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ON MORITA'S FUNDAMENTAL THEOREM FOR
C�-ALGEBRAS

DAVID P. BLECHER

Abstract

We give a solution, via operator spaces, of an old problem in the Morita equivalence of C*-al-
gebras. Namely, we show that C*-algebras are strongly Morita equivalent in the sense of Rieffel
if and only if their categories of left operator modules are isomorphic via completely contractive
functors. Moreover, any such functor is completely isometrically isomorphic to the Haagerup
tensor product (= interior tensor product) with a strong Morita equivalence bimodule. An op-
erator module over a C�-algebra a is a closed subspace of some B(H) which is left invariant
under multiplication by ��a�, where � is a *-representation of a on H. The category aHMOD
of *-representations of a on Hilbert space is a full subcategory of the category aOMOD of
operator modules. Our main result remains true with respect to subcategories of OMOD which
contain HMOD and the C�-algebra itself. It does not seem possible to remove the operator
space framework; in the very simplest cases there may exist no bounded equivalence functors on
categories with bounded module maps as morphisms (as opposed to completely bounded ones).
Our proof involves operator space techniques, together with a C�-algebra argument using com-
pactness of the quasistate space of a C�-algebra, and lowersemicontinuity in the enveloping von
Neumann algebra.

1. Notation, background and statement of the theorem

In the early 70's M. Rieffel introduced and developed the notion of strong
Morita equivalence of C�-algebras (see [26] for a good discussion and sur-
vey). It has become a fundamental tool in modern operator algebra and
noncommutative geometry (see [12] for example). Briefly, two C�-algebras
a and b are said to be strongly Morita equivalent if there is an aÿb-bi-
module X , which is a right C�-module over b, and a left C�-module over a,
such that the inner products ah � j � i and h � j � ib satisfy the relation
ah x1 j x2 i x3 � x1 h x2 j x3 ib, for x1; x2; x3 2 X . Also the span of the range
of these inner products must be norm dense in a and b respectively. Such X
is said to be an aÿb-strong Morita equivalence bimodule.

Our main result is a C�-algebraic version of Morita's fundamental theo-
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rem from pure algebra. Namely, we show that two C*-algebras are strongly
Morita equivalent if and only if their categories of (left) operator modules
are isomorphic via completely contractive functors. Moreover, any such
functor is completely isometrically isomorphic to the Haagerup tensor pro-
duct (= interior tensor product) with a strong Morita equivalence bimodule.
We use the context of operator spaces. In previous papers [9, 8, 7] we
showed that operator spaces, and more particularly operator modules, are
an appropriate `metric' context for the C�-algebraic theory of strong Morita
equivalence and the related theory of C�-modules. Thus it was natural to
look for a `fundamental Morita theorem' in this category.

Let us begin by establishing the common symbols and notations in this
paper. We shall use operator spaces quite extensively, and their connections
to C�-modules. We refer the reader to [8] and [18] for missing background.
The algebraic background may be found in any account of Morita theory for
rings, such as [1]. We have deliberately supressed some of the purely alge-
braic calculations, since sentences consisting of long strings of natural iso-
morphisms are not particularly interesting or enlightening. None of these
supressed calculations are difficult, and hopefully can be supplied without
too much trouble by the reader.

We will use the symbols a;b for C�-algebras; a; b will be generic elements
of a and b respectively; and fe�g; ff�g are contractive approximate iden-
tities (c.a.i.'s) for a and b respectively. We write e�a� for the enveloping
von Neumann algebra of a. H;K ; � � � are Hilbert spaces, �; � are typical
elements in H and K respectively, and B�H� (resp. B�H;K�) is the space of
bounded linear operators on H (resp. from H to K). We will reserve the
symbols Y and Z for a right a-module, or a left b-module, or an bÿa-
bimodule; it has generic element y and z respectively. Similarly, X or W will
be a right b-, left a-, or aÿb-module, with generic element x or w.

Suppose that � is a *-representation of a on Hilbert space H, and that X
is a closed subspace of B�H� such that ��a�X � X . Then X is a left a-
module. We shall assume that the module action is nondegenerate (=
essential)1. We say that such X , considered as an abstract operator space
and a left a-module, is a left operator module over a. By considering X as
an abstract operator space and module, we may forget about the particular
H; � used2. A theorem of Christensen-Effros-Sinclair [13] tells us that the
operator modules are exactly the operator spaces which are (nondegenerate)
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1 This means (for a left Banach module X over A, say) that fPn
k�1 akxk : n 2 N;

ak 2 A; xk 2 Xg is dense in X . This is equivalent to saying that for any c.a.i. fe�g in A, e�x! x
for all x 2 X .

2 It is sometimes useful, and equivalent, to allow X in the definition above, to be a subspace
of B�K;H�, for a second Hilbert space K .
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left a-modules, such that the module action is a `completely contractive'
bilinear map (or equivalently, the module action linearizes to a complete
contraction a
h X ! X , where 
h is the Haagerup tensor product). We
will use the facts that submodules and quotient modules of operator mod-
ules, are again operator modules. Also, if X is a left operator module and E
is an operator space, then the Haagerup tensor product X 
h E is a left op-
erator module. This last fact follows easily from the last definition of an
operator module in terms of the Haagerup tensor product, and the fact that
that tensor product is associative. We write aOMOD for the category of left
a-operator modules. The morphisms are aCB�X ;W�, the completely boun-
ded left a-module maps.

We now turn to the category aHMOD of Hilbert spaces H which are left
a-modules via a nondegenerate �-representation of a on H (denoted
aHermod in [24]). If H is a Hilbert space, and if e0 is a fixed unit vector in
H, then the space of rank 1 operators Hc � f� 
 e0 2 B�H� : � 2 Hg is
clearly an operator space, and indeed is clearly in aOMOD if
H 2 aHMOD. As an operator space or operator module Hc is independent
of the particular e0 we picked. It is referred to in the literature as `Hilbert
column space'. The n-dimensional Hilbert column space is written as Cn. It is
well known that for a linear map T : H ! K between Hilbert spaces, the
usual norm equals the completely bounded norm of T as a map Hc ! Kc.
Thus we see that the assignment H 7! Hc embeds aHMOD as a subcategory
of aOMOD. Henceforth we will view it as a subcategory.

It is explained in [27] that C�-modules also possess canonical operator
space structures, and so can be viewed as objects in OMOD. In [8] this idea
is developed and, amongst other things, we showed that the well known in-
terior tensor product of C�-modules coincides with their Haagerup tensor
product as operator modules. This fact is important in what follows.

If X ;W 2 aOMOD then aCB�X ;W� is an operator space with
Mn�aCB�X ;W�� � aCB�X ;Mn�W�� [14]. In this paper we are concerned
with functors between categories of operator modules. Such functors F :

aOMOD! bOMOD are assumed to be linear on spaces of morphisms.
Thus T 7! F�T� from aCB�X ;W� ! bCB�F�X�; F �W�� is linear, for all
pairs of objects X ;W 2 aOMOD. We say F is completely contractive, if this
map T 7! F �T� is completely contractive, for all pairs of objects X ;W 2
aOMOD. We say two functors F1;F2 : aOMOD! bOMOD are (naturally)
completely isometrically isomorphic, if they are naturally isomorphic in the
sense of category theory [1], with the natural transformations being complete
isometries. In this case we write F1 � F2 completely isometrically.

Definition 1.1. We say that two C�-algebras a and b are operator
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Morita equivalent if there exist completely contractive functors F :

aOMOD! bOMOD and G : bOMOD! aOMOD, such that FG � Id
and GF � Id completely isometrically. Such F and G will be called operator

equivalence functors.
We can now state our main theorem. Its proof, which occupies x2 and 3,

involves operator space techniques, together with a C�-algebra argument
using compactness of the quasistate space Q of a C�-algebra, and low-
ersemicontinuity in the enveloping von Neumann algebra.

Theorem 1.2. Two C�-algebras a and b are strongly Morita equivalent if
and only if they are operator Morita equivalent. Suppose that F ;G are the op-
erator equivalence functors, and set Y � F�a� and X � G�b�. Then X is an
aÿb-strong Morita equivalence bimodule, Y is a bÿa-strong Morita
equivalence bimodules, and Y is unitarily equivalent to the conjugate C�-bi-
module �X of X. Moreover, F �W� � Y 
ha W � aK�X ;W� completely iso-
metrically isomorphically (as b-operator modules), for all W 2a OMOD.
Thus F � Y 
ha ÿ � aK�X ;ÿ� completely isometrically. Similarly
G � X 
hb ÿ � bK�Y ;ÿ� completely isometrically. Also F maps the sub-
category aHMOD to bHMOD, and the subcategory of C�-modules to the C�-
modules (on which subcategories the Haagerup tensor product above coincides
with the interior tensor product). Similar statements hold for G.

We remind the reader that aK�X ;W� was defined in [8] to be the norm
closure in aCB�X ;W� of the span of the rank one operators h� j x iw, for
x 2 X ;w 2W . The symbol 
ha denotes the module Haagerup tensor pro-
duct over a (see [9] or [8]).

Remark 1. The one direction of the ``if and only if'' of the theorem is easy
and was noted in [9]. For completeness we sketch the short argument here.
Namely, if X is a strong Morita equivalence bimodule for a strong Morita
equivalence of a and b, and if Y � �X is the conjugate C�-module, then
define F �W� � Y 
ha W ; and G�Z� � X 
hb Z. Since the Haagerup tensor
product is functorial, F and G are functors. By the associativity of the
module Haagerup tensor product, and the fact that this tensor product
equals the interior tensor product where the latter is defined, we obtain that

GF�W� � X 
hb �Y 
ha W� � �X 
hb Y� 
ha W � a
ha W �W

completely isometrically, and as a-modules. Similarly FG � Id completely
isometrically. So a and b are operator Morita equivalent.

Remark 2. One can adapt the statement of the theorem to allow the op-
erator equivalence functors to be defined on not all of OMOD, but only on a
subcategory D of OMOD which contains HMOD and the C�-algebra itself.

140 david p. blecher
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Our proof goes through verbatim, except that for the part in x2 that
equivalence functors preserve HMOD. For this part to work, the sub-
category D should be closed under two or three operations which we leave to
the interested reader to abstract.

We also remark that the proof would become a little simpler if we are
willing to assume that the functors concerned are `strongly continuous' (by
which we mean that F�T�� converges point norm to F�T� whenever T� is a
bounded net in aCB�X ;W� converging point norm to T ). This argument,
which was in the original version of this paper, has been omitted for the sake
of brevity.

Remark 3. The reader may question the necessity of using operator
spaces, and completely contractive or completely isometric maps and func-
tors. However it is not too hard to show that even in the very simplest case,
where a � C, b �Mn (the n� n scalar matrices), and if we write D for
either the category of left Banach modules, or the category of operator
modules but with bounded module maps as opposed to completely bounded
ones, that there exists no isometric equivalence functor F : aD! bD. In
these categories there are too many morphisms; one needs to restrict atten-
tion to the completely bounded ones. If one replaces b by the compact op-
erators on `2, there exists no bounded equivalence functor (see also [17]).

Indeed one runs into problems using bounded module maps as morphisms
if one picks the smallest categories containing HMOD and the algebra itself.
Namely, suppose that a and b are strongly Morita equivalent, with aÿb-
equivalence bimodule X and dual bimodule Y � �X . Let aC be the category
of left Banach (or operator) a-modules consisting of aHMOD, a and X
(the latter two viewed as left a-modules). Let bD consist of bHMOD, B
and Y . Morphisms in both categories are the bounded module maps. Take F
to be the obvious functor, namely the one that maps a to Y , X to b, and on
aHMOD is the interior tensor product with Y . Define G : bD! aC simi-
larly. Again it is easy to check that even in the simplest cases F and G are
not necessarily contractive or bounded.

Remark 4. W. Beer proved in [5] that two unital C�-algebras are strongly
Morita equivalent if and only if they are algebraically Morita equivalent.
Our theorem may be viewed as an extension to the general case which also
has the advantage of characterizing the equivalence functors up to (com-
plete) isometry. Also, in Beer's theorem one produces the C�-module by
finding a similarity of an idempotent in a matrix algebra to a selfadjoint
idempotent, whereas our equivalence bimodule comes directly from the
functor.

In [8] we gave another C�-algebraic analogue of Morita's fundamental
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theorem in terms of categories of C�-modules; but that theorem was much
less satisfying. The definition of a C�-module is not too far from that of a
strong Morita equivalence, so that while that theorem was not quite tauto-
logical, it was certainly not very deep3. It seems much more surprizing, at
least to us, that strong Morita equivalence should be related to the category
of operator modules. After all, the notion of an operator module has nothing
to do with the notion of strong Morita equivalence. Another `drawback' of
the theorem in [8] is that the category of C�-modules does not contain the
category aHMOD of Hilbert space modules.

2. Preliminary Lemmas

Throughout this section a and b are C�-algebras, and F : aOMOD!
bOMOD is an operator equivalence functor, with `inverse' G (see Definition
1.1). We set Y � F�a� and X � G�b�. For a a left module W over a, say,
and w 2W , we write rw for the map from a!W which is simply right
multiplication by w.

Lemma 2.1. Let W 2 aOMOD. Then w 7! rw is a complete isometry of W
into aCB�a;W�. Indeed, W is completely isometrically isomorphic to
fT 2 aCB�a;W� : T re� ! T in normg, where fe�g is a c.a.i. for a. If W is
also a Hilbert space, then the map above is a completely isometric isomorphism
W � aCB�a;W�.

This is a simple consequence of the existence of a c.a.i. in any C�-algebra
see [28]. The following lemma will be used extensively without comment. It's
proof is just as in pure algebra ([1] Proposition 21.2).

Lemma 2.2. If V ;W 2 aOMOD then the map T 7! F �T� gives a completely
isometric surjective linear isomorphism aCB�V ;W� � bCB�F �V�;F�W��. If
V �W this map is a completely isometric isomorphism of algebras.

If E is an operator space, then the space Mm;n�E� of m� n matrices with
entries in E, is also an operator space in a canonical way. We write Cm�E�
and Rm�E� for the operator spaces Mm;1�E� and M1;m�E�. If W 2 aOMOD,
then it is easy to see that Rm�W� and Cm�W� are again in aOMOD.

For n � 1; � � � ;m, write in (resp. �n) for the canonical coordinatewise in-
clusion (resp. projection) map of W into the direct sum Cm�W� or Rm�W�
(resp. from the direct sum onto W ). Then �nik � �k;nIdW for each n; k (where
�k;n is the Kronecker delta), and

P
n in�n � Id. Applying the functor F gives

maps F�in� : F �W� ! F�Rm�W��, and F ��n� : F �Rm�W�� ! F�W�, with
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galley proofs to that paper, G. Skandalis has shown us a shorter proof.
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F��n�F�ik� � �k;nId for each n; k, and
P

n F �in�F��n� � Id. These formulae
yield a canonical algebraic isomorphism F �Rm�W�� � Rm�F�W��. Similarly
in the Cm�W� case. We now prove these isomorphisms are completely iso-
metric:

Lemma 2.3. For any W 2 aOMOD, we have F�Rm�W�� � Rm�F �W�� and
F�Cm�W�� � Cm�F �W�� completely isometrically isomorphically.

Proof. In the Rm�W� case, note ��1; � � � ; �m� 2 Rm�aCB�Rm�W�;W��,
and it has norm 1 (as may be seen by noting that it corresponds to the
identity map after employing the canonical completely isometric identifica-
tion Rm�aCB�Rm�W�;W�� � aCB�Rm�W�;Rm�W��). Applying F , we find
J � �F��1�; � � � ;F��m�� 2 Rm�bCB�F�Rm�W��;F �W��� has norm 1. How-
ever, via the canonical completely isometric isomorphism of
Rm�bCB�F �Rm�W��;F �W��� with bCB�F�Rm�W��;Rm�F �W���, J corre-
sponds to the canonical morphism F�Rm�W�� ! Rm�F�W��. So this latter
morphism is a complete contraction. Similarly the canonical morphism
G�Rm�F�W��� ! Rm�GF �W�� � Rm�W� is a complete contraction. Applying
F to this morphism, gives a complete contraction FG�Rm�F�W��� !
F�Rm�W��, which yields a complete contraction Rm�F�W�� ! F�Rm�W��.
This proves the lemma for Rm�W�. The Cm�W� case is similar.

In the remainder of this section we show that F takes the subcategory
aHMOD to bHMOD, and similarly for G. Choose H 2 aHMOD, and re-
call that H may be identified with Hc 2 aOMOD. We will show that
F�Hc� 2 bHMOD, or equivalently, that F�Hc� is a column Hilbert space.
For this we need the following functorial characterization of column Hilbert
space:

Proposition 2.4. Let E be an operator space. Then E is completely iso-
metrically isomorphic to a Hilbert column space if and only if the identity map
E 
min Cm ! E 
h Cm is a complete contraction for all m 2 N.

Proof. The ()) direction is easy and is omitted [6, 11, 15]. A simple proof
of the other direction may be found in [16] (Theorem 4.1, setting q � 1). For
completeness, we sketch a slight simplification of their argument. We use
canonical operator space identifications, which may be found in [11, 15, 6],
and the notation of [6]. By the complete injectivity of the minimal and Haa-
gerup tensor product, (see [11] for example), and the fact that column Hil-
bert space is determined by its finite dimensional subspaces being column
space, it follows that E 
min Hc � E 
h Hc, for any Hilbert space H. Choose
H so that E � B�H�. The last ``�� may be rewritten as Hc 
h E � Hc 
_ E,
where 
_ is the operator space projective tensor product. Next, recall that the
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functors Hr 
h ÿ and Hr 
_ ÿ are the same. Applying this functor to the
identity Hc 
h E � Hc 
_ E yields the identity S1�H� 
h E � S1�H� 


_
E,

where S1�H� is the operator space predual of B�H�. Taking the operator
space dual yields CB�E;B�H�� � ÿ c�E;B�H��. Thus the inclusion map
E � B�H� factors through Hilbert column space. Hence E is Hilbert column
space.

We remark that Pisier has shown us that the last result is true with the
word ``complete'' removed.

To use this to prove that K � F�Hc� is a column Hilbert space, we first
remind the reader that for Hilbert column spaces, all operator space tensor
norms coincide [15,6], thus Cm�Hc� � Hc 
min Cm � Hc 
h Cm completely
isometrically. Using this and Lemma 2.3 we have (completely isometrically):

K 
min Cm�Cm�F�Hc���F �Cm�Hc���F�Hc 
h Cm��F �G�K� 
h Cm����
since G�K� � Hc. Next we remark that there is a canonical complete con-
traction G�K� 
h Cm ! G�K 
h Cm�. To explain this map, first consider the
map G�K� ! bCB�Y ;K� given by the following sequence of maps:

G�K� ! aCB�a;G�K�� � bCB�Y ;FG�K�� � bCB�Y ;K�:����
The ! in (**) comes from Lemma 2.1, whereas the � comes from apply-

ing the equivalence functor (see Lemma 2.2). Using (**) we get a sequence of
completely contractive module maps:

G�K� 
h Cm ! bCB�Y ;K� 
h Cm ! bCB�Y ;K 
h Cm��� � ��
� aCB�a;G�K 
h Cm��:

The second ! in (***) comes about because any T 2 CB�Y ;K� and
z 2 Cm gives a map in CB�Y ;K 
h Cm� given by y 7! T�y� 
 z. Moreover it
is easy to check that this prescription gives a complete contraction
bCB�Y ;K� 
h Cm ! bCB�Y ;K 
h Cm�. The � in (***) comes from applying
the equivalence functor.

If one checks through (***) one finds that the composition of the maps
lands up in G�K 
h Cm� inside aCB�a;G�K 
h Cm��. That is, (***) gives a
map G�K� 
h Cm ! G�K 
h Cm�. Applying F to this last map and putting
this together with (*) gives us a complete contraction

K 
min Cm � F�G�K� 
h Cm� ! F�G�K 
h Cm�� � K 
h Cm

Thus we have obtained a complete contraction K 
min Cm ! K 
h Cm

which, one can easily check, up to complete isometry, is the canonical map
between these spaces. Appealing to Proposition 2.4 completes the argument
of this section.
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3. Completion of the proof of the main theorem

Again a;b;F ;G;X ;Y are as in the previous section, but now we fix H 2
aHMOD to be the Hilbert space of the universal representation of a, and
fix K � F �H�. Then e�a� � B�H�, where e�a� is the enveloping von Neu-
mann algebra of a. By x2, F and G restrict to an equivalence of aHMOD
with bHMOD. By elementary C�-algebra facts, F and G restricted to
HMOD are automatically normal *-functors in the sense of [24]. By [24]
Propositions 1.1, 1.3 and 1.6, b acts faithfully on K , and if we regard b as a
subset of B�K� then the weak operator closure b00 of b in B�K�, is W*-iso-
morphic to e�b�. We shall indeed regard b henceforth as a subalgebra of
B�K�. We shall need the fact, from [24] Proposition 4.9, that if H1 is the
Hilbert space direct sum of a countably infinite number of copies of H, then
F�H1� � K1, and similarly G�K1� � H1 .

It is important in what follows to keep in mind the canonical right module
action of b on X . xb � F �rb��x�, for x 2 X ; b 2 b, where as in the previous
section rb : b! b : c 7! cb. Similarly, Y is canonically a bÿa-bimodule.

There is a left b-module map Y 
 X ! F �X� defined by y
 x 7!
F�rx��y�. Since F�X� � FG�b� � b, we get a left b-module map
Y 
 X ! b, which we shall write as ���. Simple algebra shows that ��� is a
bÿb-bimodule map, but this will not be explicitly needed. In a similar way
we get a module map ��� : X 
 Y !a. In what follows we may use the same
notations for the `unlinearized' bilinear maps, so for example we may use the
symbols �y; x� for �y
 x�. We now show that these maps have dense range.
By way of contradiction, suppose that the closure of the range of ��� is a
proper submodule I of b. Let Z � b=I , regarded as a left b-operator mod-
ule (see Lemma 2.1 in [9]), and let � : b! Z be the nonzero quotient map.
Then G��� : X ! G�Z� is nonzero. So there exists x 2 X such that
G���rx 6� 0. Applying F we obtain FG���F�rx� 6� 0, so that for some y 2 Y ,
FG���F�rx��y� 6� 0. By the definition of ��� this implies that ���y
 x�� 6� 0,
which contradicts the definition of �. Thus ��� (and similarly ���) has dense
range.

It should be pointed out that if we are attempting to prove the main the-
orem, but with OMOD replaced by a subcategory (as discussed in Remark 2
in x1), then the argument of the last paragraph seems to require that the
subcategory be closed under certain quotients. However, the last paragraph
can be replaced by an argument which avoids a quotient in the subcategory.
Namely, pick a faithful (nonzero) representation of b=I on a Hilbert space
K say. Then K can be regarded in a canonical way as an object in bHMOD.
Then there is a nonzero morphism S from b=I to K . Replace the map � in
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the previous paragraph by S � �, which is a nonzero morphism from b to K ,
and proceed in the same way.

Lemma 3.1. The canonical maps X ! bCB�Y ;b� and Y ! aCB�X ;a�
induced by ��� and ��� respectively, are complete isometries.

Proof. Using Lemmas 2.1, 2.2, and the fact that F�X� � FG�b� � b, we
have X � aCB�a;X� � bCB�Y ;F�X�� � bCB�Y ;b� completely isometri-
cally. Sorting through these identifications shows that an element x 2 X
corresponds to the map y 7!�y; x� in bCB�Y ;b�. A similar proof works for
���.

The following maps � : Y ! B�H;K�, and 	 : X ! B�K ;H� will play a
central role in the remainder of the proof. Namely, ��y���� � F�r���y�, and
	�x���� � !HG�r���x�, where !H : GF �H� ! H is the a-module map com-
ing from the natural transformation GF � Id. Since !H is an isometric sur-
jection between Hilbert space it is unitary, which will be important below. It
is straightforward algebra to check that:

	�x���y� � �x; y� & ��y�	�x� � �y; x�V�1�
for all x 2 X ; y 2 Y , and V 2 B�K� is a unitary operator in b0 composed of
two natural transformations. The V will not play a significant role, since we
will mostly be working with expressions such as �y; x���y; x� which by the
above, and since V is unitary and in b0, equals 	�x����y����y�	�x�. See also
[28] Lemma 4.3.

Before we begin the next lemma, we remark that for any Hilbert spaces
H;K , since CB�Hc;Kc� � B�H;K� completely isometrically (see [15, 6]), the
norm of a matrix �Tij� 2Mn�B�H;K�� can be calculated by the formula:

k�Tij�k � supfk�Tij��kl��k : ��kl � 2 Ball�Mm�Hc��;m 2 Ng�2�
Lemma 3.2. The map � (resp. 	) is a completely isometric bÿa-module

map (resp. aÿb-module map). Moreover, ��y1����y2� 2a00 � e�a� for all
y1; y2 2 Y, and 	�x1��	�x2� 2 b00 for x1; x2 2 X.

Proof. We shall simply prove the assertions for �; those for 	 are similar.
The module map assertions are fairly clear, for instance ��ya���� �
F�r���ya� � F�r��F �ra��y� � F�ra���y� � ��y��a�� . Next we show the a00

assertion. By Lemma 2.2, we have a C�ÿisomorphism T 7! F�T� : a0 �
aCB�Hc� ! b0 � bCB�Kc�. Note ��y�T��� � F�rT�����y� � F�T�F�r���y� �
F�T���y����; for T 2 a0, and so also �T��y���� � ��y�T � � F�T ����y� �
���y��F�T���. Together these imply that ��y1����y2� 2 a00. The matching
assertion for 	 has the additional complication of the maps !H , however
since they are unitary as remarked above, they disappear from the calcula-

146 david p. blecher



{orders}ms/010120/blecher.3d -2.4.01 - 09:18

tion. Finally, we turn to the complete isometry. The equalities in the fol-
lowing calculation follow from, in turn, formula (2) above, the definition of
�, Lemma 2.1, Lemma 2.2, the definition of ���, formula (2) again, and
Lemma 3.1:

k�	�yij��k � supfk���yij���kl��k : ��kl � 2 Ball�Mm�Hc��;m 2 Ng
� supfk�F�r�kl ��yij��k : ��kl � 2 Ball�Mm�Hc��;m 2 Ng
� supfk�F�r�kl � ryij �k : ��kl � 2 Ball�Mm�Hc��;m 2 Ng
� supfk�GF �r�kl � G�ryij ��k : ��kl � 2 Ball�Mm�Hc��;m 2 Ng
� supfk�GF �r�kl � G�ryij ��xpq��k : ��kl � 2 Ball�Mm�Hc��;
�xpq� 2 Ball�Mr�X��g
� supfk��xpq; yij��kl �k : ��kl � 2 Ball�Mm�Hc��;
�xpq� 2 Ball�Mr�X��;m; r 2 Ng
� supfk��xpq; yij��k : �xpq� 2 Ball�Mr�X��; r 2 Ng
� k�yij�k

Thus � is a complete isometry.

We now proceed towards showing that

Theorem 3.3. Suppose that 	�x��	�x�, which is in b00 by the previous lem-
ma, is actually in b for all x 2 X; and suppose that ��y����y� 2 a for all
y 2 Y. Then all the conclusions of our main theorem hold.

Proof. If 	�x��	�x� 2 b for all x 2 X , then by the polarization identity,
and the previous lemma, X is a RIGHT C�-module over b with i.p.
h x1 j x2 ib � 	�x1��	�x2� . We can also deduce that X is a LEFT C�-module
over a by setting ah x1 j x2 i � 	�x1�	�x2��. This last quantity may be seen
to lie in a by using the polarization identity and the following argument:
Since the range of ��� is dense in a, we can find a c.a.i. fe�g for a, with
terms of the form e� �

Pn
k�1�xk; yk� �

Pn
k�1 	�xk���yk� (using equation (1)).

Here n; xk; yk depend on �. Then fe��g is also a c.a.i. for a. Since
	�x�� � lim� 	�e��x�� � lim� 	�x��e�, it follows that 	�x�	�x�� is a norm
limit of finite sums of terms of the form 	�x��	�x��	�xk����yk� �
	�x���byk���x; byk� 2 a, where b�	�x��	�xk� 2 b. Thus 	�x�	�x�� 2 a.

A similar argument shows that Y (or equivalently ��Y�) is both a left and
right C�-module. At this point we can therefore say that the right module
actions on Y and X are nondegenerate. Notice also, that if we choose a
contractive approximate identity for a of form e� �

P
k 	�xk���yk� as
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above, then e��e� is also a c.a.i. for a. However e��e� �
P

k;l ��yk��bkl��yl�
where bkl � 	�xk��	�xl� 2 b. Since B � �bkl � is a positive matrix, it has a
square root R � �rij�, say, with entries rij 2 b. Thus e��e� �

P
k ��y�k ����y�k �;

where y�k �
P

j rkjyj. From this one can easily deduce that the a-valued in-
nerproduct on Y has dense range, that is, Y is a full right C�-module over
a. Similar arguments show that Y is a full left C�-module over b, and that
X is also full on both sides. Thus X and Y are strong Morita equivalence
bimodules, giving the strong Morita equivalence of a and b.

Observe that by the basic theory of strong Morita equivalence (see e.g
[26]) aK�X� � b. Thus if ff�g is a c.a.i. for b, then fG�g is a c.a.i. for
aK�X�, where G��x� � xf� � G�rf� ��x�. Observe too, by Lemma 2.1, that
F�W� � fT 2 bCB�B;F�W�� : T rf� ! T in normg completely isometrically,
where ff�g is an approximate identity for b. Applying the functor G and
Lemma 2.2, we see the last set is completely isometrically isomorphic to
fS 2 aCB�X ;GF�W�� : SG�rf�� ! S in normg, which is completely iso-
metrically isomorphic to fS 2 aCB�X ;W� : SG� ! S in normg, which in
turn equals aK�X ;W�, since G� 2 aK�X�. Thus we have shown that
F�W� � aK�X ;W� completely isometrically, and it is an easy algebra check
that this is also as left b-modules. Setting W � a gives Y � aK�X ;a�, so
that Y � �X . It is easily checked that this last relation is as bimodules too. In
Theorem 3.10 in [7], we showed that �X 
ha W � aK�X ;W� completely iso-
metrically. Thus F�W� � Y 
ha W completely isometrically and as b-
modules, for all W 2 aOMOD. Its an easy algebra check now that F �
aK�X ;ÿ� � Y 
ha ÿ as functors. By symmetry, we get the matching state-
ment for G. The last statement of Theorem 1.2, about the mapping of sub-
categories, follows because 
ha coincides with the interior tensor product on
the subcategories concerned.

Thus the proof of our main result has boiled down to verifying the very
concrete hypotheses of the last theorem. To that end, we first observe that
the natural transformations GF �H� � H and FG�K� � K imply certain norm
equalities. Using, repeatedly, Lemmas 2.1, 2.2 and the natural transforma-
tions, we see that

H � aCB�a;H� � bCB�Y ;F �H�� � bCB�Y ; bCB�b;F �H���
� bCB�Y ; aCB�X ;GF �H��� � bCB�Y ; aCB�X ;H��

completely isometrically. Untangling these identifications shows that � 2 H
corresponds to the following map T� in the last space bCB�Y ; aCB�X ;H��
in the string above: namely T��y��x� � �x; y��. Thus
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k�k � kT�kcb
� supfk��xkl ; yij���k : �xkl � 2 Ball�Mm�X��; �yij � 2 Ball�Mn�Y��; n;m 2 Ng
� supfk�	�xkl���yij���k : �xkl � 2 Ball�Mm�X��;
�yij � 2 Ball�Mn�Y��; n;m 2 Ng
� supfk���yij���k : �yij� 2 Ball�Mn�Y ��; n 2 Ng
� k�k

using equation (1), and the fact that � and 	 are complete contractions
(Lemma 3.2). Thus k�k � supfk���yij���k : �yij� 2 Ball�Mn�Y��; n 2 Ng.
Squaring and using the usual formula for the matrix norms on Hc we see
that

h� j �i � supfk���yij���k2 : �yij� 2 Ball�Mn�Y��; n 2 Ng

� sup
Xn
k�1
h��ykj�� j ��yki��i

" #
 : �yij � 2 Ball�Mn�Y ��; n 2 N

( )

� sup
Xn
k�1

��yki����ykj�
 !

� j �
* +" #

 : �yij� 2 Ball�Mn�Y��; n 2 N

( )

� sup
Xn
k�1

�
Xn
i�1

ykizi

 !�
�
Xn
j�1

ykjzj

 ! !
� j �

* +
:

(

�yij � 2 Ball�Mn�Y��;
Xn
i�1
jzij2 � 1

)
where the zi 2 C. Letting yk �

Pn
i�1 ykizi we see that

h� j �i � sup
Xn
k�1

��yk����yk�
 !

� j �
* +

:

(
�3�

�y1; � � � yn�t 2 Ball�Cn�Y��; n 2 N

)
:

Replacing � by 	�x�� for x 2 X ; � 2 K we have
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h 	�x��	�x�� j �i � sup
Xn
k�1

	�x����yk����yk�	�x�
 !

� j �
* +(

:

�y1; � � � yn�t 2 Ball�Cn�Y��; n 2 N

)
:

The expression
Pn

k�1 	�x����yk����yk�	�x� is, by equation (1) and the re-
mark after it, an element b 2 b, with 0 � b � 	�x��	�x� since � is com-
pletely contractive. Thus, for x 2 X ; � 2 K we have

h 	�x��	�x�� j �i � supfh b� j � i : b 2 b ; 0 � b � 	�x��	�x�g�4�
A similar argument shows that for y 2 Y ; � 2 H, we have

h ��y����y�� j �i � supfh a� j �i : a 2a ; 0 � a � ��y����y�g�5�
It follows from (5), and the fact that every quasistate of a has a unique w*-
continuous extension to e�a� of form h � � j �i for some � 2 Ball�H�, that
��y����y� is a lowersemicontinuous element in e�a� �a00 , for each y 2 Y .
We refer the reader to [22] for details about lowersemicontinuity in the en-
veloping von Neumann algebra of a C�-algebra. A similar, but slightly more
complicated argument, shows that 	�x��	�x�, as an element in b00, corre-
sponds to a lowersemicontinuous element in e�b� (which we recall, is
W�ÿisomorphic to b00). The complication occurs since it seems we can say
only that the quasistates of b have unique w*-continuous extensions to b00

of form
P1

k�1h � �k j �ki, where
P1

k�1 k�kk2 � 1 ; �k 2 K . Nonetheless, the
calculation leading to equation (4) may be repeated, but with H and K re-
placed by H1 and K1 (that is, the Hilbert space direct sum of a countably
infinite number of copies of H or K), to yield the desired conclusion.

The crux of the proof now rests on a compactness argument in Q�a�, the
(compact) set of quasistates of a. For y � �y1; � � � yn�t 2 Ball�Cn�Y��, and
a0 2a; 0 � a0 � 1, set Ly � a0�

Pn
k�1 ��yk����yk��a0, which is a low-

ersemicontinuous element in e�a�. Moreover, since � is completely con-
tractive and since y 2 Ball�Cn�Y��, we see that Ly � a20. Replacing � with a0�
in (3), and using the fact that the quasistates of a are `vector quasi-states' of
e�a�, we see that

��a20� � supfLy��� : y 2 Ball�Cn�Y��; n 2 Ng�6�
for all � 2 Q�a�. Here Ly��� is the (scalar) value of Ly (interpreted as an
element of a�� � e�a�) evaluated at � 2 a�. For m 2 N, and
y 2 Ball�Cn�Y �� set Um

y � f� 2 Q�a� : Ly��� > ��a20��1ÿ 1
m� ÿ 1

mg. Since Ly

is lowersemicontinuous, Um
y is an open set in Q�a�, and by (6) for each fixed
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m 2 N, these sets fUm
y g form an open cover of Q�a�. Hence there is a finite

subcover, corresponding to points ym1 ; � � � ; ymkm .
Keeping m fixed, and x 2 BALL�X�, we let bmk � 	�x��Lymk

	�x�, which by
equation (1) and the remarks after it, is an element of b. Since each bmk is
strictly dominated (as a function on Q�b�) by the lowersemicontinuous
function 1

m� 	�x��a20	�x�, it follows by a standard lowersemicontinuity ar-
gument, effectively Dini's theorem using [22] Lemma 3.11.2, that there is an
element bm 2 b satisfying bm � 1

m� 	�x��a20	�x�, and also bm � bmk ÿ 1
m for

each k. It follows that for � 2 H; k�k � 1; and x 2 BALL�X�, that
1
m
� 	�x��a20	�x�

� �
� j �

� �
� h bm� j � i

� max
k
h bmk � j � i ÿ

1
m

� max
k
h 	�x��Lymk

	�x�� j � i ÿ 1
m

� max
k

Lymk
��0� ÿ 1

m

where �0�a� � h a 	�x�� j 	�x�� i. Since x and � have norm � 1, �0 is a
quasistate. Thus by the finite subcovering property we conclude that

1
m
� 	�x��a20	�x�

� �
� j �

� �
� h bm� j � i

� �0�a20� 1ÿ 1
m

� �
ÿ 2
m

� h a20 	�x�� j 	�x�� i 1ÿ 1
m

� �
ÿ 2
m

Thus

ÿ 1
m
� 	�x��a20	�x� ÿ bm � 1

m
��x��a20��x� �

2
m
� 3

m

which shows that bm ! 	�x��a20	�x� in norm. Thus 	�x��a20	�x� 2 b. Tak-
ing a0 to be element e� in a c.a.i. for a, shows that 	�e�x��	�e�x� 2 b. Thus
	�x��	�x� 2 b.

A similar argument (which is slightly complicated by the fact that a qua-
sistate of b is of the form

P1
k�1h� �k; �ki), shows that ��y����y� 2a for

y 2 Y , which by Theorem 3.3 completes the proof.
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After finishing this paper in May 1997, we were informed that P. Ara had
also obtained a characterization of strong Morita equivalence in terms of
isomorphism of module categories [2,3]. However Ara works within a quite
different category, namely all modules in the sense of pure algebra, both left
and right sided. These modules are not over the C�-algebras, but over their
Pedersen ideals. Also, the conditions on his functors (described in [3]) are
also quite different. In [28] we extended our main result to possibly non-
self-adjoint operator algebras. In any case, there is certainly no duplication
of results or methods.
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