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ON EQUIVALENCE OF SEMIGROUP IDENTITIES

O. MACEDOŃSKA and M. ŻABKA

Abstract
For a given relation ρ on a free semigroup F we describe the smallest cancellative fully invariant
congruence ρ# containing ρ.

Two semigroup identities are s-equivalent if each of them is a consequence of the other on
cancellative semigroups. If two semigroup identities are equivalent on groups, it is not known if
they are s-equivalent. We give a positive answer to this question for all binary semigroup identities
of the degree less or equal to 5. A poset of corresponding varieties of groups is given.

1. Introduction

Let F be a free semigroup (F∞ be a free group) generated by x1, x2, . . ..
A semigroup identity of a group G (or a semigroup S) is a nontrivial identity
of the form u ≡ v where u, v ∈ F , which becomes the equality under every
substitution of generators by elements from G (elements from S).

There are several open problems concerning semigroup identities. By an
old result of A. I. Mal’cev [8] a group, which is an extension of a nilpotent
group by a group of finite exponent, satisfies a semigroup identity. Recently,
after more then 40 years, it was shown that the converse is not true [9].

In 1966 A. I. Shirshov (see [6, problem 2.82]) posed the following problem:
can the class of all groups with the n-Engel condition be defined by semigroup
identities? This problem has a positive answer for residually finite n-Engel
groups [2], but in general it is still open.

Another open problem is due to G. M. Bergman [1] (see also [10]): Let G
be any group and S be any subsemigroup generating G. Must any semigroup
identity satisfied in S be satisfied in G? For a large class of groups the solu-
tion of Bergman’s problem is positive in particular for residually finite and
soluble groups [2], however S. V. Ivanov and E. Rips believe that there exists
a counterexample. It can be shown (unpublished) that the Bergman’s problem
is equivalent to the following:

Question 1. Let a semigroup identity u ≡ v imply a semigroup identity
a ≡ b for groups. Does the same implication hold in the class of cancellative
semigroups?
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To illustrate the situation we give an example. The identity (xy)2 ≡ (yx)2
implies xy2 ≡ y2x for groups, because the automorphism α : x → x, y →
x−1y changes (xy)2 ≡ (yx)2 into xy2 ≡ y2x.
For semigroups we can not use this automorphism.

So, to prove that (xy)2 ≡ (yx)2 implies xy2 ≡ y2x for cancellative semi-
groups we need another way to go. The idea is to show first that (xy)2 ≡ (yx)2
implies:

(i) (yx)2y ≡ y(yx)2,

(ii) (yx)4y2 ≡ ((yx)2y)2,

(iii) x((yx)2y)2 ≡ ((yx)2y)2x,

(iv) (xy)4 ≡ (yx)4.

Then for some word p we start with p ·xy2 and by using (i)–(iv) obtain p ·y2x,
which by cancellation, implies required xy2 ≡ y2x.

To be precise we introduce a relation ρ containing pairs:

(i) ((yx)2y, y(yx)2),

(ii) ((yx)4y2, ((yx)2y)2),

(iii) (x((yx)2y)2, ((yx)2y)2x),

(iv) ((xy)4, (yx)4).

Definition 1.1. For a relation ρ we say that two words a, b ∈ F are
connected by a ρ-step, if a = c1sc2, b = c1tc2, and (s, t) ∈ ρ. In this case
we write a ←→ b. A sequence of a finite number of ρ-steps is called a ρ-
sequence. If a and b are connected by a ρ-sequence, we write a

ρ⇐⇒ b or
(a ≡ b).

In our case for some wordpwe shall find aρ-sequence connectingpxy2 and
py2x which after cancelling gives required xy2 ≡ y2x. Namely, forp = (xy)4
we have

pxy2 = (xy)4xy2 = x(yx)4y2 = x(yx)2((yx)2y)y
(i)←→ x(yx)2(y(yx)2)y = x((yx)2y)2 (iii)←→ ((yx)2y)2x

(ii)←→ (yx)4y2x
(iv)←→ (xy)4y2x = py2x,

which gives pxy2 ≡ py2x and hence xy2 ≡ y2x as required.
The full proof of the equivalence of identities (xy)k ≡ (yx)k andxyk ≡ ykx,

(k ≥ 2) for cancellative semigroups is given in Theorem 3.2.
It was conjectured by J. Krempa that the identity u ≡ v implies an identity

a ≡ b for cancellative semigroups if and only if for some p, q ∈ F ∪ ∅ the
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words paq and pbq are connected by a sequence of steps as in the above
example. We prove this fact in Theorem 2.3.

While considering congruences, we work with pairs of words (u, v) ∈
F ×F . Pairs of the type (a, a) we call trivial.

The identity u ≡ v (the pair (u, v)) is called balanced if every generator
occurs the same number of times in u and v. A cancellative semigroup which
satisfies a non-balanced semigroup identity has to satisfy an identity of the
type xn ≡ x which implies that the semigroup is a group (of a finite exponent).
So we shall consider only balanced identities.

The degree of a balanced identity (pair of words) is the length of u (equal
to the length of v). The identity u ≡ v (the pair (u, v)) is called cancelled
if u, v begin (and end) with different letters. It is easy to show that for any
cancellative semigroup S, any semigroup identity satisfied in S can be replaced
by a cancelled identity of not higher degree.

We denote by End the set of all endomorphisms of the free semigroup F
and speak about End-invariant relations instead of fully invariant.

Definition 1.2. A relation on F is called End-invariant if together with
every pair (u, v) it contains all pairs (ue, ve), e ∈ End.

A relation is called cancellative if together with every pair (paq, pbq) it
contains (a, b), (for p, q ∈ F ∪ ∅).

For any relation ρ ⊂ F ×F we shall consider the smallest cancellative
End-invariant congruence on F , containing ρ, and denoted by ρ#. It means
that the quotient semigroup is cancellative and satisfies the relation ρ as an
identity. In particular, if ρ = {(u, v)} where (u, v) is a pair of words from F
then the above congruence will be denoted by (u, v)#.

In [5] the smallest cancellative congruence containing ρ is described as an
infinite sum of relations.

We give here a simple description of the smallest cancellative End-invariant
congruence containing ρ. This description allows for using computer to show
that in a cancellative semigroup one identity implies another.

We describe the poset of all two-variable semigroup identities of degree
less or equal to five, and show that if one of them implies another for groups
then also for semigroups.

2. Cancellative Congruences

In this section for any relation ρ on F we describe the smallest cancellative
End-invariant congruence ρ# containing ρ. The existence of such a congruence
follows, since the class of cancellative semigroups is closed under forming
cartesian products and taking subsemigroups. If ρ consists of trivial pairs,
then ρ# is equal to diag(F ×F ) and is called trivial.
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We need also

Definition 2.1. A relation ρ satisfies Ore conditions, if for every a, b ∈ F
there exist a′, b′ ∈ F such that (aa′, bb′) ∈ ρ, and there exist a′′, b′′ ∈ F
such that (a′′a, b′′b) ∈ ρ.

Lemma 2.2. Any nontrivial cancellative End-invariant relation ρ on semig-
roups satisfies Ore conditions.

Proof. By using a proper endomorphism we can get a cancelled pair (u, v)
of two-variable words in ρ, such that the first letter in u is x and the first letter
in v is y. Then

u(x, y) = x · u′(x, y), v(x, y) = y · v′(x, y).
For any given a, b, if substitute a, b for x, y then

(aa′, bb′) ∈ ρ
for a′ = u′(a, b), b′ = v′(a, b), and hence the right Ore condition is satisfied.
For the left Ore condition we deal with the last letters.

For a given relation ρ we denote by ρ irs the End-invariant, reflexive, and
symmetric closure of ρ. That is ρ irs is a set containing all End-images of pairs
(u, v) ∈ ρ and of pairs (v, u). It contains also all trivial pairs (a, a), a ∈ F .

ρ irs = {(ue, ve), (ve, ue), (a, a); ∀(u, v) ∈ ρ, e ∈ End, a ∈ F }.
We write it shortly as a sum over (u, v) ∈ ρ:

(1) ρ irs = ∪{(u, v), (v, u), (x, x)}End .

The smallest End-invariant congruence on F , containing a relation ρ is
described in [3]. Namely, two words are congruent if and only if they are
connected by a ρ irs-sequence.

Our description of the smallest cancellative End-invariant congruence con-
taining ρ is also based on conection of words by a ρ irs-sequence.

Theorem 2.3. For a given relation ρ, let ρ∗ denote a relation consisting
of all pairs (a, b) such that for some p, q ∈ F ∪ ∅, the words paq and pbq
are connected by a ρ irs-sequence. Then ρ∗ = ρ# is the smallest cancellative
End-invariant congruence on F , containing ρ.

Proof. Let ρ∗ be a relation defined by: (a, b) ∈ ρ∗, if and only if for some

p, q ∈ F∪∅,paq andpbq are connected by a ρ irs-sequence (paq
irs⇐⇒ pbq).

It is clear that ρ∗ is a cancellative relation and that ρ∗ ⊆ ρ#.
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To show that ρ∗ is an equivalence relation it is enough to check transitivity,
because ρ irs is symmetric and reflexive. Let (a, b) and (b, c) be in ρ∗, that is

for some p, q, r, s ∈ F , paq
irs⇐⇒ pbq and rbs

irs⇐⇒ rcs. We have to find

elements g and h in F such that gah
irs⇐⇒ gch. By Lemma 2.2 for ρ irs there

exist p′′, r ′′, q ′, s ′, such that ρ irs contains pairs

(i) (p′′p, r ′′r), (ii) (qq ′, ss ′).

Now we denote g = p′′p, h = qq ′, then

gah = p′′ · paq · q ′ irs⇐⇒ p′′ · pbq · q ′ = p′′p · b · qq ′
(i)←→ r ′′r · b · qq ′ (ii)←→ r ′′r · b · ss ′ = r ′′ · rbs · s ′

irs⇐⇒ r ′′ · rcs · s ′ = r ′′r · c · ss ′ (i)←→ p′′p · c · ss ′ (ii)←→ p′′p · c · qq ′ = gch.
So, ρ∗ is transitive and hence the equivalence relation.

We check now that ρ∗ is a congruence, that is for every s, t ∈ F , if (a, b) ∈
ρ∗, then (sat, sbt) ∈ ρ∗. By another words for some p, q we have paq

irs⇐⇒
pbq and we have to show that there exist g, h such that g ·sat ·h irs⇐⇒ g ·sbt ·h.
By Lemma 2.2 for ρ irs we conclude that there are s ′′, p′′, t ′, q ′ such that ρ irs

contains pairs
(i) (s ′′s, p′′p), (ii) (tt ′, qq ′).

If denote g = s ′′, h = t ′, then

g · sat · h = s ′′s · a · t t ′ (i)←→ p′′p · a · t t ′ (ii)←→ p′′p · a · qq ′ = p′′ · paq · q ′
irs⇐⇒ p′′ · pbq · q ′ = p′′p · b · qq ′ (i),(ii)←→ s ′′s · b · t t ′ = g · sbt · h,

which finishes the proof.

3. Properties of the congruence (u, v)#

We take now a nontrivial balanced pair of words (u, v) as the relation ρ to
describe the smallest cancellative congruence (u, v)#, such that the quotient
semigroup is cancellative and satisfies the identity u ≡ v. By Theorem 2.3 a
pair (a, b) is in (u, v)#, if and only if for some p, q ∈ F ∪ ∅, the words paq
and pbq are connected by a (u, v)irs-sequence, where by (1):

(2) (u, v)irs = {(u, v), (v, u), (x, x)}End .

We need some properties of this congruence.
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Property 1. Two identities a ≡ b andu ≡ v are equivalent on cancellative
semigroups if and only if (a, b)# = (u, v)#. These identities are equivalent on
groups if and only if the words ab−1 and uv−1 define the same verbal subgroup
in the free group F∞.

It is clear that if two identities are equivalent on cancellative semigroups,
then they are equivalent on groups, and hence we have

Property 2. If ab−1 and uv−1 define different verbal subgroups, then the
identities a ≡ b and u ≡ v are not equivalent on cancellative semigroups.

The converse statement is an open problem (equivalent to Question 1).

Question 2. Is it possible that (u, v)# �= (a, b)#, while uv−1 and ab−1

define the same verbal subgroup in F∞?

For the next property, we denote by u(x1, . . . , xn) the word obtained from
u(x1, . . . , xn) by writing it backward. For example xy2 = y2x.

For a pair (a, b) we denote (a, b) := (a, b). For a set A we denote A :=
{a; a ∈ A}.

What will happen to a congruence if we change every pair (a, b) in it for
the pair (a, b)? We shall call a congruence ρ bar-invariant if ρ = ρ.

In the case when ρ = (u, v)# we can show that the set (u, v)# is also a
congruence. We call it a bar-congruence.

Lemma 3.1. (u, v)# = (u, v)#.

Proof. For e ∈ End we define e ∈ End by: xei = xei , then End = End. For
u = u(x1, . . . , xn) it holds ue = ue and hence (ue, ve) := (ue, ve) = (u e, v e).
So

(u, v)irs = {(u, v), (v, u), (x, x)}End = {(u, v), (v, u), (x, x)}End = (u, v)irs.
Now, a and b are connected by a ρ-step if and only if a and b are connected by
a ρ-step. Similarly paq and pbq are connected by a ρ-sequence if and only if
qap and qbp are connected by a ρ-sequence. To prove (u, v)# = (u, v)# we
note that:
(a, b) is in (u, v)# iff (a, b) ∈ (u, v)#, which is iff for some p, q, paq

and pbq are connected by a (u, v)irs-sequence, which is iff qap and qbp are
connected by a (u, v)irs-sequence, which is iff (a, b) ∈ (u, v)#, and hence the
statement follows.

It is clear that the congruence (xy, yx)# is bar-invariant. As another example
we show that (xy2xy, y3x2)# = (xy2xy, y3x2)#, which is the same as

(3) (x2y3, yxy2x)# = (xy2xy, y3x2)#.
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To get ρ = ρ it is enough to check ρ ⊆ ρ, so in our case we check only
(x2y3, yxy2x) ∈ (xy2xy, y3x2)#.

We take the following pairs in (xy2xy, y3x2)#:

(i) (xy2xy, y3x2),

(ii) (yx2yx, x3y2),

(iii) ((xy)2x2y, (yx)3x) (= (i)α, α : x → x, y → xy; cancelled),

(iv) (yx3yx, x3yxy) (= (i)α, α : x → xy, y → x; cancelled),

(v) (xy3xy, y3xyx) (= (i)α, α : x → xy, y → y).

Then for p = x3, q = xy we get:

p(x2y3)q = x3(x2y3)xy = x4(xy3xy)

(v)←→ x4(y3xyx) = x3(xy3xy)x
(v)←→ x3(y3xyx)x = (x3y2)(yx)2x

(ii)←→ (yx2yx)(yx)2x = yx2((yx)3x)
(iii)←→ yx2((xy)2x2y) = (yx3yx)yx2y

(iv)←→ (x3yxy)yx2y = x3(yxy2x)xy = p(yxy2x)q,

which proves the example.

So a natural question arises: Does the following equality always hold (u, v)# =
(u, v)#? This question can be formulated also as:

Question 3. Are semigroup identities u ≡ v and u ≡ v always equivalent
for cancellative semigroups?

Similar question for groups has a positive answer because u(x1, . . . , xn) =
u(x−1

1 , . . . , x−1
n )
−1.

We show now that two pairs of different degree can define the same congru-
ence. The following Theorem shows that the pair ((xy)k, (yx)k) of the degree
2k defines the same congruence as the pair (xyk, ykx) of the degree k + 1.

Theorem 3.2. For k > 0, (xyk, ykx)# = ((xy)k, (yx)k)#.

Proof. By Theorem 2.3, to show ((xy)k, (yx)k) ∈ (xyk, ykx)# we take
q = x and check that (xy)kq and (yx)kq are connected by a (xyk, ykx)irs-
sequence. The sequence will consist of one step, for which we use the pair
(x(yx)k, (yx)kx), which is equal to (xyk, ykx)e for e : x → x, y → yx.
Namely

(xy)kq = (xy)kx = x(yx)k ←→ (yx)kx = (yx)kq,
which gives ((xy)k, (yx)k) ∈ (xyk, ykx)# and hence ((xy)k, (yx)k)# ⊆
(xyk, ykx)#.
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To prove (xyk, ykx) ∈ ((xy)k, (yx)k)# we use the following pairs in
((xy)k, (yx)k)# (we explain later how to obtain them):

(i) ((yx)k
2
yk, ((yx)ky)k),

(ii) (x((yx)ky)k, ((yx)ky)kx),

(iii) ((yx)k
2
, (xy)k

2
).

Now we can see that for p = (xy)k2
, (q empty) the words pxyk and pykx are

connected by a ((xy)k, (yx)k)#-sequence:

pxyk = (xy)k2
xyk = x(yx)k2

yk
(i)←→x((yx)ky)k

(ii)←→ ((yx)ky)kx
(i)←→ (yx)k

2
ykx

(iii)←→ (xy)k
2
ykx = pykx,

which implies (xyk, ykx)# ⊆ ((xy)k, (yx)k)#.
Now we show that pairs (i)–(iii) are in ((xy)k, (yx)k)#. The first inclusion

follows from ((yx)klyl, ((yx)ky)l) ∈ ((xy)k, (yx)k)#, which can be obtained
by induction on l with use of ((yx)kyl, yl(yx)k) ∈ ((xy)k, (yx)k)#, which
follows by induction on l, while for l = 1 ((yx)ky, y(yx)k) ∈ ((xy)k, (yx)k)#
follows from (yx)ky = y(xy)k ←→ y(yx)k .

The inclusion for (ii) follows from (x(xy)k, (xy)kx) ∈ ((xy)k, (yx)k)#, by
using the endomorphism g : y → y(xy)k−1y, x → x. The inclusion for (iii)
is clear. This finishes the proof.

4. Two-variable identities of small degree

Let (u, v) be a pair of two-variable words written through generators x, y,
and let σ permutes x and y. It is clear that (u, v)# = (v, u)# = (uσ , vσ )# =
(vσ , uσ )#, so it makes sense to consider only one of the above pairs. We define
a standard form for pairs and identities.

We say that a word u(x, y) is of a type XkY l if the first letter in u is x, the
exponent sum of x’s is k and the exponent sum of y’s is l.

We say that a pair (u, v) is of the type XkY l if u is of that type.
In a cancelled balanced pair (u, v) of the type XkY l the word v is of the

type Y lXk . We note that vσ is then of the type XlY k .

Definition 4.1. A cancelled balanced pair (u, v) of the typeXkY l is called
standard if k < l or k = l and u is lexicographically less than, or equal to vσ .
An identity defined by a standard pair is called standard.

Since either (u, v) or (vσ , uσ ) is standard, we get

Corollary 4.2. If (u, v) is any cancelled balanced pair of degree n, then
the congruence (u, v)# can be defined by a standard pair of degree n.
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Question 4. Is it possible that standard pairs (a, b) and (u, v) of the same
degree and of different types define (a, b)# = (u, v)#?

Two-variable identities of degree ≤ 4

Two semigroup identities are s-equivalent if each of them is a consequence
of the other in every cancellative semigroup. In this case corresponding pairs
define the same congruence. Every identity is s-equivalent to a standard iden-
tity. We show that there are seven standard identities of degree ≤ 4, which
split into six s-equivalence classes. This classes form a poset with respect to
implication of identities in cancellative semigroups.

Theorem 4.3. There are six s-equivalence classes of two-variable semig-
roup identities of degree ≤ 4. The poset of the classes is given below.

xy = yx

x2y2 = (yx)2

xy2x = yx2y

xy3 = y3x

xy2 = y2x
(xy)2 = (yx)2

x2y2 = y2x2

Poset of s-equivalence classes of two-variable
semigroup identities of degree ≤ 4

Proof. The only standard pairs of the degree 2 and 3 are a := (xy, yx)
and b := (xy2, y2x). To describe congruences of degree 4 we have to consider
pairs (u, v) only of the type XY 3, and X2Y 2. There exists only one pair of the
first type: c := (xy3, y3x).

The set of possible words u of the type X2Y 2 is U = {x2y2, xy2x, (xy)2}.
The set of possible words v is Uσ = {y2x2, yx2y, (yx)2}. Since the pairs
(u, v) have to be cancelled and of the length 4, we have to consider only:

(x2y2, y2x2), (x2y2, (yx)2), (xy2x, yx2y), ((xy)2, (yx)2).

Since by Theorem 3.2, ((xy)2, (yx)2)# is also defined by the pair (xy2, y2x)

of degree 3 we have to consider only pairs:

d := (x2y2, y2x2), e := (x2y2, (yx)2), f := (xy2x, yx2y).
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To show that the six congruences defined by pairs a–f of degree ≤ 4 are
different for cancellative semigroups it is enough (by Property 2) to show
that the corresponding identities define different verbal subgroups V in the
two-generator free group F .

It is clear that

V (a) = [F,F ], V (b) = [F,F 2], V (c) = [F,F 3], V (d) = [F 2, F 2].

For ewe write corresponding identity x2y2 = (yx)2 in a non-cancelled form as
x3y3 = (xy)3, then by [4] it defines the verbal subgroup V (e) = F 3 ∩ [F,F ].
For f the corresponding identity xy2x = yx2y, is equivalent by [11] to 2-
engel identity [x, y, y] = 1, and hence in the 2-generator group F it defines
the verbal subgroup V (f ) = [[F,F ], F ]. It is known that all these verbal
subgroups are different and hence the congruences are different.

To draw the poset of congruences (s-equivalent classes of identities) we
need to chek implications. Since most of implications are obvious, we have to
prove only that on cancellative semigroups the identity x2y2 = (yx)2 implies
both xy3 = y3x and xy2x = yx2y. To prove the first implication we show that
(xy3, y3x) ∈ (x2y2, (yx)2)#.

We definep, q and connectpxy3q andpy3xq by a (x2y2, (yx)2)#-sequence.
Every step of the sequence uses one of the following pairs in (x2y2, (yx)2)# :

(i) (x2y2, (yx)2),

(ii) ((xy)2y, yxy2x) (= (i)α, α : x → xy, y → y; cancelled),

(iii) (xyxy4, y2xy3x) (= (i)α, α : x → xy, y → y2; cancelled),

(iv) (y4x2, (xy2)2) (= (i)α, α : x → y2, y → x).

Then for p = y2, q = x we get:

p(xy3)q = y2xy3x
(iii)←→xyxy4 = (xy)2yy2

(ii)←→ yxy2xy2 = y(xy2)2
(iv)←→ y(y4x2) = y2(y3x)x = p(y3x)q,

which by cancellation leads to required (xy3, y3x)# ⊆ (x2y2, (yx)2)#.
To prove the second implication we show that (xy2x, yx2y) ∈

(x2y2, (yx)2)#. We note that (x2y2, (yx)2)# contains the following pairs:

(i) (x2y2, (yx)2),

(ii) (y2x2, (xy)2),

(iii) ((xy)2y, yxy2x) (= (i)α, α : x → xy, y → y; cancelled).
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Then for p = y2 we have:

p(xy2x) = y2(xy2x) = y(yxy2x)
(iii)←→y(xy)2y

(ii)←→ y(y2x2)y = y2(yx2y) = p(yx2y),

which finishes the proof.

[F , F ]

[[F , F ], F ]

[F , F3]

[F, F2]

[F2, F2]

F3 ∩ [F , F]

The poset of verbal subgroups defined by a single two-variable semi-
group identity of degree ≤ 4 in a two-generator free group F

Two-variable identities of degree ≤ 5

We show that there are 13 standard pairs of degree 5, which give only four
new s-equivalence classes, and draw the poset for s-equivalence classes of
identities of degree ≤ 5.

Theorem 4.4. There are ten s-equivalence classes of two-variable semig-
roup identities of degree ≤ 5. The poset is given below.

Proof. We note that for the degree equal to 5 there are standard pairs
only of the type XY 4, and X2Y 3. There exists only one pair of the first type:
(xy4, y4x).

For standard pairs of the typeX2Y 3, the word u is in the setU23 below (split
with respect to the last letter of the words):

U23 = {xy3x} ∪ {xyxy2, xy2xy, x2y3}.
The word v is in

Uσ32 = {yxyxy, yx2y2, y2x2y} ∪ {yxy2x, y2xyx, y3x2}.
Combining possible u and v we can see that there are 12 (= 3+3 ·3) diffe-

rent cancelled pairs of the type X2Y 3. So there are 13 standard pairs of the
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x2y3 = y3x2

xy3 = y3x

xy2x = yx2y
xy3x = yxyxy

x2y2 = y2x2

xyxy2 = y2xyx

xy2xy = y3x2

x2y3 = xyx2y

xy2 = y2x
(xy)2 = (yx)2

xy2xy = yxy2x
xyxy2 = y3x2

x2y3 = y2xyx

x2y2 = (yx)2

xyxy2 = yxy2x
xy2xy = y2xyx

xy = yx
xy3x = yx2y2

xy3x = y2x2y

xy4 = y4x

1*

2*
3*

4*

Poset of s-equivalence classes of two-variable semigroup identities of degree
≤ 5

degree 5. However we can prove that they define only four new congruences.
The following Lemma will finish our proof.

Lemma 4.5. There exist only four different congruences of the degree five.

Proof. First we show that 7 of the 13 standard pairs of the degree 5
define known congruences, already obtained by using pairs of smaller degrees,
namely:

1. (xy3x, y2x2y)# = (xy, yx)#,

2. (xy3x, yx2y2)# = (xy, yx)#,

3. ((xy)2y, yxy2x)# = (x2y2, (yx)2)#,

4. (xy2xy, y(yx)2)# = (x2y2, (yx)2)#,

5. (xy3x, (yx)2y)# = (xy2x, yx2y)#,

6. (xy2xy, yxy2x)# = (xy2, y2x)#,

7. ((xy)2y, y(yx)2)# = (x2y2, y2x2)#.



on equivalence of semigroup identities 173

Proof. Equality 1 is proven in [7, p. 132]. We obtain 2 by taking the bar-
congruences in equality 1:

(xy3x, yx2y2)# = (xy3x, y2x2y)# = (xy, yx)# = (xy, yx)#.
For following equalities of the type (a, b)# = (u, v)#, we shall check (a, b) ∈
(u, v)# and (a, b)# � (u, v). To get (a, b) ∈ (u, v)# we definep, q and connect
paq and pbq by a (u, v)#-sequence. Every step of the sequence uses some
pair in (u, v)#, which is obtained as an image of (u, v) under some α ∈ End.
The pairs and sequences are found by using computer.

3.1. ((xy)2y, yxy2x) ∈ (x2y2, (yx)2)#.

This follows by applying α : x → xy, y → y to (x2y2, (yx)2) and cancella-
tion.

3.2. ((xy)2y, yxy2x)# � (x2y2, (yx)2).

We use the following pairs in ((xy)2y, yxy2x)#:

(i) ((xy)2y, yxy2x),

(ii) ((xy2)2, yxy3x) (= (i)α, α : x → xy, y → y; cancelled),

(iii) ((y2x)2x, xy2x2y2) (= (i)α, α : x → y2, y → x),

(iv) (y2xy3xyx, xy3(xy)2y) (= (i)α, α : x → y2, y → xy; cancelled).

Then for p = xy2, q = y2 we have:

p(x2y2)q = xy2(x2y2)y2 = (xy2x2y2)y2

(iii)←→ ((y2x)2x)y2 = y(yxy2x)xy2 (i)←→ y((xy)2y)xy2 = yxy(xy2)2

(ii)←→ yxy(yxy3x) = y(xy2)2yx
(ii)←→ y(yxy3x)yx = y2xy3xyx

(iv)←→ xy3(xy)2y = xy2(yx)2y2 = p(yx)2q,
as required.

So the equality 3 follows.

The equality 4 follows from equality 3 by taking bar-congruences, similarly
to as 2 follows from 1.

5.1. (xy3x, (yx)2y) ∈ (xy2x, yx2y)#.

We apply endomorphism α : x → y, y → xy to the righthand pair
(xy2x, yx2y). After cancellation it gives ((yx)2y, xy3x, ) ∈ (xy2x, yx2y)#

which implies 5.1.

5.2. (xy3x, (yx)2y)# � (xy2x, yx2y).
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We use the following pairs in (xy3x, (yx)2y)#:

(i) (xy3x, (yx)2y),

(ii) ((yx)3y, (xy2)2x) (= (i)α, α : x → y, y → xy).

Then for p = xy2 we get:

p(xy2x) = xy2(xy2x) = (xy2)2x
(ii)←→(yx)3y = ((yx)2y)xy

(i)←→ (xy3x)xy = xy2(yx2y) = p(yx2y),

which gives 5.2 and hence 5.

6.1. (xy2xy, yxy2x) ∈ (xy2, y2x)#.

We use the following pairs in (xy2, y2x)#:

(i) (xy2, y2x),

(ii) (yx2, x2y).

Then for p = y2 we get:

p(xy2xy) = y2(xy2xy) = y2(xy2)xy
(i)←→y2(y2x)xy = y3(yx2)y

(ii)←→ y3(x2y)y = y3x(xy2)
(i)←→ y3x(y2x) = y2(yxy2x) = p(yxy2x).

6.2. (xy2xy, yxy2x)# � (xy2, y2x).

We use the following pairs in (xy2xy, yxy2x)#:

(i) (xy2xy, yxy2x),

(ii) ((yx)2y2x, xy(yx)2y) (= (i)α, α : x → y, y → xy; cancelled).

Then for p = yx, q = xy we get:

p(xy2)q = yx(xy2)xy = yx(xy2xy)
(i)←→yx(yxy2x) = (yx)2y2x

(ii)←→ xy(yx)2y = (xy2xy)xy
(i)←→ (yxy2x)xy = yx(y2x)xy = p(y2x)q,

as required.

7.1. ((xy)2y, y(yx)2) ∈ (x2y2, y2x2)#.

The lefthand pair is the cancelled image of (x2y2, y2x2) under α : x →
xy, y → y.

7.2. ((xy)2y, y(yx)2)# � (x2y2, y2x2).

We use the following pairs in ((xy)2y, y(yx)2)#:

(i) ((xy)2y, y(yx)2),
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(ii) ((yx)2x, x(xy)2),

(iii) ((xyx)2y, y(xyx)2) (= (i)α, α : x → x, y → xy; cancelled),

(iv) ((yx2)2, (x2y)2) (= (i)α, α : x → xy, y → x; cancelled).

Then for p = xyx = q we have:

p(x2y2)q = xyx(x2y2)xyx = xyx3(y(yx)2)

(i)←→ xyx3((xy)2y) = xyx2(x(xy)2)y

(ii)←→ xyx2((yx)2x)y = ((xyx)2y)x2y
(iii)←→ (y(xyx)2)x2y = yx(yx2)2xy

(iv)←→ yx(x2y)2xy = yx2((xyx)2y)
(iii)←→ yx2(y(xyx)2) = y(x(xy)2)x2yx

(ii)←→ y((yx)2x)x2yx = (y(yx)2)x3yx

(i)←→ ((xy)2y)x3yx = xyx(y2x2)xyx = p(y2x2)q,

as required.

So seven pairs of the degree equal to five give known congruences, which
were defined by pairs of smaller degrees.

We have five more pairs of degree five to consider. They define not more
than three different congruences because we know by (3) that

8. (xy2xy, y3x2)# = (x2y3, yxy2x)#.

Also we can prove that:

9. (xyxy2, y3x2)# = (x2y3, y2xyx)#.

By bar-equivalence reason we show only that (xyxy2, y3x2) ∈ (x2y3, y2xyx)#.
We take the following pairs in (x2y3, y2xyx)#:

(i) (x2y3, y(yx)2),

(ii) (y2x3, x2yxy),

(iii) (yxyx3, (x2y)2) (= (i)α, α : x → xy, y → x; cancelled),

(iv) (y4x3, x(xy2)2) (= (i)α, α : x → yy, y → x),

(v) (xy2xy3, y2xy3x) (= (i)α, α : x → xyy, y → y; cancelled).

Then for p = xy2, q = xyx we get

p(xyxy2)q = xy2((xy)2y)xyx = xy(yx)2(y(yx)2)
(i)←→ xy(yx)2(x2y3) = xy(yxyx3)y3 (iii)←→ xy(x2y)2y3 = xyx2y(x2y3)y

(i)←→ xyx2y(y(yx)2)y = xy(x2y3)(xy)2
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(i)←→ xy(y(yx)2)(xy)2= xy3xy(x2yxy)
(ii)←→ xy3xy(y2x3)= xy(y2xy3x)x2

(v)←→ xy(xy2xy3)x2= xyx(y2xy3x)x
(v)←→ xyx(xy2xy3)x= xy(x(xy2)2)yx

(iv)←→ xy(y4x3)yx = xy2(y3x2)xyx = p(y3x2)q,

which implies (xyxy2, y3x2)# ⊆ (x2y3, y2xyx)#. By taking bar-congruences
we get the equality.

So Lemma is proven, there are not more than three different congruences
of the type X2Y 3 and one of the type XY 4, defined by pairs:

g := (xyxy2, y3x2),

h := (xy2xy, y3x2),

i := (x2y3, y3x2),

j := (xy4, y4x).

To show that these pairs are not s-equivalent and hence define different con-
gruences it is enough (by Property 2) to show that the corresponding identities
define different verbal subgroups V in the two-generator free group F . It is
clear that V (i) = [F 2, F 3], V (j) = [F,F 4].

I. We prove now that V (g) = [[F,F ]F,F 5]. Because of the known equal-
ity [[F,F ]F,F 5] = [[F,F ], F ][F,F 5] it is enough to prove that g# =
{f, (xy5, y5x)}#, since V (f ) = [[F,F ], F ]. So we need to check:

1o. (xyxy2, y3x2) ∈ {(xy2x, yx2y), (xy5, y5x)}#,

2o. (xyxy2, y3x2)# � (xy2x, yx2y),

3o. (xyxy2, y3x2)# � (xy5, y5x).

1o. We take the following pairs in {(xy2x, yx2y), (xy5, y5x)}#:

(i) (xy2x, yx2y),

(ii) (xy5, y5x),

(iii) (yx5, x5y),

(iv) ((xy)2x, yx3y) (= (i)α, α : x → x, y → xy; cancelled),

(v) ((yx)2y, xy3x) (= (i)α, α : x → y, y → xy; cancelled),

(vi) (x(xy)2x2, yx5y) (= (i)α, α : x → xx, y → xy; cancelled).

Then for p = x2, q = yx we get:

p(xyxy2)q = x2(xyxy2)yx = x3y(xy3x)

(v)←→ x3y((yx)2y) = x2(xy2x)yxy
(i)←→ x2(yx2y)yxy = x2yx(xy2x)y

(i)←→ x2yx(yx2y)y = (x(xy)2x2)y2 (vi)←→ (yx5y)y2 = y(x5y)y2

(iii)←→ y(yx5)y2 = y(yx5y)y
(vi)←→ y(x(xy)2x2)y = yx2yx(yx2y)
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(i)←→ yx2yx(xy2x) = yx2(yx2y)yx
(i)←→ yx2(xy2x)yx = (yx3y)(yx)2

(iv)←→ ((xy)2x)(yx)2 = x((yx)2y)xyx
(v)←→ x(xy3x)xyx = x2(y3x2)yx = p(y3x2)q.

2o. To prove that (xy2x, yx2y) ∈ (xyxy2, y3x2)# we use the following pairs
in (xyxy2, y3x2)#:

(i) (xyxy2, y3x2),

(ii) (yxyx2, x3y2),

(iii) ((xy2)2, y3xyx) (= (i)α, α : x → xy, y → y; cancelled.)

Then for p = yxy, q = xy2 we get:

p(xy2x)q = yxy(xy2x)xy2 = y(xyxy2)x2y2

(i)←→ y(y3x2)x2y2 = y4x(x3y2)
(ii)←→ y4x(yxyx2) = y(y3xyx)yx2

(iii)←→ y(xy2)2yx2 = yxy2x(y3x2)

(i)←→ yxy2x(xyxy2) = yxy(yx2y)xy2 = p(yx2y)q.

3o. To prove that (xy5, y5x) ∈ (xyxy2, y3x2)# we use the following pairs in
(xyxy2, y3x2)#:

(i) (xyxy2, y3x2),

(ii) ((yx2)2, x3yxy) (= (i)α, α : x → xy, y → x; cancelled),

(iii) ((xy2)2, y3xyx) (= (i)α, α : x → xy, y → y; cancelled),

(iv) ((y2x)2x, x3y4) (= (i)α, α : x → yy, y → x),

(v) (xy3xy2, y3xy2x) (= (i)α, α : x → xyy, y → y; cancelled),

(vi) (y3xy3x2, x3y6) (= (i)α, α : x → yyy, y → x).

Then for p = x4, q = y we get:

p(xy5)q = x4(xy5)y = x2(x3y6)
(vi)←→x2(y3xy3x2) = x(xy3xy2)yx2

(v)←→ x(y3xy2x)yx2 = (xy3xy2)xyx2 (v)←→ (y3xy2x)xyx2 = y3xy(yx2)2

(ii)←→ y3xy(x3yxy) = (y3xyx)x(xy)2
(iii)←→ (xy2)2x(xy)2 = x((y2x)2x)yxy

(iv)←→ x(x3y4)yxy = x4(y5x)y = p(y5x)q,

and hence V (g) = [[F,F ]F 5, F ].

II. We prove now that V (h) = [[F,F ]F 4, F ]. Because of the equality
[[F,F ]F 4, F ] = [[F,F ], F ][F 4, F ] it is enough to prove that h# = {f, j}#.
So we need to check:
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1oo. (xy2xy, y3x2) ∈ {(xy2x, yx2y), (xy4, y4x)}#,

2oo. (xy2xy, y3x2)# � (xy2x, yx2y),

3oo. (xy2xy, y3x2)# � (xy4, y4x).

1oo. We use the following pairs in {(xy2x, yx2y), (xy4, y4x)}#:

(i) (xy2x, yx2y),

(ii) (xy4, y4x),

(iii) (yx4, x4y),

(iv) (yx4y, x2y2x2) (= (i)α, α : x → y, y → xx).

Then for q = x2 we get:

(xy2xy)q = (xy2xy)x2 = (xy2x)yx2 (i)←→(yx2y)yx2 = y(x2y2x2)

(iv)←→ y(yx4y) = y2(x4y)
(iii)←→ y2(yx4) = (y3x2)x2 = (y3x2)q.

2oo. To prove that (xy2x, yx2y) ∈ (xy2xy, y3x2)# we use the following pairs
in (xy2xy, y3x2)#:

(i) (xy2xy, y3x2),

(ii) (yx2yx, x3y2),

(iii) ((xy)2x2y, (yx)3x) (= (i)α, α : x → x, y → xy; cancelled),

(iv) (x(xy)2x3y, (yx)2yx4) (= (i)α, α : x → xx, y → xy; cancelled),

(v) (yx3yx, x3yxy) (= (i)α, α : x → xy, y → x; cancelled),

(vi) ((xy)3x2y, (yx)3xyx) (= (i)α, α : x → xxy, y → xy; cancelled).

Then for p = x4, q = yxy we get:

p(xy2x)q = x4(xy2x)yxy = x4(xy2xy)xy

(i)←→ x4(y3x2)xy = x(x3y2)yx3y
(ii)←→ x(yx2yx)yx3y = xy(x(xy)2x3y)

(iv)←→ xy((yx)2yx4)= xy((yx)3x)x2 (iii)←→ xy((xy)2x2y)x2= x((yx)3xyx)x
(vi)←→ x((xy)3x2y)x= x2y((xy)2x2y)x

(iii)←→ x2y((yx)3x)x= x(xy2xy)xyx3

(i)←→ x(y3x2)xyx3 = xy2(yx3yx)x2 (v)←→ xy2(x3yxy)x2 = xy(yx3yx)yx2

(v)←→ xy(x3yxy)yx2 = x(yx3yx)y2x2 (v)←→ x(x3yxy)y2x2 = x4yx(y3x2)

(i)←→ x4yx(xy2xy) = x4(yx2y)yxy = p(yx2y)q.

3oo. To prove that (xy4, y4x) ∈ (xy2xy, y3x2)# we use the following pairs in
(xy2xy, y3x2)#:
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(i) (xy2xy, y3x2),

(ii) (yx2yx, x3y2),

(iii) (x2y2x2y, y3x4) (= (i)α, α : x → xx, y → y),

(iv) (yx3yx, x3yxy) (= (i)α, α : x → xy, y → x; cancelled),

(v) (xy3xy, y3xyx) (= (i)α, α : x → xy, y → y; cancelled).

Then for p = xy2, q = x3 we get:

p(xy4)q = xy2(xy4)x3 = (xy2xy)y3x3 (i)←→(y3x2)y3x3 = y3x2(y3x2)x

(i)←→ y3x2(xy2xy)x = y3(x3y2)xyx
(ii)←→ y3(yx2yx)xyx = y4x2(yx2yx)

(ii)←→ y4x2(x3y2) = y(y3x4)xy2 (iii)←→ y(x2y2x2y)xy2 = yx2y(yx2yx)y2

(ii)←→ yx2y(x3y2)y2 = (yx2yx)x2y4 (ii)←→ (x3y2)x2y4 = x(x2y2x2y)y3

(iii)←→ x(y3x4)y3 = xy3x(x3y2)y
(ii)←→ xy3x(yx2yx)y = (xy3xy)x(xy)2

(v)←→ (y3xyx)x(xy)2 = y3x(yx3yx)y
(iv)←→ y3x(x3yxy)y = (y3x4)yxy2

(iii)←→ (x2y2x2y)yxy2 = x2y2x(xy2xy)y

(i)←→ x2y2x(y3x2)y= x(xy2xy)y2x2y
(i)←→ x(y3x2)y2x2y= xy3(x2y2x2y)

(iii)←→ xy3(y3x4) = xy2(y4x)x3 = p(y4x)q.

So we can see that all ten pairs a–j define different verbal subgroups and
hence the four pairs of the degree 5 define different congruences of degree five
which finishes the proof of Lemma 2.2.

To finish the proof of Theorem 3.2, that is to draw the poset of s-equivalent
classes of identities of degree ≤ 5 we need to check implications. The only
non-obvious implications are denoted by * on the picture.

1∗. The inclusion (xy2x, yx2y) ∈ (xyxy2, y3x2)# is checked in the case 2o

above.

2∗. The inclusion (xy2x, yx2y) ∈ (xy2xy, y3x2)# is checked in the case
2oo.

3∗. The inclusion (xy4, y4x) ∈ (xy2xy, y3x2)# is checked in the case 3oo.

4∗. To prove that (x2y2, y2x2) ∈ (xy2xy, y3x2)# we use the following pairs
in (xy2xy, y3x2)#:

(i) (xy2xy, y3x2),

(ii) (x2y2x2y, y3x4) (= (i)α, α : x → xx, y → y),

(iii) (y2x2y2x, x3y4) (= (i)α, α : x → yy, y → x),
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(iv) (xy3xy, y3xyx) (= (i)α, α : x → xy, y → y; cancelled),

(v) (yx3yx, x3yxy) (= (i)α, α : x → xy, y → x; cancelled).

Then for p = y3, q = x3 we get:

p(x2y2)q = y3(x2y2)x3 = y(y2x2y2x)x2 (iii)←→y(x3y4)x2 = yx3y(y3x2)

(i)←→ yx3y(xy2xy) = (yx3yx)y2xy
(v)←→ (x3yxy)y2xy = x3y(xy3xy)

(iv)←→ x3y(y3xyx) = (x3y4)xyx
(iii)←→ (y2x2y2x)xyx = y2(x2y2x2y)x

(ii)←→ y2(y3x4)x = y3(y2x2)x3 = p(y2x2)q,

which finishes the proof.

[F , F ]

[[F , F ], F ]

[[F , F ]F5, F ]

[[F, F ]F 4, F ]

[F , F3]

[F, F 4]

[F2, F3]

[F, F2]

[F2, F2]

F3 ∩ [F , F]

The poset of verbal subgroups defined by single two-variable semi-
group identities of degree ≤ 5 in a two-generator free group F
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