
{orders}ms/010120/koliha.3d -2.4.01 - 09:25

CONTINUITY AND DIFFERENTIABILITY OF THE
MOORE^PENROSE INVERSE IN C�-ALGEBRAS

J. J. KOLIHA

1. Continuity of the Moore^Penrose inverse

The paper gives an elementary proof of the theorem on the continuity of the
Moore^Penrose inverse in a C�-algebra that does not require the concept of
the conorm, but uses instead a C� modification of Izumino's inequality
kbyk � 4kayk valid when a; b have the Moore^Penrose inverse and satisfy the
inequalities kbÿ ak < 1

2 kaykÿ1 and kbby ÿ aayk < 1. The paper then studies
the conditions for the differentiability of the Moore^Penrose inverse in a C�-
algebra and gives an explicit formula for the derivative.

The Moore^Penrose inverse of an element a of a unital C�-algebra A with
the unit e is the unique element ay of A satisfying the equations

aaya � a; ayaay � ay; �aya�� � aya; �aay�� � aay�1:1�
(see [10, 5, 11, 13]). The set of all a 2 A that possess the Moore^Penrose in-
verse will be denoted by Ay. It is shown in [5, Theorem 6] that a 2 Ay if and
only if a 2 aAa. The elements aya and aay are Hermitian idempotents. We
also write Aÿ1 for the set of all invertible elements in A.

It is well known that the following two results hold for the ordinary in-
verse in Banach algebras.

Theorem A. If a is an invertible element of the Banach algebra A and if
an ! a, then an are invertible for all sufficiently large n, and aÿ1n ! aÿ1.

Theorem B. If an are invertible elements of the Banach algebra A such
that an ! a and that the norms kaÿ1n k are bounded, then a is invertible and
aÿ1n ! aÿ1.

We discuss the validity of Theorems A and B when the ordinary inverse is
replaced by the Moore^Penrose inverse in C�-algebras.

Example 1.1. Theorem A is, in general, false for the Moore^Penrose in-
verse in a C�-algebra A as the set Ay need not be open in A.
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First we observe that if a 2 A is Hermitian, then a 2 Ay if and only if 0 is
not an accumulation spectral point of a; this follows from [6, Theorem 7].
Let A be the C�-algebra of all complex valued functions continuous on the
set �0; 1� [ �2; 3�, equipped with the supremum norm. Define a and an by
a�t� � 0 if t 2 �0; 1�, a�t� � t if t 2 �2; 3�, an�t� � t=n if t 2 �0; 1� and an�t� � t if
t 2 �2; 3�. Note that a and an are Hermitian elements of A and that 0 is an
isolated spectral point for a. Then a 2 Ay, and ay is defined by ay�t� � 0 if
t 2 �0; 1�, ay�t� � 1=t if t 2 �2; 3�. We have kan ÿ ak � 1=n! 0, however,
an =2 Ay for all n since ��an� � �0; 1=n� [ �2; 3�, and 0 is an accumulation
spectral point of an. (See [8, Example 2.1].)

Before we can show that Theorem B holds for the Moore^Penrose inverse
in any C�-algebra A, we need to derive some auxiliary results.

Theorem 1.2. Let a; b 2 Ay. Then

by ÿ ay � ÿby�bÿ a�ay�1:2�
� �eÿ byb��b� ÿ a���ay��ay � by�by���b� ÿ a���eÿ aay�:

The foregoing identity was first obtained by Wedin [18] for matrices and
by Harte and Mbekhta [6, Theorem 5] for C�-algebras. When we observe
that keÿ bybk � 1, keÿ aayk � 1 and ka� ÿ b�k � kaÿ bk, we obtain the
following result.

Theorem 1.3. Let a; b 2 Ay. Then

kay ÿ byk � 3max fkayk2; kbyk2gkaÿ bk:�1:3�
We can now give an elementary proof of the validity of Theorem B for the

Moore^Penrose inverse.

Theorem 1.4. Let an 2 Ay be such that an ! a and that the norms kaynk are
bounded. Then a 2 Ay, and ayn ! ay.

Proof. Let kaynk �M for all n. By Theorem 1.3,

kamy ÿ aynk � 3M2kam ÿ ank;
the sequence �ayn� is Cauchy, and hence convergent to some element c 2 A.
From the continuity of the product in A we get aca � limn anaynan �
limn an � a; then a 2 aAa, and a 2 Ay. Another application of Theorem 1.3
yields kayn ÿ ayk � 3M2kan ÿ ak ! 0, and the result follows.

The conclusion that a 2 Ay if an ! a and the norms kaynk are bounded was
obtained by Harte and Mbekhta [6, Theorems 7 and 8] as a consequence of
the upper semicontinuity of the conorm on Anf0g.
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The equivalence of the four conditions given in Theorem 1.6 below for C�-
algebras has attracted considerable attention in recent literature, and many
different proofs have been given [5, 6, 9, 11, 12, 13, 14]. The arguments used
in these proofs involve the concept of the conorm in a Banach algebra or,
equivalently, the reduced minimum modulus of the induced regular re-
presentation of an element a 2 A, and the concept of the gap between two
subspaces of A. Our aim is to find more elementary arguments rooted in
Banach algebra techniques, rather than relying on the concepts of the co-
norm and of the gap between subspaces which are motivated by operator
theory. To this end we adapt an inequality originally obtained by Izumino [7,
Lemma 2.2] for Hilbert space operators.

Theorem 1.5. If a; b 2 Ay are such that kbÿ ak < 1
2 kaykÿ1 and kbby ÿ aayk <

1, then

kbyk � 4kayk:�1:4�
Proof. Let p � aay and q � bby; p and q are Hermitian idempotents. We

have

k�eÿ p�qk2 � kq��eÿ p���eÿ p�qk � kq�eÿ p�qk
� kq�qÿ p�qk � kqkkpÿ qkkqk � kpÿ qk < 1;

hence eÿ �eÿ p�q 2 Aÿ1. Further, e� ay�bÿ a� 2 Aÿ1 as kay�bÿ a�k �
kaykkbÿ ak < 1.

Since �eÿ �eÿ p�q�b � aayb � a�e� ay�bÿ a��, we can express b as the
product

b � �eÿ �eÿ p�q�ÿ1a�e� ay�bÿ a�� � uav;

where u; v 2 Aÿ1. Then b � bvÿ1ayuÿ1b, by � bybby � �byb��vÿ1ayuÿ1��bby�,
and

kbyk � kbybkkvÿ1kkaykkuÿ1kkbbyk � kuÿ1kkvÿ1kkayk
� keÿ �eÿ p�qkk�e� ay�bÿ a��ÿ1kkayk
� 2�1ÿ kaykkbÿ ak�ÿ1kayk � 4kayk:

We now give an elementary proof of the main result on the continuity of
the Moore^Penrose inverse, which subsumes the results of Izumino [7, Pro-
position 2.3] for the case of bounded linear operators in Hilbert spaces. Si-
multaneously we recover Mbekhta [9, Thëore© me 2.2], Rako�cevi�c [13, Theo-
rem 2.2] and Harte and Mbekhta [6, Theorem 6]. For the continuity of the
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Moore^Penrose inverse in Banach algebras or C�-algebras see also [11, 12,
14].

Theorem 1.6. Let an, a be nonzero elements of Ay such that an ! a in A.
Then the following conditions are equivalent.

ayn ! ay;�1:5�
anayn ! aay;�1:6�
aynan ! aya;�1:7�
sup
n
kaynk <1:�1:8�

Proof. The implications (1.5) ) (1.6) ) (1.8) ) (1.5) follow from the
continuity of the algebra multiplication in A, Theorem 1.5, and Theorem 1.3,
respectively. The preceding arguments applied to an� and a� yield (1.5) )
(1.7) ) (1.8) ) (1.5) since �cy�� � �c��y for c 2 Ay.

Note 1.7. The argument used in the proof of Theorem 1.5 is essentially
due to Izumino [7, Lemma 1.2 and Lemma 2.2] (for Hilbert space operators).
We note that the hypotheses of the general case of [7, Lemma 1.2] should be
supplemented by the assumption that the operator AB has closed range; this
does not follow from the other assumptions. For the special case when B is
invertible and A has closed range this is not needed as the equation
�AB��Bÿ1Ay��AB� � AB implies that AB has closed range.

There are many publications dealing with the continuity of the Moore^
Penrose inverse for complex matrices, both square and rectangular, such as
[1, 16, 17, 18]. We recover the following fundamental result of Penrose [10,
p. 408].

Corollary 1.8. Let an, a be nonzero p� p matrices such that an ! a. Then
ayn ! ay if and only if there is n0 such that rank �an� � rank �a� for all n � n0.

Proof. Let ayn ! ay. By the preceding theorem, anayn ! aay. Then

rank �an� � rank �anayn� � tr �anayn� ! tr �aay� � rank �aay� � rank �a�
by the continuity of the trace.

Conversely, suppose that rank �an� � rank �a� for all n � n0. By a result of
Wedin [18], inequality (1.3) reduces to

kayn ÿ ayk � 3kaynkkaykkan ÿ ak; n � n0:

Write "n � 3kaykkan ÿ ak. Then kaynk � kayk � kaynk"n, and kaynk �
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�1ÿ "n�ÿ1kayk � 2kayk whenever n � n0 and 0 � "n � 1
2. The result then fol-

lows from the preceding theorem.

We restate the theorem on the continuity of the Moore^Penrose inverse
for C�-algebra-valued functions, mainly because of its application in the next
section to the differentiation of the Moore^Penrose inverse. In the following,
J denotes an interval, t0 an element of J, and a�t� a C�-algebra valued
function defined for all t 2 J. By ay�t� we denote the Moore^Penrose inverse
a�t�y of a�t�.

Theorem 1.9. Let a�t� be a function with values in a C�-algebra A defined on
an interval J such that 0 6� a�t� 2 Ay for all t 2 J, and that a�t� is continuous at
t0. The following conditions are equivalent.

ay�t� is continuous at t0;�1:9�
a�t�ay�t� is continuous at t0;�1:10�
ay�t�a�t� is continuous at t0;�1:11�
there is � > 0 such that sup

jtÿt0j<�
kay�t�k <1:�1:12�

2. Differentiability of the Moore^Penrose inverse

The differentiation of the Moore^Penrose inverse for matrices was first stu-
died by Golub and Pereyra in [4] and by Decell in [2]; Wedin obtained the
equation (2.2) which leads to the explicit formula for the derivative. Drazin
[3] investigated the problem in the setting of associative rings, and gave a
unified derivation of the differentiation formulae for the Moore^Penrose in-
verse and the Drazin inverse.

In this section J again denotes an interval, t0 an element of J, and
a : J ! A a C�-algebra valued function. By a0�t� we denote the derivative of
a�t� at t, and by ay�t� the Moore^Penrose inverse a�t�y.

Theorem 2.1. Let a�t� be a C�-algebra valued function defined on an interval
J such that 0 6� a�t� 2 Ay for all t 2 J and that a�t� is differentiable at t0. Then
the function ay�t� is differentiable at t0 if and only if one of the conditions
(1.9)^(1.12) is satisfied. The derivative �ay�0 � �ay�0�t0� is given by

�ay�0 � ÿaya0ay � �eÿ aya��a0���ay��ay � ay�ay���a0���eÿ aay�;�2:1�
where a, a�, ay, a0 stand for a�t0�, a��t0�, ay�t0�, a0�t0�, respectively.

Proof. First we observe that if a�t� is differentiable, then so is a��t�, and
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�a��0�t� � �a0���t�:
From Theorem 1.2 we get

ay�t� ÿ ay�t0�
tÿ t0

� ÿay�t� a�t� ÿ a�t0�
tÿ t0

ay�t0��2:2�

� �eÿ ay�t�a�t�� a
��t� ÿ a��t0�

tÿ t0
�ay���t0�ay�t0�

� ay�t��ay���t� a
��t� ÿ a��t0�

tÿ t0
�eÿ a�t0�ay�t0��:

If one of the conditions (1.9)^(1.12) is satisfied, then ay�t� is continuous at t0,
and we can take the limit as t! t0 in (2.2). This proves (2.1).

Conversely, if ay�t� is differentiable at t0, then it is also continuous at t0,
and all of the equivalent conditions (1.9)^(1.12) are satisfied.

Note 2.2. The arguments in the foregoing proof depend on the fact that t
is a real variable as we make use of the formula

da��t�
dt
� da�t�

dt

� ��
;

which is false when t is complex; this suggests that in the preceding theorem
the differentiability with respect to a real variable cannot be replaced by
analyticity. This is confirmed by observing that if a�t� and ay�t� were analy-
tic, ay�t�a�t� and a�t�ay�t� would be constant, as kay�t�a�t�k � ka�t�ay�t�k � 1.

For finite matrices, the preceding theorem together with Corollary 1.8
yields the following result due to Golub and Pereyra [4, Theorem 4.3].

Corollary 2.3. Let a�t� be a function defined on the interval J whose values
are nonzero p� p matrices, differentiable at t0. Then ay�t� is differentiable at t0
if and only if rank �a�t�� is constant in some interval jtÿ t0j < �. The derivative
�ay�0�t0� is given by (2.1).

We mention that applications of the differentiation of the Moore^Penrose
inverse include optimization with nonlinear equality constraints, generalized
Newton's method and stability of perturbed least squares problems (see [4]).
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