u′(t) = −k4 sin2 kdp(c(t))

for all t ∈ (−∞,∞), since

dp(c(t))
′ = g(ċ(t), grad dp) = −k sin kdp(c(t)).

Therefore, we have

u′(t)+ u(t)2 + k4
(
sin2 kdp(c(t))− cos2 kdp(c(t))

) = 0

for all t ∈ (−∞,∞). Let F(t) = k4
(
sin2 kdp(c(t))− cos2 kdp(c(t))

)
for

any t ∈ (−∞,∞). We have only to find a solution z(t) of (JF) satisfying the
assumption (4) of Theorem 3, because it proves that �(t) = −k2t under the
notation in Theorem 1. Set z(t) = exp

∫ t

0 u(t) dt for any t ∈ (−∞,∞). Then,
z is a positive solution of (JF), and, furthermore, we see that

z(t) = exp
∫ t

0
−k2 cos kdp(c(t)) dt = sin kdp(c(t))

sin kdp(c(0))

for all t ∈ (−∞,∞), and, hence, z satisfies (4) in Theorem 3. Facts 2, 4 and
Theorem 1 prove Theorem 5.

5. Proofs of Theorem 1 and Corollary 4

We first prove the following lemma.

Lemma 6. Let X be a complete gradient vector field with ∇X = hI and
let cp : (−∞,∞) → M be the maximal integral curve of X with cp(0) = p.
Then, the following hold true.

(a) Any integral curve of X is a reparametrization of a geodesic in M .
(b) The length ‖X‖ is constant in each connected component of any level

hypersurface of f .
(c) If p ∈ M and q ∈ M are such that they are in the same connected

component of the level hypersurface a = f (p) = f (q) of f , then
f (cp(t)) = f (cq(t)) for any t ∈ (−∞,∞).

(d) R(·, X)X = g(grad h, ·)X − g(grad h,X)I .
(e) The function h is constant in each level hypersurface of f with ‖X‖ �= 0.

Therefore, there is a function � such that h = � ◦ f .

Proof. (a): Since ∇XX = hX, (a) is clear because of the definition of
geodesics.
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(b): This is because

Yg(X,X) = 2g(∇YX,X) = 2hg(Y,X) = 0

for any tangent vector Y to the level hypersurface of f which is perpendicular
to X.

(c): Let b(s) be a curve in the level hypersurface of f such that b(0) = p

and b(1) = q and let ϕ(t, s) be the variation of cp through integral curves of
X such that ϕ(t, s) = cb(s)(t). Let Y (t, s) = ∂ϕ

∂s
(t, s) and X(t, s) = ∂ϕ

∂t
(t, s).

We have only to prove that g(Y,X) = 0, since

∂f ◦ ϕ
∂s

(t, s) = g(X, Y )

and
f (cq(t))− f (cp(t)) =

∫ 1

0

∂f ◦ ϕ
∂s

(t, s) ds.

Set a(t, s) = g(Y (t, s), X(t, s)). By construction of b we have that a(0, s) =
0. Since

∂a

∂t
= g(∇XY,X)+ g(Y,∇XX) = 2hg(Y,X) = 2ha,

it follows from the uniqueness of the solution that a(t, s) = 0.
(d): The direct computation by using the equation of the Riemannian curva-

ture tensor proves (d).
(e): By (d) we see that

0 = g(R(Y,X)X,X) = g(grad h, Y )‖X‖2

for any tangent vector Y perpendicular to X. Therefore, h is constant in the
connected component of the level hypersurface of f with ‖X‖ �= 0.

Proof of Theorem 1. LetN be the set of all points q ∈ M withX(q) �= 0.
Let p ∈ N and a = f (p). By (b) in Lemma 6, the connected component Na

of the a-level hypersurface of f containing p is contained in N . Let q ∈ Na

and cq : (−∞,∞) → M be the maximal integral curve of X. Then, from
(LU) and (e) in Lemma 6 we get the equation

D′(q, t)D(q, t)−1 = ∇X = h(cq(t))I = �(f (cq(t)))I.

Notice that h(t) := �(f (cq(t))) depends only on the point cq(t), and is inde-
pendent of q ∈ Na . Thus, we have that

D(q, t) =
(

exp
∫ t

0
h(t) dt

)
I
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for any point q ∈ Na and t ∈ (−∞,∞). Let v,w ∈ Tϕ(q,t)M and let v0, w0 ∈
TqM such that v = dϕt (v0), w = dϕt (w0). Let v0(t), and w0(t) be parallel
vector fields along cq with v0(0) = v0, w0(0) = w0. Then,

g(cq(t))(v,w) = g(cq(t))(D(q, t)v0(t),D(q, t)w0(t))

=
(

exp
∫ t

0
h(t) dt

)2

g(q)(v0, w0)

=
(

exp
∫ t

0
h(t) dt

)2

(ga + k2dt2)(v0, w0),

where ga is the induced Riemannian metric on the a-level hypersurface from g

and k2 = ‖X‖2 > 0 on Na . This implies that M is isometric to a Riemannian
product Na × R if h = 0 on M , and, hence (d) is proved. If M − N = ∅,
then there is no point with X = 0. Assume M − N �= ∅. Since X(cq(t)) =
D(q, t)X(q), we have thatD(q,−∞) = 0 orD(q,∞) = 0 for some q ∈ Na ,
and, hence, for all q ∈ Na . This implies that the number of points with X = 0
is one or two. These complete the proof of (b) in Theorem 1. Combining this
and (e) in Lemma 6, we get (a) in Theorem 1. Assume that the derivative �′ is
constant, say −k. By (d) in Lemma6, we have

R

(
·, X

‖X‖
)

X

‖X‖ = kI

on the subspace X⊥ perpendicular to X. Combining this and (a) in Lemma 6,
we conclude (c) in Theorem 1, since there is a point p ∈ M withX = 0 which
becomes the center of polar coordinates.

The following lemma is needed to prove Corollary 4 and shows that hyper-
bolic analogue of Theorem 5 is not automatically given.

Lemma 7. AssumeM is a space form of negative curvature k = −a2. Then
there is no nontrivial function f on M such that Dq(t) = z(t)I and

lim
T→±∞

∫ T

0

1

z(t)2
dt = ±∞

for all q ∈ M with X(q) �= 0.

Proof. Suppose there exists a nontrivial function f on M such that
Dq(t) = z(t)I for all q ∈ M with X(q) �= 0. Then, ∇X = (z′(t)/z(t))I =:
hI . By (d) and (e) in Lemma 6 we have �′(t) = a2, and, therefore, ∇X = a2f I .
If s = ∫ t

0 ‖X(cq(t))‖ dt and γq(s) = cq(t) for all t ∈ (−∞,∞), then γq is a



gradient vector fields which characterize warped products 191

unit speed geodesic in M (see (a) in Lemma 6). This shows that

Dq(t) = z(t)I = (C1e
as + C2e

−as)I

for all t ∈ (−∞,∞) where C1 + C2 = 1, C1 ≥ 0, and C2 ≥ 0. Since
X(cq(t)) = z(t)X(q), we have z(t) = ‖X(cq(t))‖/‖X(q)‖ for all t ∈
(∞,∞). Hence

∫ t

0

1

z(t)2
dt = 1

‖X(q)‖
∫ s

0

1

z(s)3
ds

for all t ∈ (−∞,∞). Since at least one of Ci’s is positive and z(s) ≥
max{C1e

as , C2e
−as} for all s ∈ (−∞,∞), it is impossible that

lims→±∞
∫ s

0 (1/z(s)
3) ds = ±∞. This completes the proof of Lemma 7.

Proof of Corollary 4. If n = 2, Theorem 3 proves that M is a warped
product except at points with Xi = 0 for each i = 1, 2, and, hence, there
exist two one-parameter groups of isometries on M . Therefore, M is locally
a homogeneous space, and, in particular, the Gauss curvature of M is non-
negative constant because of dimM = 2 and Lemma 7.

Suppose n ≥ 3. By Schur’s lemma (see e.g. [2]), we have only to prove that

R(·, v)v = k(p)I

on the subspace v⊥ perpendicular to any unit tangent vector v ∈ TpM and any
pointp ∈ V . SinceX1(p), . . . , Xn(p) is a basis of TpM , there exist a1, . . . , an
such that v = ∑n

i=1 aiXi(p). From the proof of Theorem 3, there is a function
hi on M such that ∇Xi = hiI for each i = 1, . . . , n. Let f : M → R be a
function given by

f (q) =
n∑
i=1

aifi(q)

for any q ∈ M and X = grad f . Then, we have

X(p) =
n∑
i=1

aiXi(p) = v

and

∇X(q) =
( n∑
i=1

aihi(q)

)
I.

Combining this equation with (d) and (e) of Lemma 6, we have

R(·, v)v = hvI
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on v⊥ for some constant hv . It remains to prove that hv is independent of
the choice of unit vectors v in TpM , namely, hv = hw for any unit vectors
v,w ∈ TpM . Since n ≥ 3, we can take a vector z ∈ TpM with v ⊥ z and
w ⊥ z. By using the vector z, we have

hv = g(R(z, v)v, z) = g(R(v, z)z, v) = hz

= g(R(w, z)z,w) = g(R(z,w)w, z) = hw

Theorem 1 implies that M is simply connected if M has constant sectional
curvature. If M has negative curvature, then the assumption (4) in Theorem 3
is not satisfied because of Lemma 7. This completes the proof of Corollary 4.
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